SynGap Missense Server

Table of SynGAP1 Isoform α2 (UniProt Q96PV0-1) Missense Variants.

c.dna Variant SGM Consensus Domain ClinVar gnomAD ESM1b AlphaMissense REVEL FoldX Rosetta Foldetta PremPS PROVEAN PolyPhen-2 HumDiv PolyPhen-2 HumVar FATHMM SIFT PAM Physical SASA Normalized B-factor backbone Normalized B-factor sidechain SynGAP Structural Annotation DOI
Clinical Status Review Subm. ID Allele count Allele freq. LLR score Prediction Pathogenicity Class Optimized Score Prediction Average ΔΔG Prediction StdDev ΔΔG Prediction ΔΔG Prediction ΔΔG Prediction Score Prediction pph2_prob Prediction pph2_prob Prediction Nervous System Score Prediction Prediction Status Conservation Sequences PAM250 PAM120 Hydropathy Δ MW Δ Average Δ Δ StdDev Δ StdDev Secondary Tertiary bonds Inside out GAP-Ras interface At membrane No effect MD Alert Verdict Description
c.3520G>AE1174KLikely BenignCoiled-coilUncertain 16-33444555-G-A21.24e-6-4.345Likely Benign0.898Likely PathogenicAmbiguous0.442Likely Benign-1.59Neutral0.962Probably Damaging0.367Benign5.52Benign0.03Affected4.32201-0.4-0.94
c.3529G>AE1177KLikely BenignCoiled-coilUncertain 1-3.413Likely Benign0.944Likely PathogenicAmbiguous0.560Likely Pathogenic-1.75Neutral0.905Possibly Damaging0.637Possibly Damaging5.44Benign0.11Tolerated4.32201-0.4-0.94
c.3557C>TS1186LCoiled-coilUncertain 16-33444592-C-T-4.829Likely Benign0.923Likely PathogenicAmbiguous0.177Likely Benign-2.58Deleterious0.998Probably Damaging0.992Probably Damaging2.65Benign0.04Affected3.824-3-24.626.08
c.3567G>CE1189DLikely BenignCoiled-coilLikely Benign 16-33444602-G-C31.86e-6-3.582Likely Benign0.461AmbiguousLikely Benign0.359Likely Benign-1.42Neutral0.992Probably Damaging0.989Probably Damaging5.30Benign0.25Tolerated3.824320.0-14.03
c.3572G>AR1191QLikely BenignCoiled-coilUncertain 26-33444607-G-A95.58e-6-1.069Likely Benign0.943Likely PathogenicAmbiguous0.343Likely Benign-1.41Neutral0.998Probably Damaging0.992Probably Damaging2.68Benign0.08Tolerated3.824111.0-28.06
c.3574C>GL1192VLikely BenignCoiled-coilUncertain 1-4.132Likely Benign0.471AmbiguousLikely Benign0.041Likely Benign-0.89Neutral0.779Possibly Damaging0.527Possibly Damaging2.69Benign0.16Tolerated210.4-14.03
c.3595G>AE1199KCoiled-coilUncertain 16-33446587-G-A16.20e-7-10.853Likely Pathogenic0.954Likely PathogenicAmbiguous0.171Likely Benign-2.26Neutral1.000Probably Damaging0.995Probably Damaging2.52Benign0.00Affected3.77501-0.4-0.94
c.3607C>GH1203DLikely BenignCoiled-coilUncertain 1-6.729Likely Benign0.525AmbiguousLikely Benign0.403Likely Benign-1.89Neutral0.473Possibly Damaging0.265Benign5.51Benign0.24Tolerated3.7751-1-0.3-22.05
c.3607C>TH1203YLikely BenignCoiled-coilUncertain 16-33446599-C-T21.24e-6-6.834Likely Benign0.149Likely BenignLikely Benign0.233Likely Benign-1.52Neutral0.006Benign0.011Benign5.55Benign0.10Tolerated3.775201.926.03
c.3614T>CL1205PLikely PathogenicCoiled-coilUncertain 1-16.878Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.536Likely Pathogenic-5.91Deleterious1.000Probably Damaging0.999Probably Damaging1.45Pathogenic0.00Affected-3-3-5.4-16.04
c.3631A>GM1211VLikely BenignCoiled-coilBenign 16-33446623-A-G31.86e-6-2.101Likely Benign0.258Likely BenignLikely Benign0.412Likely Benign-0.29Neutral0.932Possibly Damaging0.949Probably Damaging5.43Benign0.72Tolerated3.775122.3-32.06
c.3632T>AM1211KLikely PathogenicCoiled-coilLikely Benign 1-9.013Likely Pathogenic0.662Likely PathogenicLikely Benign0.595Likely Pathogenic-2.95Deleterious0.987Probably Damaging0.979Probably Damaging5.59Benign0.01Affected3.7750-1-5.8-3.02
c.3633G>AM1211ILikely BenignCoiled-coilUncertain 16-33446625-G-A31.86e-6-1.537Likely Benign0.764Likely PathogenicLikely Benign0.298Likely Benign-0.42Neutral0.969Probably Damaging0.968Probably Damaging5.40Benign1.00Tolerated3.775122.6-18.03
c.3635C>TS1212FLikely PathogenicCoiled-coilConflicting 2-14.445Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.271Likely Benign-4.52Deleterious0.999Probably Damaging0.998Probably Damaging2.03Pathogenic0.00Affected3.775-3-23.660.10
c.3638A>CN1213TLikely BenignCoiled-coilConflicting 26-33446630-A-C462.85e-5-5.428Likely Benign0.266Likely BenignLikely Benign0.097Likely Benign-1.08Neutral0.959Probably Damaging0.721Possibly Damaging2.74Benign1.00Tolerated3.775002.8-13.00
c.3638A>GN1213SLikely BenignCoiled-coilBenign 16-33446630-A-G138.05e-6-4.086Likely Benign0.081Likely BenignLikely Benign0.094Likely Benign-0.56Neutral0.906Possibly Damaging0.551Possibly Damaging2.82Benign0.68Tolerated3.775112.7-27.0310.1016/j.ajhg.2020.11.011
c.3640C>TR1214WLikely PathogenicCoiled-coilUncertain 16-33446632-C-T21.24e-6-8.799Likely Pathogenic0.710Likely PathogenicLikely Benign0.143Likely Benign-4.95Deleterious1.000Probably Damaging0.983Probably Damaging2.45Pathogenic0.00Affected3.7752-33.630.03
c.3653A>TE1218VLikely PathogenicCoiled-coilUncertain 2-5.647Likely Benign0.936Likely PathogenicAmbiguous0.418Likely Benign-5.68Deleterious1.000Probably Damaging0.998Probably Damaging2.21Pathogenic0.00Affected3.775-2-27.7-29.98
c.3655T>CY1219HLikely PathogenicCoiled-coilUncertain 1-9.511Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.363Likely Benign-3.62Deleterious1.000Probably Damaging0.999Probably Damaging2.15Pathogenic0.00Affected3.77502-1.9-26.03
c.3661C>TR1221WLikely PathogenicCoiled-coilConflicting 36-33446653-C-T16.20e-7-10.938Likely Pathogenic0.651Likely PathogenicLikely Benign0.174Likely Benign-4.57Deleterious1.000Probably Damaging0.987Probably Damaging2.50Benign0.01Affected3.7752-33.630.03
c.3662G>AR1221QLikely BenignCoiled-coilConflicting 26-33446654-G-A42.48e-6-5.491Likely Benign0.115Likely BenignLikely Benign0.078Likely Benign-1.46Neutral0.836Possibly Damaging0.153Benign2.56Benign0.12Tolerated3.775111.0-28.06
c.3686A>CQ1229PLikely PathogenicCoiled-coilUncertain 1-10.397Likely Pathogenic0.980Likely PathogenicLikely Pathogenic0.422Likely Benign-3.69Deleterious0.998Probably Damaging0.995Probably Damaging1.75Pathogenic0.12Tolerated3.7750-11.9-31.01
c.36C>GS12RLikely BenignUncertain 16-33420300-C-G42.59e-6-4.033Likely Benign0.500AmbiguousLikely Benign0.097Likely Benign-0.30Neutral0.000Benign0.000Benign4.09Benign0.00Affected4.3210-1-3.769.11
c.3705G>AM1235ILikely BenignCoiled-coilUncertain 1-4.312Likely Benign0.310Likely BenignLikely Benign0.027Likely Benign-1.44Neutral0.139Benign0.056Benign2.69Benign0.04Affected3.775122.6-18.03
c.371C>TA124VLikely BenignConflicting 26-33432236-C-T95.58e-6-4.259Likely Benign0.138Likely BenignLikely Benign0.073Likely Benign-1.52Neutral0.173Benign0.009Benign4.07Benign0.03Affected3.615002.428.05
c.3721C>AL1241MCoiled-coilUncertain 1-5.881Likely Benign0.782Likely PathogenicLikely Benign0.167Likely Benign-1.43Neutral1.000Probably Damaging0.999Probably Damaging1.65Pathogenic0.00Affected42-1.918.03
c.3731G>AS1244NLikely PathogenicCoiled-coilUncertain 1-9.008Likely Pathogenic0.751Likely PathogenicLikely Benign0.154Likely Benign-1.87Neutral0.997Probably Damaging0.992Probably Damaging2.10Pathogenic0.15Tolerated3.77511-2.727.03
c.373C>TP125SLikely BenignUncertain 1-3.769Likely Benign0.238Likely BenignLikely Benign0.121Likely Benign-3.57Deleterious0.580Possibly Damaging0.140Benign2.86Benign0.02Affected3.6151-10.8-10.04
c.3773A>GQ1258RLikely PathogenicCoiled-coilUncertain 1-10.971Likely Pathogenic0.931Likely PathogenicAmbiguous0.316Likely Benign-3.19Deleterious0.994Probably Damaging0.988Probably Damaging2.00Pathogenic0.00Affected11-1.028.06
c.3788T>CI1263TLikely PathogenicCoiled-coilUncertain 16-33446780-T-C21.24e-6-6.564Likely Benign0.962Likely PathogenicLikely Pathogenic0.529Likely Pathogenic-4.15Deleterious0.946Possibly Damaging0.673Possibly Damaging1.81Pathogenic0.00Affected3.7750-1-5.2-12.05
c.3794G>CR1265TLikely PathogenicCoiled-coilLikely Pathogenic 1-10.129Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.529Likely Pathogenic-4.97Deleterious0.997Probably Damaging0.994Probably Damaging2.29Pathogenic0.00Affected3.775-1-13.8-55.08
c.379C>TR127WUncertain 1-4.776Likely Benign0.806Likely PathogenicAmbiguous0.118Likely Benign-2.98Deleterious0.989Probably Damaging0.420Benign3.88Benign0.00Affected2-33.630.03
c.37A>GI13VLikely BenignUncertain 1-2.497Likely Benign0.105Likely BenignLikely Benign0.110Likely Benign0.01Neutral0.000Benign0.000Benign4.25Benign0.00Affected43-0.3-14.03
c.3806T>AV1269ELikely PathogenicCoiled-coilUncertain 1-11.418Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.403Likely Benign-5.05Deleterious0.999Probably Damaging0.995Probably Damaging2.09Pathogenic0.00Affected3.775-2-2-7.729.98
c.380G>AR127QLikely BenignUncertain 16-33432245-G-A63.72e-6-1.711Likely Benign0.320Likely BenignLikely Benign0.037Likely Benign-1.04Neutral0.006Benign0.001Benign4.04Benign0.02Affected3.744111.0-28.06
c.3820C>TR1274CUncertain 16-33447868-C-T-6.467Likely Benign0.439AmbiguousLikely Benign0.170Likely Benign-5.22Deleterious1.000Probably Damaging0.996Probably Damaging2.46Pathogenic0.00Affected3.775-4-37.0-53.05
c.3821G>AR1274HLikely Benign 16-33447869-G-A42.58e-6-5.259Likely Benign0.256Likely BenignLikely Benign0.149Likely Benign-3.20Deleterious1.000Probably Damaging0.995Probably Damaging2.49Pathogenic0.01Affected3.775021.3-19.05
c.3824G>AR1275QLikely BenignUncertain 16-33447872-G-A21.29e-6-4.928Likely Benign0.121Likely BenignLikely Benign0.103Likely Benign-1.72Neutral0.898Possibly Damaging0.147Benign2.59Benign0.03Affected3.775111.0-28.06
c.3824G>TR1275LLikely Benign 16-33447872-G-T16.45e-7-6.052Likely Benign0.446AmbiguousLikely Benign0.117Likely Benign-4.04Deleterious0.800Possibly Damaging0.277Benign2.55Benign0.01Affected3.775-3-28.3-43.03
c.382C>AP128TLikely BenignUncertain 16-33432247-C-A16.20e-7-4.217Likely Benign0.267Likely BenignLikely Benign0.075Likely Benign-0.96Neutral0.952Possibly Damaging0.500Possibly Damaging4.19Benign0.35Tolerated3.744-100.93.99
c.3835G>AA1279TLikely BenignUncertain 26-33447883-G-A21.29e-6-4.871Likely Benign0.071Likely BenignLikely Benign0.178Likely Benign-0.30Neutral0.001Benign0.000Benign2.71Benign0.09Tolerated3.77510-2.530.03
c.3846G>CE1282DLikely BenignUncertain 16-33447894-G-C16.44e-7-3.879Likely Benign0.074Likely BenignLikely Benign0.104Likely Benign-1.26Neutral0.112Benign0.036Benign2.70Benign0.39Tolerated3.775320.0-14.03
c.3848C>TP1283LLikely BenignBenign 16-33447896-C-T322.06e-5-3.740Likely Benign0.093Likely BenignLikely Benign0.047Likely Benign-1.04Neutral0.005Benign0.003Benign2.76Benign0.06Tolerated3.775-3-35.416.04
c.3858A>TE1286DLikely BenignConflicting 46-33447906-A-T1439.22e-5-4.010Likely Benign0.081Likely BenignLikely Benign0.036Likely Benign1.02Neutral0.001Benign0.004Benign2.96Benign1.00Tolerated3.775320.0-14.0310.1016/j.ajhg.2020.11.011
c.3859C>AP1287TLikely BenignUncertain 16-33447907-C-A-3.940Likely Benign0.077Likely BenignLikely Benign0.044Likely Benign-0.22Neutral0.126Benign0.041Benign2.78Benign0.04Affected3.775-100.93.99
c.3860C>TP1287LLikely BenignConflicting 26-33447908-C-T-2.800Likely Benign0.117Likely BenignLikely Benign0.061Likely Benign-1.66Neutral0.021Benign0.017Benign2.76Benign0.02Affected3.775-3-35.416.04
c.3862A>GK1288EUncertain 16-33447910-A-G53.22e-6-2.751Likely Benign0.407AmbiguousLikely Benign0.185Likely Benign-3.27Deleterious0.979Probably Damaging0.973Probably Damaging2.13Pathogenic0.00Affected3.775100.40.94
c.3902C>AP1301HLikely BenignConflicting 26-33451776-C-A53.10e-6-5.756Likely Benign0.104Likely BenignLikely Benign0.232Likely Benign-1.13Neutral0.642Possibly Damaging0.378Benign2.79Benign0.04Affected3.7750-2-1.640.02
c.3902C>GP1301RLikely BenignUncertain 16-33451776-C-G159.30e-6-4.753Likely Benign0.162Likely BenignLikely Benign0.076Likely Benign-1.13Neutral0.077Benign0.059Benign2.81Benign0.10Tolerated3.7750-2-2.959.07
c.3906G>CL1302FUncertain 1-5.674Likely Benign0.148Likely BenignLikely Benign0.211Likely Benign-2.70Deleterious0.960Probably Damaging0.657Possibly Damaging1.53Pathogenic0.00Affected20-1.034.02
c.3907G>AG1303SLikely BenignUncertain 1-2.271Likely Benign0.125Likely BenignLikely Benign0.155Likely Benign-0.19Neutral0.649Possibly Damaging0.433Benign2.84Benign0.18Tolerated10-0.430.03
c.3913A>GT1305ALikely BenignConflicting 46-33451787-A-G301.86e-5-2.692Likely Benign0.055Likely BenignLikely Benign0.069Likely Benign1.74Neutral0.000Benign0.001Benign3.24Benign1.00Tolerated3.775102.5-30.03
c.391G>CG131RUncertain 1-6.564Likely Benign0.983Likely PathogenicLikely Pathogenic0.099Likely Benign-3.82Deleterious0.983Probably Damaging0.656Possibly Damaging3.92Benign0.00Affected3.615-2-3-4.199.14
c.3920C>AP1307QLikely BenignUncertain 16-33451794-C-A-4.227Likely Benign0.114Likely BenignLikely Benign0.192Likely Benign-0.88Neutral0.988Probably Damaging0.765Possibly Damaging2.82Benign0.03Affected3.7750-1-1.931.01
c.3920C>TP1307LLikely BenignBenign 16-33451794-C-T116.82e-6-4.044Likely Benign0.144Likely BenignLikely Benign0.292Likely Benign-1.49Neutral0.779Possibly Damaging0.220Benign2.82Benign0.04Affected3.775-3-35.416.04
c.3922C>TR1308CConflicting 26-33451796-C-T42.48e-6-4.994Likely Benign0.421AmbiguousLikely Benign0.352Likely Benign-4.89Deleterious0.999Probably Damaging0.993Probably Damaging2.31Pathogenic0.00Affected3.775-4-37.0-53.05
c.3923G>AR1308HUncertain 16-33451797-G-A31.86e-6-3.586Likely Benign0.201Likely BenignLikely Benign0.319Likely Benign-3.12Deleterious0.998Probably Damaging0.991Probably Damaging2.33Pathogenic0.00Affected3.775201.3-19.05
c.3929C>TT1310MLikely BenignBenign 16-33451803-C-T171.05e-5-4.822Likely Benign0.117Likely BenignLikely Benign0.069Likely Benign2.19Neutral0.021Benign0.005Benign2.98Benign0.93Tolerated3.775-1-12.630.09
c.3932T>CL1311PLikely BenignLikely Benign 16-33451806-T-C16.21e-7-1.831Likely Benign0.079Likely BenignLikely Benign0.123Likely Benign-0.52Neutral0.579Possibly Damaging0.335Benign2.72Benign0.18Tolerated3.775-3-3-5.4-16.04
c.3941C>TP1314LLikely BenignLikely Benign 16-33451815-C-T21.24e-6-4.040Likely Benign0.118Likely BenignLikely Benign0.049Likely Benign-0.20Neutral0.421Benign0.066Benign4.19Benign0.05Affected3.775-3-35.416.04
c.3943T>CW1315RLikely BenignUncertain 10.205Likely Benign0.660Likely PathogenicLikely Benign0.114Likely Benign1.31Neutral0.000Benign0.001Benign4.37Benign0.91Tolerated3.7752-3-3.6-30.03
c.3949G>AG1317SLikely BenignConflicting 36-33451823-G-A16.26e-7-3.522Likely Benign0.145Likely BenignLikely Benign0.092Likely Benign-2.45Neutral0.127Benign0.045Benign4.08Benign0.00Affected3.77510-0.430.03
c.3956C>GA1319GLikely BenignUncertain 26-33451830-C-G-3.927Likely Benign0.084Likely BenignLikely Benign0.128Likely Benign-0.74Neutral0.819Possibly Damaging0.581Possibly Damaging4.07Benign0.06Tolerated3.77510-2.2-14.03
c.3958C>TP1320SLikely BenignUncertain 16-33451832-C-T21.28e-6-4.928Likely Benign0.073Likely BenignLikely Benign0.097Likely Benign-0.69Neutral0.980Probably Damaging0.968Probably Damaging4.25Benign0.00Affected3.7751-10.8-10.04
c.3961C>TP1321SLikely BenignUncertain 26-33451835-C-T106.46e-6-4.897Likely Benign0.077Likely BenignLikely Benign0.049Likely Benign0.68Neutral0.028Benign0.004Benign4.27Benign0.71Tolerated3.7751-10.8-10.0410.1016/j.ajhg.2020.11.011
c.3962C>AP1321QLikely BenignBenign 16-33451836-C-A16.58e-7-5.594Likely Benign0.079Likely BenignLikely Benign0.055Likely Benign-0.74Neutral0.659Possibly Damaging0.034Benign4.24Benign0.09Tolerated3.7750-1-1.931.01
c.3964G>CA1322PLikely BenignBenign 16-33451838-G-C-1.153Likely Benign0.063Likely BenignLikely Benign0.090Likely Benign0.03Neutral0.000Benign0.000Benign4.15Benign0.23Tolerated3.7751-1-3.426.04
c.3970C>TP1324SLikely BenignLikely Benign 16-33451844-C-T53.26e-6-5.451Likely Benign0.068Likely BenignLikely Benign0.049Likely Benign0.35Neutral0.225Benign0.092Benign4.33Benign0.00Affected4.3211-10.8-10.04
c.3974C>TP1325LLikely BenignUncertain 16-33451848-C-T-5.256Likely Benign0.085Likely BenignLikely Benign0.146Likely Benign-1.05Neutral0.000Benign0.000Benign4.05Benign0.00Affected4.321-3-35.416.04
c.3977C>AP1326QLikely BenignUncertain 16-33451851-C-A16.40e-7-5.422Likely Benign0.128Likely BenignLikely Benign0.138Likely Benign-0.86Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.775-10-1.931.01
c.3977C>GP1326RLikely BenignUncertain 1-5.097Likely Benign0.240Likely BenignLikely Benign0.133Likely Benign-0.82Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.7750-2-2.959.07
c.3977C>TP1326LLikely BenignUncertain 1-5.541Likely Benign0.115Likely BenignLikely Benign0.117Likely Benign-1.06Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.775-3-35.416.04
c.3979C>TP1327SLikely BenignUncertain 16-33451853-C-T-4.744Likely Benign0.131Likely BenignLikely Benign0.092Likely Benign0.28Neutral0.980Probably Damaging0.857Possibly Damaging4.25Benign0.71Tolerated3.7751-10.8-10.04
c.3980C>TP1327LLikely BenignUncertain 16-33451854-C-T21.28e-6-5.264Likely Benign0.242Likely BenignLikely Benign0.142Likely Benign-1.24Neutral0.994Probably Damaging0.908Possibly Damaging4.12Benign0.10Tolerated3.775-3-35.416.04
c.3983G>AR1328QLikely BenignUncertain 36-33451857-G-A351.49e-4-2.921Likely Benign0.273Likely BenignLikely Benign0.043Likely Benign-1.02Neutral0.799Possibly Damaging0.098Benign4.12Benign0.03Affected3.775111.0-28.06
c.3983G>CR1328PLikely BenignBenign 16-33451857-G-C-1.220Likely Benign0.466AmbiguousLikely Benign0.060Likely Benign-2.01Neutral0.927Possibly Damaging0.452Possibly Damaging4.06Benign0.01Affected3.7750-22.9-59.07
c.3995C>TT1332MLikely Benign 16-33451869-C-T201.86e-5-4.107Likely Benign0.948Likely PathogenicAmbiguous0.252Likely Benign-3.63Deleterious1.000Probably Damaging0.991Probably Damaging2.95Benign0.00Affected3.775-1-12.630.09
c.3G>AM1ILikely BenignConflicting 3-5.397Likely Benign0.227Likely Benign-0.17Neutral0.001Benign0.000Benign4.25Benign0.00Affected4.321212.6-18.03
c.4000A>GN1334DUncertain 16-33451874-A-G-4.584Likely Benign0.674Likely PathogenicLikely Benign0.126Likely Benign-3.06Deleterious0.886Possibly Damaging0.522Possibly Damaging3.55Benign0.00Affected3.775120.00.98
c.4003G>AG1335SLikely PathogenicConflicting 26-33451877-G-A32.37e-6-4.495Likely Benign0.986Likely PathogenicLikely Pathogenic0.362Likely Benign-3.79Deleterious1.000Probably Damaging0.997Probably Damaging2.04Pathogenic0.00Affected3.77510-0.430.03
c.4006G>AE1336KLikely BenignBenign 26-33451880-G-A64.20e-6-4.697Likely Benign0.977Likely PathogenicLikely Pathogenic0.272Likely Benign-2.44Neutral0.748Possibly Damaging0.079Benign3.23Benign0.00Affected3.77501-0.4-0.94
c.4008G>CE1336DLikely BenignLikely Benign 1-3.344Likely Benign0.596Likely PathogenicLikely Benign0.062Likely Benign-1.92Neutral0.001Benign0.003Benign3.30Benign0.00Affected3.775230.0-14.03
c.4013G>AR1338QLikely BenignConflicting 36-33451887-G-A128.40e-6-3.494Likely Benign0.317Likely BenignLikely Benign0.076Likely Benign-1.87Neutral0.896Possibly Damaging0.194Benign3.81Benign0.02Affected3.775111.0-28.06
c.401G>AS134NLikely BenignUncertain 1-5.534Likely Benign0.813Likely PathogenicAmbiguous0.075Likely Benign-1.62Neutral0.001Benign0.002Benign3.90Benign0.00Affected3.61511-2.727.03
c.4021G>AA1341TLikely BenignConflicting 36-33451895-G-A453.44e-5-3.224Likely Benign0.081Likely BenignLikely Benign0.099Likely Benign-0.58Neutral0.000Benign0.000Benign4.09Benign0.03Affected3.77510-2.530.03
c.4021G>TA1341SLikely BenignUncertain 16-33451895-G-T-2.867Likely Benign0.078Likely BenignLikely Benign0.099Likely Benign0.80Neutral0.000Benign0.001Benign4.40Benign1.00Tolerated3.77511-2.616.00
c.404G>AR135QUncertain 16-33432701-G-A53.84e-6-8.011Likely Pathogenic0.853Likely PathogenicAmbiguous0.087Likely Benign-1.94Neutral0.327Benign0.100Benign3.76Benign0.02Affected3.615111.0-28.06
c.406C>TR136WLikely PathogenicUncertain 2-10.453Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.237Likely Benign-4.71Deleterious0.965Probably Damaging0.416Benign3.45Benign0.00Affected3.6152-33.630.03
c.407G>AR136QBenign 16-33432704-G-A139.17e-6-11.146Likely Pathogenic0.950Likely PathogenicAmbiguous0.190Likely Benign-2.26Neutral0.957Probably Damaging0.342Benign3.52Benign0.01Affected3.615111.0-28.06
c.407G>CR136PLikely PathogenicUncertain 1-11.952Likely Pathogenic0.981Likely PathogenicLikely Pathogenic0.277Likely Benign-3.72Deleterious0.910Possibly Damaging0.578Possibly Damaging3.47Benign0.00Affected3.6150-22.9-59.07
c.416G>AS139NLikely BenignUncertain 16-33432713-G-A32.22e-6-4.584Likely Benign0.688Likely PathogenicLikely Benign0.109Likely Benign-0.75Neutral0.149Benign0.047Benign4.14Benign0.24Tolerated3.61511-2.727.03
c.431C>TT144MLikely PathogenicUncertain 26-33432728-C-T21.30e-6-11.228Likely Pathogenic0.922Likely PathogenicAmbiguous0.118Likely Benign-3.16Deleterious0.913Possibly Damaging0.333Benign3.73Benign0.00Affected3.615-1-12.630.09
c.43G>AA15TLikely BenignUncertain 16-33420307-G-A42.60e-6-3.720Likely Benign0.125Likely BenignLikely Benign0.086Likely Benign-0.08Neutral0.602Possibly Damaging0.017Benign4.16Benign0.00Affected4.32110-2.530.03
c.43G>CA15PLikely BenignUncertain 1-3.436Likely Benign0.097Likely BenignLikely Benign0.146Likely Benign-0.23Neutral0.880Possibly Damaging0.123Benign4.09Benign0.00Affected1-1-3.426.04
c.44C>TA15VLikely BenignUncertain 16-33420308-C-T16.49e-7-3.560Likely Benign0.161Likely BenignLikely Benign0.105Likely Benign0.20Neutral0.602Possibly Damaging0.015Benign4.19Benign0.00Affected4.321002.428.05
c.451G>CD151HLikely PathogenicUncertain 16-33432748-G-C21.26e-6-11.747Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.335Likely Benign-3.90Deleterious0.999Probably Damaging0.995Probably Damaging3.86Benign0.00Affected3.615-110.322.05
c.453C>AD151ELikely BenignUncertain 1-5.662Likely Benign0.886Likely PathogenicAmbiguous0.142Likely Benign-2.02Neutral0.984Probably Damaging0.967Probably Damaging3.99Benign0.11Tolerated3.615320.014.03
c.455G>AR152QUncertain 16-33432752-G-A53.14e-6-10.336Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.181Likely Benign-2.34Neutral0.997Probably Damaging0.968Probably Damaging3.89Benign0.00Affected3.615111.0-28.06
c.458C>AT153NLikely BenignConflicting 3-0.739Likely Benign0.226Likely BenignLikely Benign0.161Likely Benign0.88Neutral0.888Possibly Damaging0.537Possibly Damaging4.23Benign0.81Tolerated3.61500-2.813.00
c.467T>GF156CLikely PathogenicUncertain 1-13.658Likely Pathogenic0.988Likely PathogenicLikely Pathogenic0.297Likely Benign-3.54Deleterious0.999Probably Damaging0.990Probably Damaging3.92Benign0.00Affected-4-2-0.3-44.04
c.470G>AR157HUncertain 16-33432767-G-A16.20e-7-10.235Likely Pathogenic0.604Likely PathogenicLikely Benign0.254Likely Benign-2.23Neutral0.999Probably Damaging0.987Probably Damaging3.80Benign0.00Affected3.744201.3-19.05
c.484C>GR162GLikely BenignUncertain 1-6.985Likely Benign0.664Likely PathogenicLikely Benign0.190Likely Benign-0.73Neutral0.487Possibly Damaging0.272Benign4.09Benign0.78Tolerated3.744-2-34.1-99.14
c.484C>TR162CPathogenic 2-8.157Likely Pathogenic0.787Likely PathogenicAmbiguous0.150Likely Benign-2.05Neutral0.988Probably Damaging0.513Possibly Damaging4.00Benign0.11Tolerated3.744-4-37.0-53.05
c.485G>AR162HUncertain 16-33432782-G-A21.24e-6-9.730Likely Pathogenic0.480AmbiguousLikely Benign0.167Likely Benign-1.13Neutral0.957Probably Damaging0.513Possibly Damaging4.03Benign0.12Tolerated3.744201.3-19.05
c.48G>AM16ILikely BenignUncertain 16-33420312-G-A16.49e-7-2.198Likely Benign0.722Likely PathogenicLikely Benign0.057Likely Benign-0.15Neutral0.000Benign0.000Benign4.28Benign0.00Affected4.321212.6-18.03
c.491G>AR164QUncertain 16-33432788-G-A21.24e-6-11.208Likely Pathogenic0.600Likely PathogenicLikely Benign0.184Likely Benign-1.86Neutral0.957Probably Damaging0.342Benign3.82Benign0.00Affected3.744111.0-28.06
c.502C>TH168YLikely BenignBenign 1-8.914Likely Pathogenic0.264Likely BenignLikely Benign0.065Likely Benign-1.53Neutral0.192Benign0.062Benign4.18Benign0.01Affected4.323021.926.03
c.505G>AD169NUncertain 1-10.713Likely Pathogenic0.761Likely PathogenicLikely Benign0.110Likely Benign-2.04Neutral0.079Benign0.052Benign4.07Benign0.01Affected3.744210.0-0.98
c.508C>TR170WLikely PathogenicUncertain 2-11.660Likely Pathogenic0.978Likely PathogenicLikely Pathogenic0.241Likely Benign-4.28Deleterious0.999Probably Damaging0.849Possibly Damaging3.84Benign0.00Affected3.7442-33.630.03
c.509G>AR170QPathogenic/Likely path. 6-9.021Likely Pathogenic0.798Likely PathogenicAmbiguous0.221Likely Benign-2.31Neutral0.947Possibly Damaging0.342Benign3.91Benign0.00Affected3.744111.0-28.0610.1016/j.ajhg.2020.11.011
c.50C>TS17FLikely BenignUncertain 16-33420314-C-T106.49e-6-3.888Likely Benign0.637Likely PathogenicLikely Benign0.048Likely Benign-0.99Neutral0.486Possibly Damaging0.032Benign3.99Benign0.00Affected4.321-2-33.660.10
c.514C>TR172WLikely PathogenicUncertain 26-33435156-C-T95.58e-6-10.258Likely Pathogenic0.878Likely PathogenicAmbiguous0.228Likely Benign-3.61Deleterious0.997Probably Damaging0.803Possibly Damaging3.95Benign0.00Affected3.6152-33.630.03
c.515G>AR172QUncertain 16-33435157-G-A31.86e-6-7.245In-Between0.465AmbiguousLikely Benign0.135Likely Benign-1.72Neutral0.804Possibly Damaging0.091Benign4.04Benign0.04Affected3.615111.0-28.06
c.526A>CS176RLikely BenignUncertain 1-6.492Likely Benign0.987Likely PathogenicLikely Pathogenic0.247Likely Benign0.94Neutral0.718Possibly Damaging0.168Benign4.16Benign0.87Tolerated0-1-3.769.11
c.526A>GS176GUncertain 16-33435168-A-G16.20e-7-7.541In-Between0.360AmbiguousLikely Benign0.066Likely Benign-1.08Neutral0.131Benign0.039Benign4.08Benign0.22Tolerated3.546010.4-30.03
c.53A>GY18CLikely BenignUncertain 16-33420317-A-G442.88e-5-2.658Likely Benign0.251Likely BenignLikely Benign0.102Likely Benign-0.56Neutral0.872Possibly Damaging0.206Benign4.04Benign0.00Affected4.3210-23.8-60.04
c.558G>CL186FLikely PathogenicUncertain 1-11.861Likely Pathogenic0.993Likely PathogenicLikely Pathogenic0.132Likely Benign-3.03Deleterious0.009Benign0.012Benign3.50Benign0.00Affected20-1.034.02
c.583G>CA195PLikely PathogenicLikely Pathogenic 1-9.715Likely Pathogenic0.978Likely PathogenicLikely Pathogenic0.152Likely Benign-3.03Deleterious0.997Probably Damaging0.916Probably Damaging4.00Benign0.04Affected3.5461-1-3.426.04
c.59C>GP20RLikely BenignUncertain 1-3.548Likely Benign0.434AmbiguousLikely Benign0.146Likely Benign-0.15Neutral0.972Probably Damaging0.804Possibly Damaging4.33Benign0.00Affected4.3210-2-2.959.07
c.59C>TP20LLikely BenignUncertain 3-3.289Likely Benign0.464AmbiguousLikely Benign0.100Likely Benign-0.44Neutral0.909Possibly Damaging0.713Possibly Damaging4.27Benign0.00Affected4.321-3-35.416.04
c.5G>AS2NLikely BenignUncertain 26-33420269-G-A31.96e-6-4.104Likely Benign0.207Likely BenignLikely Benign0.092Likely Benign-0.36Neutral0.000Benign0.000Benign4.06Benign0.00Affected4.32111-2.727.03
c.662A>GE221G
(3D Viewer)
Likely PathogenicPHUncertain 1-12.221Likely Pathogenic0.992Likely PathogenicLikely Pathogenic0.863Likely Pathogenic1.40Ambiguous0.11.74Ambiguous1.57Ambiguous0.71Ambiguous-5.56Deleterious0.596Possibly Damaging0.201Benign5.79Benign0.00Affected0-23.1-72.06
c.68A>GD23GLikely BenignUncertain 1-2.622Likely Benign0.684Likely PathogenicLikely Benign0.100Likely Benign-2.45Neutral0.805Possibly Damaging0.539Possibly Damaging3.50Benign0.00Affected1-13.1-58.04
c.70G>AV24ILikely BenignUncertain 16-33423479-G-A95.58e-6-3.701Likely Benign0.137Likely BenignLikely Benign0.069Likely Benign-0.25Neutral0.043Benign0.031Benign3.96Benign0.00Affected4.321340.314.03
c.718G>AD240NLikely PathogenicPHUncertain 1-12.942Likely Pathogenic0.755Likely PathogenicLikely Benign0.701Likely Pathogenic0.22Likely Benign0.90.47Likely Benign0.35Likely Benign0.37Likely Benign-4.37Deleterious0.993Probably Damaging0.984Probably Damaging5.88Benign0.01Affected210.0-0.98
c.719A>GD240GLikely PathogenicPHUncertain 1-12.825Likely Pathogenic0.951Likely PathogenicAmbiguous0.912Likely Pathogenic1.85Ambiguous0.12.72Destabilizing2.29Destabilizing0.24Likely Benign-6.19Deleterious0.993Probably Damaging0.984Probably Damaging5.79Benign0.01Affected1-13.1-58.04
c.73C>TR25WLikely BenignUncertain 26-33423482-C-T63.72e-6-5.133Likely Benign0.549AmbiguousLikely Benign0.158Likely Benign-1.60Neutral0.994Probably Damaging0.919Probably Damaging3.92Benign0.00Affected4.321-323.630.03
c.74G>AR25QLikely BenignUncertain 16-33423483-G-A159.29e-6-4.126Likely Benign0.212Likely BenignLikely Benign0.038Likely Benign-0.70Neutral0.829Possibly Damaging0.614Possibly Damaging4.01Benign0.00Affected4.321111.0-28.06
c.767A>GN256S
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-10.640Likely Pathogenic0.950Likely PathogenicAmbiguous0.707Likely Pathogenic0.31Likely Benign0.20.36Likely Benign0.34Likely Benign0.48Likely Benign-4.33Deleterious0.997Probably Damaging0.970Probably Damaging5.87Benign0.02Affected3.3915112.7-27.03
c.76G>AG26RLikely BenignBenign 16-33423485-G-A31.86e-6-2.946Likely Benign0.678Likely PathogenicLikely Benign0.189Likely Benign-2.22Neutral0.994Probably Damaging0.990Probably Damaging3.87Benign0.00Affected4.321-3-2-4.199.14
c.772C>TR258C
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437677-C-T16.20e-7-10.285Likely Pathogenic0.790Likely PathogenicAmbiguous0.771Likely Pathogenic1.17Ambiguous0.41.76Ambiguous1.47Ambiguous0.87Ambiguous-6.79Deleterious1.000Probably Damaging0.993Probably Damaging5.77Benign0.00Affected3.3915-3-47.0-53.05
c.791T>CL264P
(3D Viewer)
Likely PathogenicC2Uncertain 1-12.285Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.767Likely Pathogenic5.73Destabilizing0.36.57Destabilizing6.15Destabilizing2.65Destabilizing-6.43Deleterious1.000Probably Damaging0.999Probably Damaging0.49Pathogenic0.00Affected-3-3-5.4-16.04
c.82T>CS28PLikely BenignUncertain 1-3.309Likely Benign0.051Likely BenignLikely Benign0.047Likely Benign1.37Neutral0.000Benign0.000Benign4.53Benign0.00Affected4.3211-1-0.810.04
c.851T>CL284PLikely PathogenicC2Likely Pathogenic1-15.588Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.794Likely Pathogenic5.83Destabilizing0.25.81Destabilizing5.82Destabilizing1.89Destabilizing-6.17Deleterious1.000Probably Damaging0.999Probably Damaging1.64Pathogenic0.00Affected-3-3-5.4-16.04
c.860A>CD287A
(3D Viewer)
Likely PathogenicC2Uncertain 1-14.686Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.484Likely Benign0.30Likely Benign0.1-0.04Likely Benign0.13Likely Benign0.40Likely Benign-7.35Deleterious1.000Probably Damaging0.998Probably Damaging1.58Pathogenic0.01Affected3.3823-205.3-44.01
c.862G>AD288N
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437767-G-A21.24e-6-10.535Likely Pathogenic0.521AmbiguousLikely Benign0.321Likely Benign-0.39Likely Benign0.10.01Likely Benign-0.19Likely Benign-0.03Likely Benign-3.73Deleterious0.999Probably Damaging0.997Probably Damaging1.78Pathogenic0.05Affected3.3823120.0-0.98
c.866T>CM289TLikely BenignC2Uncertain1-4.668Likely Benign0.238Likely BenignLikely Benign0.222Likely Benign0.73Ambiguous0.10.17Likely Benign0.45Likely Benign-0.01Likely Benign-0.47Neutral0.801Possibly Damaging0.315Benign1.83Pathogenic0.57Tolerated-1-1-2.6-30.09
c.86T>CM29TLikely BenignUncertain 1-2.167Likely Benign0.122Likely BenignLikely Benign0.199Likely Benign-0.37Neutral0.018Benign0.184Benign4.33Benign0.00Affected4.321-1-1-2.6-30.09
c.878G>AR293HLikely PathogenicC2Uncertain 1-13.009Likely Pathogenic0.973Likely PathogenicLikely Pathogenic0.438Likely Benign4.45Destabilizing2.32.12Destabilizing3.29Destabilizing0.32Likely Benign-4.60Deleterious1.000Probably Damaging0.998Probably Damaging1.45Pathogenic0.04Affected201.3-19.05
c.88C>TH30YLikely BenignUncertain 1-3.047Likely Benign0.115Likely BenignLikely Benign0.082Likely Benign-1.84Neutral0.273Benign0.478Possibly Damaging3.99Benign0.00Affected4.321021.926.03
c.892C>TP298S
(3D Viewer)
Likely BenignC2Benign 16-33437797-C-T53.10e-6-6.342Likely Benign0.144Likely BenignLikely Benign0.189Likely Benign1.38Ambiguous0.21.41Ambiguous1.40Ambiguous0.58Ambiguous-1.20Neutral0.991Probably Damaging0.898Possibly Damaging2.03Pathogenic0.85Tolerated3.3920-110.8-10.04
c.910G>AD304N
(3D Viewer)
C2Uncertain 1-6.194Likely Benign0.391AmbiguousLikely Benign0.345Likely Benign0.30Likely Benign0.1-0.08Likely Benign0.11Likely Benign0.21Likely Benign-4.18Deleterious0.999Probably Damaging0.997Probably Damaging1.81Pathogenic0.03Affected3.3823120.0-0.98
c.929A>GE310G
(3D Viewer)
Likely PathogenicC2Pathogenic 1-14.132Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.848Likely Pathogenic2.38Destabilizing0.73.56Destabilizing2.97Destabilizing0.36Likely Benign-6.43Deleterious1.000Probably Damaging0.996Probably Damaging1.12Pathogenic0.00Affected3.3819-203.1-72.06
c.92G>AR31QLikely BenignUncertain 16-33423501-G-A74.34e-6-4.434Likely Benign0.136Likely BenignLikely Benign0.051Likely Benign-0.92Neutral0.829Possibly Damaging0.614Possibly Damaging4.01Benign0.00Affected4.321111.0-28.06
c.937G>AE313K
(3D Viewer)
Likely PathogenicC2Likely Benign 1-12.902Likely Pathogenic0.959Likely PathogenicLikely Pathogenic0.575Likely Pathogenic0.64Ambiguous0.61.40Ambiguous1.02Ambiguous0.75Ambiguous-3.31Deleterious1.000Probably Damaging0.995Probably Damaging1.90Pathogenic0.02Affected01-0.4-0.94
c.958G>AV320I
(3D Viewer)
Likely BenignC2Uncertain 1-5.220Likely Benign0.111Likely BenignLikely Benign0.027Likely Benign-0.27Likely Benign0.20.66Ambiguous0.20Likely Benign0.01Likely Benign-0.21Neutral0.198Benign0.114Benign1.77Pathogenic0.45Tolerated3.3823340.314.03
c.961C>TR321C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33437866-C-T95.58e-6-10.025Likely Pathogenic0.387AmbiguousLikely Benign0.495Likely Benign0.57Ambiguous0.10.56Ambiguous0.57Ambiguous0.18Likely Benign-4.59Deleterious1.000Probably Damaging0.998Probably Damaging1.89Pathogenic0.01Affected3.3823-3-47.0-53.05
c.971G>AR324Q
(3D Viewer)
Likely BenignC2Uncertain 36-33437876-G-A31.86e-6-5.001Likely Benign0.173Likely BenignLikely Benign0.307Likely Benign0.56Ambiguous0.10.63Ambiguous0.60Ambiguous1.02Destabilizing-1.17Neutral0.999Probably Damaging0.994Probably Damaging1.92Pathogenic0.41Tolerated3.3922111.0-28.06
c.1730C>GA577G
(3D Viewer)
Likely BenignGAPBenign/Likely benign 26-33440782-C-G16.20e-7-5.717Likely Benign0.268Likely BenignLikely Benign0.443Likely Benign0.83Ambiguous0.01.02Ambiguous0.93Ambiguous0.86Ambiguous-1.84Neutral0.997Probably Damaging0.990Probably Damaging-1.31Pathogenic0.31Tolerated3.373410-2.2-14.03158.723.60.00.00.00.0XPotentially BenignAla577 is located near the end and outer surface of an α-helix (res. Arg563-Glu578), where its methyl group does not form any particular interactions in the WT simulations. The introduced residue, glycine, is known as an “α-helix breaker.” However, the residue swap caused only minor helix shortening in one of the replica simulations for the variant system. Regardless, the residue swap seems to be well tolerated based on the variant simulations.
c.1556A>CE519A
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-8.557Likely Pathogenic0.904Likely PathogenicAmbiguous0.384Likely Benign-0.05Likely Benign0.00.55Ambiguous0.25Likely Benign0.00Likely Benign-5.23Deleterious0.999Probably Damaging0.998Probably Damaging3.33Benign0.10Tolerated3.37350-15.3-58.04162.483.5-0.10.1-0.20.0XPotentially BenignGlu519 is located at the beginning of an α-α loop between the two α-helices (res. Gly502-Tyr518 and Ala533-Val560). In the WT simulations, the carboxylate side chain of Glu519 does not make any specific interactions. Accordingly, the Ala residue swap does not show any negative structural effects in the variant simulations. However, it should be noted that Glu519 faces the missing part of the N-terminal in the model, and thus its potential role in maintaining the tertiary structure might be de-emphasized in the current model.
c.1256A>GE419G
(3D Viewer)
Likely PathogenicGAPUncertain 1-10.589Likely Pathogenic0.956Likely PathogenicLikely Pathogenic0.469Likely Benign1.41Ambiguous0.01.94Ambiguous1.68Ambiguous0.83Ambiguous-6.42Deleterious1.000Probably Damaging0.997Probably Damaging3.31Benign0.02Affected3.37290-23.1-72.06165.3110.80.00.0-0.10.0XPotentially PathogenicThe carboxylate group of Glu419, located on an α helix (res. Met414-Glu436), forms a salt bridge with the side chain of either Arg716 or Lys418 from an opposing helix (res. Pro713-Arg726). The backbone amide group of Glu419 does not form H-bonds, resulting in a slight bend in the α helix. Thus, although glycine is known as an “α helix breaker,” the residue swap does not disrupt the continuity or integrity of the α helix. However, because Gly419 cannot form a salt bridge with the guanidinium group of the Arg716 side chain, the C2-GAP domain tertiary structure could be compromised during folding.
c.670A>GT224A
(3D Viewer)
PHUncertain 36-33435521-A-G21.24e-6-7.379In-Between0.651Likely PathogenicLikely Benign0.464Likely Benign0.33Likely Benign0.11.05Ambiguous0.69Ambiguous0.91Ambiguous-2.96Deleterious0.243Benign0.079Benign5.57Benign0.57Tolerated3.4113102.5-30.03169.041.4-0.51.1-0.40.0XXUncertainThe introduced residue Ala224 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr224 side chain in the WT model, the methyl side chain of Ala224 cannot form hydrogen bonds with nearby residues Ser204, Ser226, and Gly227. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and unfolds during the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.1622C>GA541G
(3D Viewer)
GAPUncertain 16-33438865-C-G21.24e-6-7.233In-Between0.341AmbiguousLikely Benign0.421Likely Benign0.67Ambiguous0.00.94Ambiguous0.81Ambiguous0.76Ambiguous-1.48Neutral0.999Probably Damaging0.995Probably Damaging-1.31Pathogenic0.57Tolerated3.373510-2.2-14.03170.123.60.00.00.00.0XPotentially PathogenicAla541 is located on the outer surface of an α-helix (res. Ala533-Val560). The methyl group of Ala541 is on the surface and does not form any interactions. Glycine, known as an “α-helix breaker,” weakens the integrity of the helix. Indeed, in the variant simulations, the hydrogen bond formation between Gly541 and the backbone carbonyl of Ala537 is disrupted.
c.1621G>CA541P
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.733Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.594Likely Pathogenic2.47Destabilizing0.37.26Destabilizing4.87Destabilizing0.86Ambiguous-3.16Deleterious1.000Probably Damaging0.998Probably Damaging-1.34Pathogenic0.07Tolerated3.37351-1-3.426.04170.4-11.20.10.00.10.0XPotentially PathogenicAla541 is located on the outer surface of an α-helix (res. Ala533-Val560). The methyl group of Ala541 is on the surface and does not form any interactions. Proline lacks a free backbone amide group, and thus, Pro541 is unable to form a hydrogen bond with the carbonyl group of Ala537 in the variant simulations. Consequently, Pro541 disrupts the continuity of the secondary structure element, causing the α-helix to bend slightly in the variant simulations.
c.1487A>GE496G
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.529Likely Pathogenic0.850Likely PathogenicAmbiguous0.825Likely Pathogenic1.83Ambiguous0.11.76Ambiguous1.80Ambiguous0.92Ambiguous-6.16Deleterious1.000Probably Damaging0.999Probably Damaging-1.45Pathogenic0.02Affected3.37350-23.1-72.06173.9103.10.00.0-0.70.0XXPotentially PathogenicGlu496 is located in the α-helix (res. Leu489-Glu519), and its carboxylate group forms salt bridges with the neighbouring residues Lys492 and Arg499 in the WT simulations. Glu496 also forms a hydrogen bond with Ser449 on an opposing helix (res. Val441-Ser457). In the variant simulations, Gly496 cannot form these salt bridges, which could weaken the secondary structure. Additionally, the loss of the hydrogen bond with Ser449 on the opposite helix can weaken the tertiary structure assembly. Moreover, glycine is an α-helix breaker, and it is seen to weaken the integrity of the helix as the hydrogen bonding between the backbone atoms of Gly496 and Ala493 breaks down. Also, due to its location at the GAP-Ras interface, the interaction of Glu496 with Arg499 and Lys492 might play a role in complex association and stability, which cannot be fully addressed using the SynGAP solvent-only simulations.
c.1997A>GE666G
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33441256-A-G106.20e-6-12.261Likely Pathogenic0.911Likely PathogenicAmbiguous0.522Likely Pathogenic1.57Ambiguous0.11.46Ambiguous1.52Ambiguous0.93Ambiguous-6.25Deleterious1.000Probably Damaging0.970Probably Damaging3.37Benign0.02Affected3.38280-23.1-72.06173.998.50.00.0-0.70.0XPotentially PathogenicIn the WT simulations, the carboxylate group of Glu666, located on the α-helix (res. Ser641-Glu666), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), such as Lys566, Thr672, and Asn669. In the variant simulations, the carbonyl group of Gly666 occasionally forms hydrogen bonds with Lys566 and Asn669. However, Gly666 lacks a side chain and thus cannot maintain as well-coordinated a hydrogen-bond network as Glu666 in the WT, which may affect the tertiary structure assembly.
c.1594A>CT532P
(3D Viewer)
Likely BenignGAPBenign 1-2.143Likely Benign0.061Likely BenignLikely Benign0.201Likely Benign-0.30Likely Benign0.20.06Likely Benign-0.12Likely Benign0.08Likely Benign-0.90Neutral0.005Benign0.008Benign-1.28Pathogenic0.18Tolerated3.37350-1-0.9-3.99174.235.10.40.00.10.0XPotentially BenignThr532 is located on an α-α loop between the two α-helices (res. Gly502-Tyr518 and Ala533-Val560) facing the membrane. In the WT simulations, the hydroxyl group of Thr532 occasionally forms hydrogen bonds with the backbone atoms of other loop residues without any specific interaction. In the variant simulations, the Pro532 residue swap does not cause structural changes. Although hydrophilic residues seem more favorable in the loop, the pyrrolidine side chain of proline is well suited for unstructured protein regions such as loops. However, due to its location at the SynGAP-membrane interface, the effect of the residue swap cannot be fully addressed using the SynGAP solvent-only simulations.
c.913A>GT305A
(3D Viewer)
Likely BenignC2Conflicting 26-33437818-A-G138.05e-6-4.307Likely Benign0.078Likely BenignLikely Benign0.144Likely Benign1.30Ambiguous0.61.55Ambiguous1.43Ambiguous0.77Ambiguous-2.10Neutral0.939Possibly Damaging0.645Possibly Damaging1.76Pathogenic0.12Tolerated3.4020102.5-30.03177.943.5-0.20.10.40.0UncertainThe hydroxyl group of Thr305, located at the beginning of an anti-parallel β strand (res. Thr305-Asn315), hydrogen bonds with the carboxylate groups of Glu270 and Asp304 in the anti-parallel β strand and the adjacent β hairpin loop, respectively. In the variant simulations, the methyl group of the Ala305 side chain cannot hydrogen bond with either of the acidic residues, which could weaken the integrity of the tertiary structure and the β hairpin loop. Indeed, the guanidinium group of Arg299 does not acquire its central hairpin loop position due to the residue swap.β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Due to its location near the membrane surface, the residue swap could also affect the C2 loop dynamics and SynGAP-membrane association. However, this is beyond the scope of the solvent-only simulations to unravel.
c.2087T>CL696P
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-16.926Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.678Likely Pathogenic6.66Destabilizing0.210.84Destabilizing8.75Destabilizing2.13Destabilizing-6.58Deleterious1.000Probably Damaging1.000Probably Damaging3.00Benign0.00Affected3.4613-3-3-5.4-16.04180.665.90.10.0-0.60.1XPotentially PathogenicThe isobutyl side chain of Leu696, located in the middle of an α-helix (res. Leu685-Gln702), engages in hydrophobic packing with nearby residues (e.g., Leu441, Leu431, Leu692, Leu714) in the inter-helix space. Prolines lack a free amide group necessary for hydrogen bonding with the carbonyl group of Leu692 in the same manner as Leu696 in the WT. Consequently, the residue swap with proline disrupts the continuity of the secondary structure element in the variant simulations. Additionally, the side chain of Pro696 is not as optimal as Leu696 for hydrophobic packing in the inter-helix space.
c.886T>GS296A
(3D Viewer)
Likely BenignC2Uncertain 1-6.847Likely Benign0.247Likely BenignLikely Benign0.209Likely Benign0.50Ambiguous0.3-0.26Likely Benign0.12Likely Benign0.35Likely Benign-1.79Neutral0.992Probably Damaging0.987Probably Damaging1.97Pathogenic0.65Tolerated3.4016112.6-16.00182.526.6-0.20.1-0.50.0XPotentially PathogenicThe hydroxyl group of the Ser296 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), stably hydrogen bonds with the carboxylate group of Asp330 in a neighboring β strand (res. Ala322-Asp332). The backbone carbonyl group of Ser296 also hydrogen bonds with the guanidinium group of Arg279 in another nearby β strand (res. Arg279-Cys285). In the variant simulations, the methyl group of the Ala296 side chain cannot hydrogen bond with Asp330, causing the carboxylate group positioning to fluctuate more than in the WT simulations.Although the residue swap does not seem to affect the anti-parallel β sheet assembly during the simulations, it is possible that the Ser296-Asp330 hydrogen bond plays a crucial role in maintaining the C2 domain fold. Notably, because Ser296 is located near the membrane interface, the potential effect of the residue swap on the SynGAP-membrane association cannot be addressed by solvent-only simulations.
c.1517T>CL506P
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic1-12.088Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.737Likely Pathogenic5.48Destabilizing0.710.19Destabilizing7.84Destabilizing2.50Destabilizing-6.96Deleterious1.000Probably Damaging1.000Probably Damaging1.55Pathogenic0.00Affected3.3735-3-3-5.4-16.04182.664.90.10.00.20.1XPotentially PathogenicLeu506 is located in the middle of an α-helix (res. Gly502-Tyr518) within the inter-helix space of two helices (res. Gly502-Tyr518 and res. Glu582-Met603). In the WT simulations, the iso-butyl side chain of Leu506 hydrophobically packs with residues in the inter-helix space (e.g., Ile510, Phe597, Leu598, Ala601). In the variant simulations, the cyclic five-membered pyrrolidine ring of Pro506 is not as optimal as Leu506 for hydrophobic packing with nearby residues. Additionally, Pro506 cannot maintain the hydrogen bond with the backbone oxygen of Gly502 as Leu506 does in the WT, which disrupts the secondary structure element.
c.2075T>CL692P
(3D Viewer)
Likely PathogenicGAPUncertain 1-16.447Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.668Likely Pathogenic9.19Destabilizing0.113.20Destabilizing11.20Destabilizing1.69Destabilizing-6.98Deleterious1.000Probably Damaging0.999Probably Damaging3.06Benign0.00Affected3.4217-3-3-5.4-16.04186.262.8-0.20.1-0.70.3XPotentially PathogenicThe isobutyl side chain of Leu692, located in the middle of an α-helix (res. Leu685-Gln702), engages in hydrophobic packing with nearby residues (e.g., Leu441, Leu431, Leu696) in the inter-helix space. Prolines lack a free amide group necessary for hydrogen bonding with the carbonyl group of Glu688 in the same manner as Leu692 in the WT. Consequently, the residue swap with proline disrupts the continuity of the secondary structure element in the variant simulations. Additionally, the side chain of Pro692 is not as optimal as Leu692 for hydrophobic packing in the inter-helix space.
c.667A>GT223A
(3D Viewer)
PHUncertain 16-33435518-A-G31.86e-6-7.076In-Between0.316Likely BenignLikely Benign0.574Likely Pathogenic0.30Likely Benign0.10.77Ambiguous0.54Ambiguous0.74Ambiguous-3.36Deleterious0.231Benign0.058Benign5.74Benign0.09Tolerated3.4113102.5-30.03186.444.00.00.00.00.0XXUncertainThe introduced residue Ala223 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr223 side chain in the WT protein, the methyl side chain of Ala223 cannot form hydrogen bonds with nearby residues Thr228 and Lys207. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and partially unfolds in the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.1768A>GS590G
(3D Viewer)
Likely PathogenicGAPConflicting 26-33440820-A-G148.67e-6-14.277Likely Pathogenic0.574Likely PathogenicLikely Benign0.379Likely Benign0.67Ambiguous0.11.28Ambiguous0.98Ambiguous0.71Ambiguous-3.92Deleterious1.000Probably Damaging0.922Probably Damaging3.42Benign0.06Tolerated3.3735100.4-30.03186.749.40.00.00.10.0XPotentially PathogenicIn the WT simulations, the hydroxyl group of Ser590, located on an α helix (res. Glu582-Met603), forms hydrogen bonds with the backbone carbonyl of Ala634 and/or the carboxamide group of the Asn635 side chain at the end of the opposing α helix (res. Thr619-Ala634).The residue swap could weaken the integrity of the α helix, as glycine is known as an “α helix breaker.” However, no discernible difference was observed between the WT and variant simulations in this regard. Importantly, Gly590 cannot form hydrogen bonds with the opposing helix in the same way that serine can, which could weaken the tertiary structure assembly between the two helices.
c.1306G>AE436K
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.869Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.829Likely Pathogenic0.56Ambiguous0.12.86Destabilizing1.71Ambiguous0.82Ambiguous-3.77Deleterious0.994Probably Damaging0.951Probably Damaging4.71Benign0.02Affected3.372901-0.4-0.94186.839.80.00.0-0.20.0XXXPotentially PathogenicThe carboxylate group of Glu436, located on the α helix (res. Met414-Glu436), forms a salt bridge with the amino group of the Lys444 side chain on an opposing α helix (res. Val441-Ser457). The backbone carbonyl of Glu436 also H-bonds with the Lys444 side chain, which helps keep the ends of the two α helices tightly connected. In contrast, in the variant simulations, the salt bridge formation with Lys444 is not possible. Instead, the repelled Lys436 side chain rotates outward, causing a change in the α helix backbone H-bonding: the amide group of Lys444 H-bonds with the carbonyl of Ala433 instead of the carbonyl of Cys432.
c.2116G>AE706K
(3D Viewer)
GAPUncertain 1-10.519Likely Pathogenic0.833Likely PathogenicAmbiguous0.080Likely Benign1.17Ambiguous0.10.51Ambiguous0.84Ambiguous0.08Likely Benign-1.51Neutral0.345Benign0.028Benign4.15Benign0.52Tolerated3.471001-0.4-0.94187.149.20.00.00.40.1XUncertainThe carboxylate side chain of Glu706, located at the end and outer surface of an α-helix (res. Thr704-Gly712), forms a salt bridge with Lys710 and a hydrogen bond with its own backbone amino group at the helix end in the WT simulations. Although Lys706 is unable to make these transient interactions in the variant simulations, there is no apparent negative effect on the protein structure due to the residue swap. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.2014A>GT672A
(3D Viewer)
Likely BenignGAPBenign 16-33441273-A-G31.86e-6-6.524Likely Benign0.109Likely BenignLikely Benign0.046Likely Benign0.51Ambiguous0.31.15Ambiguous0.83Ambiguous0.65Ambiguous-3.20Deleterious0.006Benign0.002Benign3.44Benign0.12Tolerated3.4025102.5-30.03188.542.5-0.10.30.20.0XPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. In the variant simulations, Ala672 can only form a hydrogen bond with Lys566 via its backbone carbonyl group. Consequently, it cannot maintain the Lys566-Glu666 salt bridge through hydrogen bonding, leading to a significant disruption of the intricate and stable hydrogen-bond network between the loop and the helices.
c.1403T>AM468K
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-16.982Likely Pathogenic0.978Likely PathogenicLikely Pathogenic0.828Likely Pathogenic3.21Destabilizing0.13.30Destabilizing3.26Destabilizing2.57Destabilizing-4.61Deleterious0.878Possibly Damaging0.922Probably Damaging-1.34Pathogenic0.04Affected3.37310-1-5.8-3.02188.769.30.00.0-0.10.2XXPotentially PathogenicThe thioether group of Met468, located in the middle of an α helix (res. Ala461–Phe476), interacts with hydrophobic residues (e.g., Phe464, Leu465, Leu489) in an inter-helix space formed by two other α helices (res. Ala461–Phe476, res. Thr488–Gly502). In the variant simulations, the positively charged side chain of Lys468 rotates outward to escape the hydrophobic niche, forming an H-bond with the hydroxyl group of the Ser471 side chain and a salt bridge with the carboxylate group of the Glu472 side chain. This residue swap also disrupts the methionine-aromatic stacking with the phenyl ring of the Phe464 side chain. Although no large-scale structural changes are observed during the variant simulations, the importance of hydrophobic packing suggests that the effects could be more pronounced during protein folding.
c.2071A>CT691P
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-13.801Likely Pathogenic0.905Likely PathogenicAmbiguous0.214Likely Benign5.04Destabilizing0.46.09Destabilizing5.57Destabilizing1.27Destabilizing-3.43Deleterious1.000Probably Damaging0.952Probably Damaging3.43Benign0.06Tolerated3.43140-1-0.9-3.99188.933.00.10.0-0.60.0XXPotentially PathogenicThe hydroxyl side chain of Thr691, located in an α-helix (res. Leu696-Leu685), can form hydrogen bonds with the backbone carbonyl and the side chain guanidinium group of Arg687. This interaction facilitates the simultaneous formation of salt bridges between Arg687 and Glu688 on the same α-helix. Additionally, Thr691 occasionally interacts with the thioether side chain of Met409 in an anti-parallel β-sheet of the C2 domain (res. Ile411-Ala399), although this interaction is not consistently maintained throughout the WT simulations. In the variant simulations, the pyrrolidine side chain of Pro691 lacks hydrogen bond donors, making a similar setup impossible. Moreover, proline lacks a free amide group necessary for hydrogen bonding with the carbonyl group of Arg687, introducing a slight bend in the α-helix and compromising its integrity.
c.1771G>CA591P
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.479Likely Pathogenic0.991Likely PathogenicLikely Pathogenic0.404Likely Benign3.78Destabilizing0.37.29Destabilizing5.54Destabilizing1.45Destabilizing-4.41Deleterious0.995Probably Damaging0.853Possibly Damaging3.35Benign0.01Affected3.37351-1-3.426.04191.5-10.10.20.10.40.1XPotentially PathogenicThe methyl group of the Ala591 side chain, located in the middle of an α helix (res. Glu582-Met603), packs against hydrophobic residues (e.g., Ile483, Phe484) of an opposing partially helical loop (res. Phe476-Asn487).In the variant simulations, Pro591 lacks a free backbone amide group and, therefore, cannot form a hydrogen bond with the backbone carbonyl of Arg587 as Ala591 does in the WT. This notably weakens the α helix integrity and compromises the continuity of the helix. In reality, the effect on the structure during protein folding could be more severe.
c.1729G>AA577T
(3D Viewer)
Likely BenignGAPBenign 16-33440781-G-A63.72e-6-5.311Likely Benign0.322Likely BenignLikely Benign0.427Likely Benign0.86Ambiguous0.10.54Ambiguous0.70Ambiguous0.54Ambiguous-1.47Neutral0.999Probably Damaging0.987Probably Damaging-1.31Pathogenic0.47Tolerated3.373410-2.530.03191.9-43.40.00.00.70.1XPotentially BenignAla577 is located near the end and outer surface of an α-helix (res. Arg563-Glu578), where its methyl group does not form any particular interactions in the WT simulations. In the variant simulations, the hydroxyl group of the Thr577 side chain hydrogen bonds with the backbone atoms of Arg573 and Lys574 within the same helix, which has the potential to weaken the stability of the secondary structure element. Regardless, the residue swap seems to be well tolerated based on the variant simulations.
c.1631G>CR544P
(3D Viewer)
Likely PathogenicGAPUncertain 2-16.905Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.762Likely Pathogenic4.70Destabilizing0.14.19Destabilizing4.45Destabilizing1.14Destabilizing-4.88Deleterious1.000Probably Damaging1.000Probably Damaging-1.48Pathogenic0.05Affected3.37350-22.9-59.07192.0123.80.10.0-0.30.0XXPotentially PathogenicArg544 is located in the middle of an α-helix (res. Ala533-Val560). In the WT simulations, the guanidinium side chain of Arg544 forms a salt bridge with the carboxylate groups of Glu548 on the same α-helix, and with Glu651 and Glu656 on an opposing α-helix (res. Glu666-Asp644). In the variant simulations, the pyrrolidine side chain of Pro544 cannot form any of the salt bridges that Arg544 does in the WT, potentially weakening the tertiary structure assembly. Additionally, Pro544 lacks the amide group, and thus, unlike Arg544 in the WT, is unable to form a hydrogen bond with the carbonyl of Gln540. This disruption breaks the continuity of the secondary structure element, causing the α-helix to bend slightly in the variant simulations. These negative structural effects could be more pronounced during protein folding and are likely to be undermined in the MD simulations.
c.1898T>CL633P
(3D Viewer)
Likely PathogenicGAPPathogenic/Likely path. 2-15.669Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.693Likely Pathogenic6.60Destabilizing0.210.15Destabilizing8.38Destabilizing2.42Destabilizing-6.97Deleterious1.000Probably Damaging1.000Probably Damaging2.70Benign0.00Affected3.3734-3-3-5.4-16.04193.265.10.00.00.10.0XPotentially PathogenicThe iso-butyl side chain of Leu633, located in the middle of an α helix (res. Glu617-Asn635), packs hydrophobically with nearby residues (e.g., Leu653, Val629, Leu551) in the WT simulations.In the variant simulations, the pyrrolidine side chain of Pro633 is not as optimal for hydrophobic packing as Leu633 in the WT. Additionally, proline lacks a free backbone amide group, so Pro633 cannot form a hydrogen bond with the backbone carbonyl group of Val629, which disrupts the continuity of the secondary structure element.
c.1045C>TP349S
(3D Viewer)
C2Uncertain 1-7.654In-Between0.217Likely BenignLikely Benign0.277Likely Benign1.92Ambiguous0.12.28Destabilizing2.10Destabilizing0.87Ambiguous-6.13Deleterious1.000Probably Damaging0.996Probably Damaging1.66Pathogenic0.06Tolerated3.37251-10.8-10.04194.9-18.1-0.10.00.20.1XXPotentially PathogenicThe cyclic pyrrolidine side chain of Pro349, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), allows the strand to end and make a tight turn before a short α helical section within a loop connecting to another β strand (res. Thr359-Pro364). In the variant simulations, the hydroxyl group of Ser349 forms a hydrogen bond with the backbone amide group of Ala351 in the short helical section. Conversely, the backbone amide group of Ser349 (absent in proline) does not form any intra-protein hydrogen bonds. However, the β strand end connects to the α helical section in a more stable and consistent manner compared to the WT. Although the residue swap does not cause major adverse effects on the protein structure in the simulations, it is possible that the tight turn at the β strand end could not be created during folding without the presence of proline.
c.1322T>CV441A
(3D Viewer)
GAPConflicting 26-33438227-T-C31.86e-6-9.439Likely Pathogenic0.359AmbiguousLikely Benign0.053Likely Benign-0.14Likely Benign0.00.33Likely Benign0.10Likely Benign0.95Ambiguous-2.92Deleterious0.513Possibly Damaging0.214Benign3.44Benign0.93Tolerated3.372900-2.4-28.05195.044.60.00.10.50.0XXUncertainThe iso-propyl side chain of Val441, located on the outer surface of an α helix (res. Asn440-Thr458), does not interact with other residues in the WT simulations. In the variant simulations, the methyl side chain of Ala441 is similarly hydrophobic and does not form any interactions on the outer helix surface. Although the residue swap does not negatively affect the protein structure based on the simulations, it is noteworthy that the residue faces the RasGTPase interface. Thus, the effect of the residue swap on the SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.2015C>AT672K
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.192Likely Pathogenic0.698Likely PathogenicLikely Benign0.065Likely Benign0.20Likely Benign0.51.21Ambiguous0.71Ambiguous0.72Ambiguous-4.31Deleterious0.745Possibly Damaging0.051Benign3.40Benign0.07Tolerated3.40250-1-3.227.07195.17.00.40.70.40.1XXPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. In the variant simulations, Lys672 can only form a hydrogen bond with the amino group of the Lys566 side chain via its backbone carbonyl group. Consequently, it cannot maintain the Lys566-Glu666 salt bridge through hydrogen bonding. However, the amino group of Lys periodically forms a salt bridge with the carboxylate group of Glu666, which prevents a drastic disruption of the hydrogen-bond network that keeps the loop close to the helices.
c.1714T>GW572G
(3D Viewer)
Likely PathogenicGAPUncertain 1-17.692Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.900Likely Pathogenic6.57Destabilizing0.27.57Destabilizing7.07Destabilizing1.83Destabilizing-11.98Deleterious1.000Probably Damaging1.000Probably Damaging-1.24Pathogenic0.00Affected3.3735-7-20.5-129.16195.2127.90.00.0-1.00.0XPotentially PathogenicThe introduced residue Gly572, located in an α-helix (res. Arg563-Glu578), is considerably smaller than the tryptophan it replaced. The indole ring of the Trp572 side chain lies in a hydrophobic inter-helix space, where it makes extensive hydrophobic interactions with nearby residues such as Met470, Phe569, Leu588, and Ile589. In the variant simulations, all these favorable packing interactions are completely removed, as the introduced residue Gly572 essentially lacks a side chain altogether. Although not observed in the simulations, the residue swap could also weaken the integrity of the helix (res. Arg563-Glu578), as glycine is known as an “α-helix breaker.” Overall, the residue swap is highly likely to cause critical protein folding problems that are underestimated based on the effects seen in the variant simulations.
c.1904A>GN635S
(3D Viewer)
GAPConflicting 46-33440956-A-G106.20e-6-9.002Likely Pathogenic0.101Likely BenignLikely Benign0.104Likely Benign0.80Ambiguous0.10.67Ambiguous0.74Ambiguous0.95Ambiguous-4.45Deleterious0.261Benign0.044Benign3.06Benign0.05Affected3.3734112.7-27.03196.030.90.10.0-0.30.2XUncertainIn the WT simulations, the carboxamide side chain of Asn635, located on the outer surface of an α helix (res. Glu617-Asn635), forms hydrogen bonds with Gln631 on the same α helix and with the hydroxyl side chain of Ser590 on an opposing α helix (res. Glu582-Met603).In the variant simulations, the side chain of Ser635 is shorter than asparagine and thus prefers to hydrogen bond with the carbonyl group of Gln631 on the same helix and, to a lesser extent, with Ser590 compared to Asn635 in the WT. Ser635 forms hydrogen bonds with the backbone atoms of the same helix, which may destabilize the helix, although this is not clearly evident in the simulations. The weakening of the hydrogen bond between Ser635 and Ser590 in the variant may also weaken the tertiary structure assembly between the helices.Additionally, Asn635 is at the GTPase interface. However, the implication of the residue swap on the complex formation with the GTPase cannot be investigated using solvent-only simulations.
c.1108G>AG370S
(3D Viewer)
Likely BenignC2Uncertain 16-33438013-G-A159.31e-6-3.533Likely Benign0.081Likely BenignLikely Benign0.282Likely Benign2.83Destabilizing2.01.05Ambiguous1.94Ambiguous-0.02Likely Benign0.47Neutral0.000Benign0.000Benign1.33Pathogenic0.77Tolerated3.421910-0.430.03196.6-49.60.92.2-0.10.4UncertainGly370 is located in the Gly-rich Ω loop (res. Pro364- Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because, the Ω loop is assumed to be directly interacting with the membrane, it is only seen to move arbitrarily throughout the WT solvent simulations. The Ω loop is potentially playing a crucial loop in the SynGAP-membrane complex association, stability and dynamics, regardless, this aspect cannot be addressed through the solvent simulations only. The Ω-loops are known to have a major role in protein functions that requires flexibility and thus, they are rich in glycines, prolines and to a lesser extent, hydrophilic residues to ensure maximum flexibility. Thus, Ser370 in the variant is potentially tolerated in the Ω loop. However, since the effect on the Gly-rich Ω loop dynamics can only be well-studied through the SynGAP-membrane complex, no definite conclusions can be withdrawn.
c.1667A>GN556S
(3D Viewer)
GAPUncertain 16-33438910-A-G31.86e-6-6.576Likely Benign0.197Likely BenignLikely Benign0.449Likely Benign0.52Ambiguous0.10.14Likely Benign0.33Likely Benign0.16Likely Benign-3.60Deleterious1.000Probably Damaging0.989Probably Damaging-1.22Pathogenic0.14Tolerated3.3735112.7-27.03198.831.00.00.0-0.50.2XPotentially BenignAsn556 is located on the outer surface of an α-helix (res. Ala533-Val560). The carboxamide group of Asn556 forms hydrogen bonds with nearby residues such as Lys553 and Cys552. It also forms a hydrogen bond with the backbone carbonyl group of Cys552, which weakens the α-helix integrity. In the variant simulations, the hydroxyl group of Ser556 forms a more stable hydrogen bond with the backbone carbonyl oxygen of the same helix residue, Cys552, compared to Asn556 in the WT. Serine has a slightly lower propensity to reside in an α-helix than asparagine, which may exacerbate the negative effect on the α-helix integrity. However, the residue swap does not cause negative structural effects during the simulations.
c.1025A>CY342S
(3D Viewer)
Likely PathogenicC2Uncertain 2-7.996In-Between0.925Likely PathogenicAmbiguous0.407Likely Benign3.03Destabilizing0.12.87Destabilizing2.95Destabilizing0.93Ambiguous-6.60Deleterious1.000Probably Damaging0.998Probably Damaging1.75Pathogenic0.04Affected3.3725-3-20.5-76.10200.177.80.00.0-0.20.1Potentially PathogenicThe phenol ring of Tyr342, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), faces outward in the C2 domain. In the WT simulations, the phenol ring of Tyr342 contributes to a triple tyrosine stack (Tyr342, Tyr328, and Tyr281) that links together three anti-parallel β sheet strands. Additionally, it shields Gly344 from the solvent, reducing its exposure and providing stability for the β-sandwich. This motif also contributes to a twist formation in the β sheet.In the variant simulations, the Ser342 side chain cannot participate in the stack formation. Instead, the hydroxyl group of the Ser342 side chain forms a hydrogen bond with the imidazole ring of His326 in a neighboring β strand (res. Ala322-Asp330). This disrupts the formation of a hydrogen bond between His326 and the carboxylate group of the Glu283 side chain from another β strand (res. Arg279-Cys285). Although these changes in surface interactions could weaken the characteristic twist that strengthens the β sheet fold, no major structural effects are observed in the variant simulations. The residue swap could also affect the SynGAP-membrane association, as the hydroxyl group of Ser342 could form hydrogen bonds with membrane-facing loop residues. However, this phenomenon cannot be addressed using solvent-only simulations.
c.667A>TT223S
(3D Viewer)
PHConflicting 26-33435518-A-T31.86e-6-7.714In-Between0.410AmbiguousLikely Benign0.535Likely Pathogenic0.26Likely Benign0.10.50Ambiguous0.38Likely Benign0.62Ambiguous-2.86Deleterious0.421Benign0.058Benign5.80Benign0.02Affected3.411311-0.1-14.03200.717.3-0.20.20.00.0XUncertainThe introduced residue Ser223 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Its hydroxyl group forms hydrogen bonds with nearby residues Thr228 and Lys207 in the variant simulations, similar to the hydroxyl group of Thr223 in the WT simulations. These hydrogen-bonding interactions at the β sheet surface contribute to the stability of the secondary structure element and may prevent it from unfolding. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.1604G>CS535T
(3D Viewer)
Likely BenignGAPBenign 16-33438847-G-C148.67e-6-3.886Likely Benign0.069Likely BenignLikely Benign0.177Likely Benign0.45Likely Benign0.1-0.27Likely Benign0.09Likely Benign0.17Likely Benign-0.81Neutral0.000Benign0.001Benign-1.25Pathogenic0.25Tolerated3.3735110.114.03201.3-17.3-0.10.7-0.20.1XPotentially BenignSer535 is located near the terminal end of an α-helix (res. Ala533-Val560) close to the membrane interface. In the WT simulations, the hydroxyl side chain of Ser535 forms hydrogen bonds with nearby residues (e.g., His539, Glu538) without any specific interactions. These hydrogen bonds disrupt the structure of the terminal end of the α-helix (Ala533-Ser535), causing it to weaken or unfold during the WT simulations. In the variant simulations, Thr535, a hydrophilic residue with a hydroxyl group of almost the same size as Ser, interacts more frequently with the preceding loop residues (e.g., Thr532, Cys531) due to its longer side chain. Regardless, the residue swap is tolerated in the simulations with no negative effects. However, due to its location near the SynGAP-membrane interface, the effect of the residue swap cannot be fully addressed using the SynGAP solvent-only simulations.10.1016/j.ajhg.2020.11.011
c.1529T>GI510S
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-11.661Likely Pathogenic0.955Likely PathogenicAmbiguous0.926Likely Pathogenic4.00Destabilizing0.13.78Destabilizing3.89Destabilizing2.34Destabilizing-4.63Deleterious1.000Probably Damaging0.999Probably Damaging-1.44Pathogenic0.00Affected3.3735-1-2-5.3-26.08201.445.9-0.40.20.00.3XPotentially PathogenicIle510 is located in the middle of an α-helix (res. Gly502-Tyr518) within the inter-helix space of three helices (res. Gly502-Tyr518, Ala533-Val560, and res. Glu582-Met603). In the WT simulations, the sec-butyl side chain of Ile510 hydrophobically packs with other residues in the inter-helix space (e.g., Leu506, Leu610, Ile514, Ile602, Leu598). In the variant simulations, the hydroxyl group of Ser510 forms a hydrogen bond with the backbone atoms of Leu506 and Gly511 in the same α-helix, which could further weaken the α-helix integrity. This α-helix already shows weakness in the WT simulations due to Gly511. Although the simulations do not show large-scale effects, the residue swap could have a substantial impact due to the fundamental role of hydrophobic packing during protein folding.
c.703T>CS235P
(3D Viewer)
Likely PathogenicPHLikely Pathogenic 1-14.857Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.870Likely Pathogenic4.02Destabilizing0.16.91Destabilizing5.47Destabilizing1.23Destabilizing-4.24Deleterious0.917Possibly Damaging0.446Benign5.47Benign0.01Affected3.40141-1-0.810.04201.517.00.10.0-0.60.0XPotentially PathogenicIn the WT, the hydroxyl group of Ser235, located in a β-α loop between an anti-parallel β sheet strand (res. Gly227-Phe231) and an α helix (residues Ala236-Val250), forms hydrogen bonds with the GAP domain loop residue Glu680 and with the backbone amide groups of Ala237 and Glu238 from the α helix. In the variant simulations, the pyrrolidine ring of Pro235 cannot stabilize the α helix end or maintain tertiary bonding interactions between the PH and GAP domains via hydrogen bonding as effectively as serine.
c.2111G>CS704T
(3D Viewer)
Likely BenignGAPUncertain 1-4.930Likely Benign0.265Likely BenignLikely Benign0.071Likely Benign0.80Ambiguous0.00.15Likely Benign0.48Likely Benign0.29Likely Benign-1.72Neutral0.525Possibly Damaging0.107Benign3.45Benign0.07Tolerated3.4710110.114.03201.7-18.00.00.0-0.20.7XPotentially BenignSer704 is located at the end and outer surface of an α-helix (res. Thr704-Gly712), which is connected via a tight turn or loop to another α-helix (res. Asp684-Gln702). The hydroxyl side chain of Ser704 occasionally forms a hydrogen bond with the amide group of Ala707. Similarly, in the variant simulations, the hydroxyl side chain of Thr704 forms hydrogen bonds with the amide groups of Ala707 and Leu708. Thus, the residue swap does not cause any apparent structural change.
c.968T>CL323P
(3D Viewer)
Likely PathogenicC2Uncertain 1-12.507Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.762Likely Pathogenic3.39Destabilizing0.68.46Destabilizing5.93Destabilizing2.20Destabilizing-4.80Deleterious0.999Probably Damaging0.977Probably Damaging0.59Pathogenic0.01Affected4.29398-3-3-5.4-16.04201.968.20.00.10.60.3XPotentially PathogenicThe iso-butyl side chain of Leu323, located at the beginning of an anti-parallel β sheet strand (res. Ala322-Asp330), packs against multiple hydrophobic leucine residues (e.g., Leu264, Leu266, Leu284, Leu286). In contrast, in the variant simulations, the less bulky cyclic five-membered pyrrolidine ring of Pro323 cannot fill the hydrophobic space as effectively as the branched hydrocarbon side chain of leucine. Notably, the backbone amide group of Leu323 forms a hydrogen bond with the backbone carbonyl group of Cys285. Pro323 cannot form this bond due to the absence of the backbone amide group, resulting in partial unfolding of the anti-parallel β sheet end in the variant simulations.
c.878G>CR293P
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-16.275Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.497Likely Benign3.62Destabilizing0.49.06Destabilizing6.34Destabilizing0.47Likely Benign-6.43Deleterious1.000Probably Damaging0.999Probably Damaging1.45Pathogenic0.01Affected3.38230-22.9-59.07202.3132.00.10.00.10.1XXXPotentially PathogenicThe guanidinium group of the Arg293 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), packs against the phenol ring of the Tyr281 side chain or forms a salt bridge with the carboxylate group of Glu283 on the outer side of the C2 domain. In the WT simulations, the positively charged side chain of arginine remains outside the hydrophobic C2 domain, resulting in a twist in the β strand. The backbone amide bond of Arg293 potentially maintains this twist by forming a hydrogen bond with the carbonyl group of His210 or the hydroxyl group of Ser211 in the anti-parallel β sheet.Although this twist is also maintained in the variant simulations, replacing the positively charged residue with proline, which lacks the backbone amide group altogether, causes the β strand to unfold. Because Arg293 is positioned at the C2 and PH domain interface, the residue swap could significantly impact the tertiary structure assembly. Notably, Arg293 is located at the SynGAP-Ras interface, and its role in complex formation cannot be fully understood through solvent-only simulations.
c.1150G>AG384S
(3D Viewer)
Likely BenignC2Uncertain 16-33438055-G-A16.22e-7-5.243Likely Benign0.090Likely BenignLikely Benign0.315Likely Benign1.92Ambiguous0.21.66Ambiguous1.79Ambiguous0.19Likely Benign-0.67Neutral0.980Probably Damaging0.968Probably Damaging1.33Pathogenic0.04Affected4.32210-0.430.03202.4-49.80.51.0-0.20.0UncertainGly384 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and so they are rich in glycines, prolines, and, to a lesser extent, small hydrophilic residues to ensure maximum flexibility. Thus, the variant’s Ser384 is potentially tolerated in the Ω loop, although the hydroxyl group of Ser384 forms various hydrogen bonds with several other loop residues in the variant simulations. However, since the effects on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1771G>AA591T
(3D Viewer)
Likely PathogenicGAPConflicting 36-33440823-G-A181.12e-5-9.572Likely Pathogenic0.704Likely PathogenicLikely Benign0.270Likely Benign1.61Ambiguous0.21.00Ambiguous1.31Ambiguous1.19Destabilizing-3.40Deleterious0.955Possibly Damaging0.209Benign3.48Benign0.01Affected3.373510-2.530.03202.9-43.40.20.00.70.1XPotentially BenignThe methyl group of the Ala591 side chain, located in the middle of an α helix (res. Glu582-Met603), packs against hydrophobic residues (e.g., Ile483, Phe484) of an opposing partially helical loop (res. Phe476-Asn487).In the variant simulations, the hydroxyl group of Thr591 can form hydrogen bonds with the backbone carbonyl of Ile843 in the opposing loop or the backbone carbonyl group of Arg587. These interactions could either reinforce the tertiary assembly or weaken the α helix unity. Additionally, the Thr591 side chain can hydrogen bond with the guanidinium group of the Arg587 side chain, potentially strengthening the α helix unity.Overall, the residue swap does not seem to cause any major negative effects on the protein structure.
c.2162T>GI721S
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.032Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.466Likely Benign3.91Destabilizing0.13.96Destabilizing3.94Destabilizing2.28Destabilizing-5.26Deleterious1.000Probably Damaging1.000Probably Damaging2.21Pathogenic0.00Affected3.509-1-2-5.3-26.08203.349.3-0.10.0-1.10.0XUncertainThe sec-butyl side chain of Ile721, located on an α-helix (res. Leu714-Arg726), engages in hydrophobic packing with other residues in the hydrophobic inter-helix space, such as Phe420, Tyr417, His693, and Leu717. In the variant simulations, the hydroxyl side chain of Ser721 forms hydrogen bonds with nearby residues, such as Leu717 and His693. Although no major structural changes are observed during the variant simulations, the hydrophilic residue Ser721 could disrupt the hydrophobic packing during folding. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.865A>GM289V
(3D Viewer)
Likely BenignC2Benign 1-4.239Likely Benign0.117Likely BenignLikely Benign0.150Likely Benign1.09Ambiguous0.1-0.27Likely Benign0.41Likely Benign0.24Likely Benign-0.36Neutral0.136Benign0.054Benign1.80Pathogenic1.00Tolerated3.3823212.3-32.06204.251.00.00.00.20.0XPotentially BenignThe hydrophobic residue Met289, located in a β hairpin linking two anti-parallel β sheet strands (res. Met289-Arg299, res. Arg272-Leu286), is swapped for another hydrophobic residue, valine. In the variant simulations, the branched hydrocarbon side chain of Val289 packs against the phenol group of the Tyr291 side chain but is unable to form methionine-aromatic interactions. β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. However, based on the simulations, the residue swap does not cause adverse effects on the structure.
c.1393C>GL465V
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.893Likely Pathogenic0.838Likely PathogenicAmbiguous0.276Likely Benign2.46Destabilizing0.12.66Destabilizing2.56Destabilizing1.21Destabilizing-2.98Deleterious0.996Probably Damaging0.992Probably Damaging2.44Pathogenic0.10Tolerated3.3734210.4-14.03204.330.90.00.0-0.40.6XPotentially BenignThe iso-butyl side chain of Leu465, located in the middle of an α helix (res. Ala461–Phe476), packs with hydrophobic residues (e.g., Phe464, Met468, Tyr497, Ile494) in an inter-helix space formed with two other α helices (res. Ala461–Phe476 and res. Thr488-Gly502). In the variant simulations, the iso-propyl side chain of Val465 is equally sized and similarly hydrophobic as the original side chain of Leu465. Hence, the mutation does not exert any negative effects on the protein structure based on the variant simulations.
c.1606T>GL536V
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.014Likely Pathogenic0.269Likely BenignLikely Benign0.586Likely Pathogenic1.25Ambiguous0.31.22Ambiguous1.24Ambiguous1.20Destabilizing-2.81Deleterious0.998Probably Damaging0.992Probably Damaging-1.34Pathogenic0.09Tolerated3.3734210.4-14.03204.726.40.20.0-0.20.2XPotentially BenignLeu536 is located on an α-helix (res. Ala533-Val560) at the membrane interface. The iso-butyl group of Leu536 interacts with nearby hydrophobic residues in the preceding loop (e.g., Val526, Pro528, Cys531). In the variant simulations, the iso-propyl side chain of Val536 forms similar hydrophobic interactions as Leu536 in the WT, causing no negative structural effects.
c.872A>GY291C
(3D Viewer)
Likely PathogenicC2Uncertain 1-8.997Likely Pathogenic0.967Likely PathogenicLikely Pathogenic0.505Likely Pathogenic2.90Destabilizing0.43.51Destabilizing3.21Destabilizing1.35Destabilizing-7.37Deleterious1.000Probably Damaging0.999Probably Damaging1.76Pathogenic0.01Affected3.38230-23.8-60.04205.266.10.10.0-0.40.4XXPotentially PathogenicThe phenol group of the Tyr291 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), packs against hydrophobic residues of the C2 and PH domains (e.g., Leu317, Leu286, Leu284, Pro208, Val209). The phenol ring of Tyr291 also forms favorable Met-aromatic stacking with the methyl group of Met289. In the variant simulation, the thiol group of the Cys291 side chain is not as suitable for the hydrophobic inter-domain space as the phenol ring of Tyr291. Consequently, the structural unity of the PH domain is weakened and ultimately unfolds in the second simulation. Moreover, the residue swap might result in severe detrimental effects on the C2 domain structure and the C2-PH domain tertiary structure assembly during folding.
c.1456G>AE486K
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.545Likely Pathogenic0.988Likely PathogenicLikely Pathogenic0.435Likely Benign0.06Likely Benign0.10.37Likely Benign0.22Likely Benign0.41Likely Benign-3.58Deleterious1.000Probably Damaging0.988Probably Damaging3.40Benign0.12Tolerated3.373501-0.4-0.94206.852.1-0.30.10.20.0XXUncertainGlu486 is located in an α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. It is adjacent to the arginine finger (Arg485) and is expected to closely interact with Ras. The residue swap could affect complex formation with the GTPase and its activation. In the WT simulations, the carboxylate group of Glu486 forms salt bridges with Arg485 and Arg475 on the preceding α-helix (res. Ala461-Phe476). In the variant simulations, Lys486 does not form any specific interactions. Although the amino group of the Lys486 side chain cannot form these salt bridges, no negative effects on the protein structure are observed. Nevertheless, the potential role of Glu486 in SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations, and no definite conclusions can be drawn.
c.1586T>CI529T
(3D Viewer)
Likely BenignGAPUncertain 1-0.539Likely Benign0.336Likely BenignLikely Benign0.343Likely Benign0.22Likely Benign0.20.16Likely Benign0.19Likely Benign0.17Likely Benign0.24Neutral0.872Possibly Damaging0.820Possibly Damaging-1.23Pathogenic0.55Tolerated3.37350-1-5.2-12.05207.229.80.20.00.20.1XPotentially BenignIle529 is located on an α-α loop between the two α-helices (res. Gly502-Tyr518 and Ala533-Val560). In the WT simulations, the sec-butyl side chain of Ile529 faces the membrane interface and shows no specific interactions. In the variant simulations, the hydroxyl group of Thr529 forms a hydrogen bond with the carboxylate side chain of Asp527, but no negative structural changes are observed. However, due to its location near the SynGAP-membrane interface, the effect of the residue swap cannot be fully addressed using the SynGAP solvent-only simulations.
c.2068T>CS690P
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.568Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.431Likely Benign4.84Destabilizing0.34.40Destabilizing4.62Destabilizing1.42Destabilizing-4.77Deleterious0.998Probably Damaging0.790Possibly Damaging3.44Benign0.01Affected3.42171-1-0.810.04207.515.10.10.0-0.10.2XXPotentially PathogenicThe hydroxyl side chain of Ser690, located in an α-helix (res. Leu696-Leu685), forms a hydrogen bond with the backbone carbonyl group of Ser410 in an anti-parallel β-sheet of the C2 domain (res. Ile411-Ala399). In the variant simulations, the pyrrolidine side chain of Pro690 cannot form hydrogen bonds with the C2 domain residue, resulting in the loss of this inter-domain connection. Additionally, prolines lack a free amide group necessary for hydrogen bonding with the carbonyl group of Gly686, introducing a slight bend in the α-helix and compromising its integrity.
c.1118G>TG373V
(3D Viewer)
Likely BenignC2Uncertain 16-33438023-G-T65.03e-6-6.062Likely Benign0.112Likely BenignLikely Benign0.428Likely Benign5.32Destabilizing3.20.82Ambiguous3.07Destabilizing0.09Likely Benign-0.98Neutral0.007Benign0.001Benign3.90Benign0.00Affected3.5316-1-34.642.08207.6-68.11.91.1-0.60.1UncertainGly373 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Val373 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on the Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1160G>TG387V
(3D Viewer)
Likely BenignC2Uncertain 16-33438065-G-T221.37e-5-6.199Likely Benign0.153Likely BenignLikely Benign0.390Likely Benign5.13Destabilizing1.86.44Destabilizing5.79Destabilizing-0.33Likely Benign-0.54Neutral0.069Benign0.077Benign1.32Pathogenic0.01Affected4.323-1-34.642.08207.7-68.4-0.70.8-0.50.1UncertainGly387 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. This loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Val387 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.

Found 757 rows. Show 200 rows per page. Page 3/4 |