SynGap Missense Server

Table of SynGAP1 Isoform α2 (UniProt Q96PV0-1) Missense Variants.

c.dna Variant SGM Consensus Domain ClinVar gnomAD ESM1b AlphaMissense REVEL FoldX Rosetta Foldetta PremPS PROVEAN PolyPhen-2 HumDiv PolyPhen-2 HumVar FATHMM SIFT PAM Physical SASA Normalized B-factor backbone Normalized B-factor sidechain SynGAP Structural Annotation DOI
Clinical Status Review Subm. ID Allele count Allele freq. LLR score Prediction Pathogenicity Class Optimized Score Prediction Average ΔΔG Prediction StdDev ΔΔG Prediction ΔΔG Prediction ΔΔG Prediction Score Prediction pph2_prob Prediction pph2_prob Prediction Nervous System Score Prediction Prediction Status Conservation Sequences PAM250 PAM120 Hydropathy Δ MW Δ Average Δ Δ StdDev Δ StdDev Secondary Tertiary bonds Inside out GAP-Ras interface At membrane No effect MD Alert Verdict Description
c.1714T>CW572R
(3D Viewer)
Likely PathogenicGAPNot provided1-17.511Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.894Likely Pathogenic4.84Destabilizing0.16.19Destabilizing5.52Destabilizing1.79Destabilizing-12.81Deleterious-1.25Pathogenic0.00Affected3.37352-3-3.6-30.03312.6-37.60.00.0-1.00.0XXPotentially PathogenicThe indole ring of Trp572, located in an α-helix (res. Arg563-Glu578), lies in a hydrophobic inter-helix space, where it makes extensive hydrophobic interactions with nearby residues such as Met470, Phe569, Leu588, and Ile589. The guanidinium group of Arg572 is similarly sized to the tryptophan it replaced; however, it is also positively charged. In the variant simulations, Arg572 forms hydrogen bonds with other residues in the inter-helix space, such as Ser592 and the backbone carbonyl atom of Leu465. Additionally, Arg572 hydrophobically packs its carbon chain with surrounding residues such as Phe569 and Ile589.However, the introduced residue arginine is too hydrophilic and charged for the hydrophobic space, disrupting the hydrophobic packing of the inter-helix space. Indeed, in the second simulation, Arg572 successfully escapes the hydrophobic niche completely, causing the whole protein to partially unfold.Overall, the residue swap is highly likely to cause critical protein folding problems, as evidenced by the effects seen in the variant simulations.
c.1118G>AG373E
(3D Viewer)
C2Uncertain 1-7.281In-Between0.569Likely PathogenicLikely Benign0.420Likely Benign4.13Destabilizing3.20.52Ambiguous2.33Destabilizing-0.02Likely Benign-0.69Neutral0.001Benign0.000Benign3.90Benign0.01Affected0-2-3.172.06
c.1108G>AG370S
(3D Viewer)
Likely BenignC2Uncertain 16-33438013-G-A159.31e-6-3.533Likely Benign0.081Likely BenignLikely Benign0.282Likely Benign2.83Destabilizing2.01.05Ambiguous1.94Ambiguous-0.02Likely Benign0.47Neutral0.000Benign0.000Benign1.33Pathogenic0.77Tolerated3.421910-0.430.03196.6-49.60.92.2-0.10.4UncertainGly370 is located in the Gly-rich Ω loop (res. Pro364- Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because, the Ω loop is assumed to be directly interacting with the membrane, it is only seen to move arbitrarily throughout the WT solvent simulations. The Ω loop is potentially playing a crucial loop in the SynGAP-membrane complex association, stability and dynamics, regardless, this aspect cannot be addressed through the solvent simulations only. The Ω-loops are known to have a major role in protein functions that requires flexibility and thus, they are rich in glycines, prolines and to a lesser extent, hydrophilic residues to ensure maximum flexibility. Thus, Ser370 in the variant is potentially tolerated in the Ω loop. However, since the effect on the Gly-rich Ω loop dynamics can only be well-studied through the SynGAP-membrane complex, no definite conclusions can be withdrawn.
c.269T>AV90ELikely BenignUncertain 1-4.079Likely Benign0.703Likely PathogenicLikely Benign0.108Likely Benign-0.38Neutral0.001Benign0.000Benign4.00Benign0.00Affected4.321-2-2-7.729.98
c.2855G>TG952VLikely BenignUncertain 1-7.074In-Between0.078Likely BenignLikely Benign0.231Likely Benign-0.33Neutral0.000Benign0.000Benign3.20Benign0.02Affected3.775-1-34.642.08
c.36C>GS12RLikely BenignUncertain 16-33420300-C-G42.59e-6-4.033Likely Benign0.500AmbiguousLikely Benign0.097Likely Benign-0.30Neutral0.000Benign0.000Benign4.09Benign0.00Affected4.3210-1-3.769.11
c.37A>GI13VLikely BenignUncertain 1-2.497Likely Benign0.105Likely BenignLikely Benign0.110Likely Benign0.01Neutral0.000Benign0.000Benign4.25Benign0.00Affected43-0.3-14.03
c.3835G>AA1279TLikely BenignUncertain 26-33447883-G-A21.29e-6-4.871Likely Benign0.071Likely BenignLikely Benign0.178Likely Benign-0.30Neutral0.001Benign0.000Benign2.71Benign0.09Tolerated3.77510-2.530.03
c.3964G>CA1322PLikely BenignBenign 16-33451838-G-C-1.153Likely Benign0.063Likely BenignLikely Benign0.090Likely Benign0.03Neutral0.000Benign0.000Benign4.15Benign0.23Tolerated3.7751-1-3.426.04
c.3974C>TP1325LLikely BenignUncertain 16-33451848-C-T-5.256Likely Benign0.085Likely BenignLikely Benign0.146Likely Benign-1.05Neutral0.000Benign0.000Benign4.05Benign0.00Affected4.321-3-35.416.04
c.3G>AM1ILikely BenignConflicting 3-5.397Likely Benign0.227Likely Benign-0.17Neutral0.001Benign0.000Benign4.25Benign0.00Affected4.321212.6-18.03
c.4021G>AA1341TLikely BenignConflicting 36-33451895-G-A453.44e-5-3.224Likely Benign0.081Likely BenignLikely Benign0.099Likely Benign-0.58Neutral0.000Benign0.000Benign4.09Benign0.03Affected3.77510-2.530.03
c.48G>AM16ILikely BenignUncertain 16-33420312-G-A16.49e-7-2.198Likely Benign0.722Likely PathogenicLikely Benign0.057Likely Benign-0.15Neutral0.000Benign0.000Benign4.28Benign0.00Affected4.321212.6-18.03
c.5G>AS2NLikely BenignUncertain 26-33420269-G-A31.96e-6-4.104Likely Benign0.207Likely BenignLikely Benign0.092Likely Benign-0.36Neutral0.000Benign0.000Benign4.06Benign0.00Affected4.32111-2.727.03
c.82T>CS28PLikely BenignUncertain 1-3.309Likely Benign0.051Likely BenignLikely Benign0.047Likely Benign1.37Neutral0.000Benign0.000Benign4.53Benign0.00Affected4.3211-1-0.810.04
c.1040C>AT347N
(3D Viewer)
Likely BenignC2Uncertain 16-33437945-C-A95.58e-6-5.545Likely Benign0.165Likely BenignLikely Benign0.059Likely Benign0.41Likely Benign0.10.46Likely Benign0.44Likely Benign-0.06Likely Benign1.96Neutral0.001Benign0.001Benign1.67Pathogenic0.60Tolerated3.372500-2.813.00
c.1131G>AM377I
(3D Viewer)
Likely BenignC2Uncertain 16-33438036-G-A16.23e-7-2.895Likely Benign0.212Likely BenignLikely Benign0.227Likely Benign0.76Ambiguous0.30.54Ambiguous0.65Ambiguous0.24Likely Benign-0.41Neutral0.000Benign0.001Benign5.46Benign0.26Tolerated4.3212122.6-18.03
c.1118G>TG373V
(3D Viewer)
Likely BenignC2Uncertain 16-33438023-G-T65.03e-6-6.062Likely Benign0.112Likely BenignLikely Benign0.428Likely Benign5.32Destabilizing3.20.82Ambiguous3.07Destabilizing0.09Likely Benign-0.98Neutral0.007Benign0.001Benign3.90Benign0.00Affected3.5316-1-34.642.08207.6-68.11.91.1-0.60.1UncertainGly373 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Val373 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on the Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1198G>CV400L
(3D Viewer)
Likely BenignC2Benign 16-33438103-G-C221.36e-5-1.000Likely Benign0.137Likely BenignLikely Benign0.325Likely Benign-0.71Ambiguous0.20.39Likely Benign-0.16Likely Benign-0.29Likely Benign-0.60Neutral0.001Benign0.001Benign5.33Benign0.64Tolerated3.382721-0.414.03251.0-30.10.00.00.70.1XPotentially BenignThe iso-propyl side chain of Val400, located in an anti-parallel β sheet strand (res. Ala399-Ile411), hydrophobically packs against hydrophobic residues within the anti-parallel β sheet of the C2 domain (e.g., Ile268, Ala404, Leu325, Leu402). Val400 is swapped for another hydrophobic residue, leucine, whose branched hydrocarbon side chain is of a comparable size and thus packs favorably within the C2 domain. In short, the residue swap has no apparent negative effect on the structure based on the variant simulations.10.1016/j.ajhg.2020.11.011
c.1918A>TT640S
(3D Viewer)
Likely BenignGAPBenign 16-33441177-A-T16.20e-7-2.371Likely Benign0.062Likely BenignLikely Benign0.088Likely Benign-0.78Ambiguous0.10.43Likely Benign-0.18Likely Benign-0.30Likely Benign0.92Neutral0.000Benign0.001Benign3.60Benign0.33Tolerated3.373011-0.1-14.03
c.1604G>CS535T
(3D Viewer)
Likely BenignGAPBenign 16-33438847-G-C148.67e-6-3.886Likely Benign0.069Likely BenignLikely Benign0.177Likely Benign0.45Likely Benign0.1-0.27Likely Benign0.09Likely Benign0.17Likely Benign-0.81Neutral0.000Benign0.001Benign-1.25Pathogenic0.25Tolerated3.3735110.114.03201.3-17.3-0.10.7-0.20.1XPotentially BenignSer535 is located near the terminal end of an α-helix (res. Ala533-Val560) close to the membrane interface. In the WT simulations, the hydroxyl side chain of Ser535 forms hydrogen bonds with nearby residues (e.g., His539, Glu538) without any specific interactions. These hydrogen bonds disrupt the structure of the terminal end of the α-helix (Ala533-Ser535), causing it to weaken or unfold during the WT simulations. In the variant simulations, Thr535, a hydrophilic residue with a hydroxyl group of almost the same size as Ser, interacts more frequently with the preceding loop residues (e.g., Thr532, Cys531) due to its longer side chain. Regardless, the residue swap is tolerated in the simulations with no negative effects. However, due to its location near the SynGAP-membrane interface, the effect of the residue swap cannot be fully addressed using the SynGAP solvent-only simulations.10.1016/j.ajhg.2020.11.011
c.2207G>AR736HLikely BenignUncertain 16-33441672-G-A63.72e-6-5.409Likely Benign0.067Likely BenignLikely Benign0.029Likely Benign-0.12Neutral0.004Benign0.001Benign2.50Benign0.00Affected4.073201.3-19.05
c.2343G>AM781ILikely BenignBenign 1-2.484Likely Benign0.323Likely BenignLikely Benign0.101Likely Benign0.05Neutral0.000Benign0.001Benign2.89Benign1.00Tolerated3.646122.6-18.03
c.3172G>AG1058SLikely BenignConflicting 36-33443724-G-A1147.08e-5-5.178Likely Benign0.081Likely BenignLikely Benign0.108Likely Benign0.26Neutral0.001Benign0.001Benign5.38Benign0.04Affected3.77510-0.430.03
c.3175G>AG1059RUncertain 16-33443727-G-A684.23e-5-8.452Likely Pathogenic0.376AmbiguousLikely Benign0.333Likely Benign-0.55Neutral0.001Benign0.001Benign2.53Benign0.00Affected4.322-3-2-4.199.14
c.3304G>AA1102TLikely BenignUncertain 16-33443856-G-A117.17e-6-3.540Likely Benign0.070Likely BenignLikely Benign0.044Likely Benign-0.30Neutral0.001Benign0.001Benign2.32Pathogenic0.95Tolerated3.77510-2.530.03
c.3344T>CI1115TLikely BenignBenign 96-33443896-T-C205361.36e-2-2.670Likely Benign0.068Likely BenignLikely Benign0.100Likely Benign-0.04Neutral0.000Benign0.001Benign2.76Benign0.23Tolerated4.3220-1-5.2-12.05
c.3379G>AG1127RLikely BenignUncertain 16-33443931-G-A21.34e-6-5.949Likely Benign0.629Likely PathogenicLikely Benign0.341Likely Benign-0.87Neutral0.001Benign0.001Benign4.86Benign0.12Tolerated4.324-2-3-4.199.14
c.3379G>CG1127RLikely BenignConflicting 26-33443931-G-C161.07e-5-5.949Likely Benign0.629Likely PathogenicLikely Benign0.341Likely Benign-0.87Neutral0.001Benign0.001Benign4.86Benign0.12Tolerated4.324-2-3-4.199.14
c.380G>AR127QLikely BenignUncertain 16-33432245-G-A63.72e-6-1.711Likely Benign0.320Likely BenignLikely Benign0.037Likely Benign-1.04Neutral0.006Benign0.001Benign4.04Benign0.02Affected3.744111.0-28.06
c.3913A>GT1305ALikely BenignConflicting 46-33451787-A-G301.86e-5-2.692Likely Benign0.055Likely BenignLikely Benign0.069Likely Benign1.74Neutral0.000Benign0.001Benign3.24Benign1.00Tolerated3.775102.5-30.03
c.3943T>CW1315RLikely BenignUncertain 10.205Likely Benign0.660Likely PathogenicLikely Benign0.114Likely Benign1.31Neutral0.000Benign0.001Benign4.37Benign0.91Tolerated3.7752-3-3.6-30.03
c.4021G>TA1341SLikely BenignUncertain 16-33451895-G-T-2.867Likely Benign0.078Likely BenignLikely Benign0.099Likely Benign0.80Neutral0.000Benign0.001Benign4.40Benign1.00Tolerated3.77511-2.616.00
c.1136C>TS379L
(3D Viewer)
Likely BenignC2Benign 16-33438041-C-T84.05e-5-5.641Likely Benign0.173Likely BenignLikely Benign0.469Likely Benign0.39Likely Benign0.23.38Destabilizing1.89Ambiguous-0.52Ambiguous-0.85Neutral0.015Benign0.002Benign3.83Benign0.04Affected4.3211-3-24.626.08251.9-48.10.61.10.00.5UncertainSer379 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like leucine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Leu379 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1663G>AV555I
(3D Viewer)
Likely BenignGAPUncertain 1-4.544Likely Benign0.084Likely BenignLikely Benign0.253Likely Benign-0.82Ambiguous0.0-0.41Likely Benign-0.62Ambiguous-0.55Ambiguous0.45Neutral0.002Benign0.002Benign-1.26Pathogenic1.00Tolerated430.314.03
c.2493G>CE831DLikely BenignUncertain 16-33443045-G-C16.19e-7-3.055Likely Benign0.063Likely BenignLikely Benign0.073Likely Benign1.23Neutral0.002Benign0.002Benign2.64Benign0.77Tolerated3.775320.0-14.03
c.2014A>GT672A
(3D Viewer)
Likely BenignGAPBenign 16-33441273-A-G31.86e-6-6.524Likely Benign0.109Likely BenignLikely Benign0.046Likely Benign0.51Ambiguous0.31.15Ambiguous0.83Ambiguous0.65Ambiguous-3.20Deleterious0.006Benign0.002Benign3.44Benign0.12Tolerated3.4025102.5-30.03188.542.5-0.10.30.20.0XPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. In the variant simulations, Ala672 can only form a hydrogen bond with Lys566 via its backbone carbonyl group. Consequently, it cannot maintain the Lys566-Glu666 salt bridge through hydrogen bonding, leading to a significant disruption of the intricate and stable hydrogen-bond network between the loop and the helices.
c.2854G>AG952SLikely BenignConflicting 26-33443406-G-A21.24e-6-6.190Likely Benign0.077Likely BenignLikely Benign0.167Likely Benign0.19Neutral0.000Benign0.002Benign3.31Benign0.07Tolerated3.77510-0.430.03
c.2914C>TP972SLikely BenignUncertain 16-33443466-C-T42.48e-6-4.008Likely Benign0.058Likely BenignLikely Benign0.074Likely Benign-0.38Neutral0.001Benign0.002Benign4.28Benign0.05Affected4.322-110.8-10.04
c.311G>TR104LLikely BenignBenign 16-33432176-G-T16.20e-7-3.563Likely Benign0.578Likely PathogenicLikely Benign0.170Likely Benign-1.38Neutral0.001Benign0.002Benign4.05Benign0.00Affected4.321-2-38.3-43.03
c.3176G>CG1059ALikely BenignUncertain 16-33443728-G-C42.49e-6-6.754Likely Benign0.081Likely BenignLikely Benign0.329Likely Benign-0.17Neutral0.001Benign0.002Benign2.56Benign0.00Affected4.322102.214.03
c.3304G>CA1102PLikely BenignUncertain 1-5.120Likely Benign0.077Likely BenignLikely Benign0.118Likely Benign-0.97Neutral0.000Benign0.002Benign2.26Pathogenic0.13Tolerated3.775-11-3.426.04
c.3370G>AG1124RConflicting 36-33443922-G-A241.60e-5-8.918Likely Pathogenic0.534AmbiguousLikely Benign0.243Likely Benign-0.58Neutral0.002Benign0.002Benign4.81Benign0.01Affected3.775-3-2-4.199.14
c.3380G>CG1127ALikely BenignConflicting 46-33443932-G-C42.68e-6-5.949Likely Benign0.080Likely BenignLikely Benign0.164Likely Benign-0.43Neutral0.001Benign0.002Benign4.83Benign1.00Tolerated4.324102.214.03
c.401G>AS134NLikely BenignUncertain 1-5.534Likely Benign0.813Likely PathogenicAmbiguous0.075Likely Benign-1.62Neutral0.001Benign0.002Benign3.90Benign0.00Affected3.61511-2.727.03
c.13C>GR5GLikely BenignUncertain 1-3.639Likely Benign0.150Likely BenignLikely Benign0.169Likely Benign-0.16Neutral0.013Benign0.003Benign4.12Benign0.00Affected4.321-2-34.1-99.14
c.2888A>GH963RLikely BenignUncertain 16-33443440-A-G84.96e-6-8.952Likely Pathogenic0.169Likely BenignLikely Benign0.081Likely Benign-1.28Neutral0.001Benign0.003Benign4.15Benign0.24Tolerated3.77520-1.319.05
c.3326T>CL1109PLikely BenignConflicting 2-5.313Likely Benign0.120Likely BenignLikely Benign0.151Likely Benign-0.52Neutral0.002Benign0.003Benign2.65Benign0.07Tolerated4.322-3-3-5.4-16.04
c.3848C>TP1283LLikely BenignBenign 16-33447896-C-T322.06e-5-3.740Likely Benign0.093Likely BenignLikely Benign0.047Likely Benign-1.04Neutral0.005Benign0.003Benign2.76Benign0.06Tolerated3.775-3-35.416.04
c.4008G>CE1336DLikely BenignLikely Benign 1-3.344Likely Benign0.596Likely PathogenicLikely Benign0.062Likely Benign-1.92Neutral0.001Benign0.003Benign3.30Benign0.00Affected3.775230.0-14.03
c.2651G>AR884QLikely BenignUncertain 26-33443203-G-A53.10e-6-3.785Likely Benign0.128Likely BenignLikely Benign0.055Likely Benign-0.42Neutral0.012Benign0.004Benign2.62Benign0.36Tolerated4.324111.0-28.06
c.2830G>AG944SLikely BenignBenign 16-33443382-G-A138.05e-6-5.303Likely Benign0.082Likely BenignLikely Benign0.223Likely Benign-0.75Neutral0.007Benign0.004Benign3.77Benign0.00Affected4.32410-0.430.03
c.2863T>CS955PLikely BenignUncertain 16-33443415-T-C31.86e-6-2.584Likely Benign0.073Likely BenignLikely Benign0.098Likely Benign-0.75Neutral0.001Benign0.004Benign2.33Pathogenic0.00Affected3.7751-1-0.810.04
c.29G>AR10QLikely BenignUncertain 26-33420293-G-A201.30e-5-4.438Likely Benign0.185Likely BenignLikely Benign0.084Likely Benign0.03Neutral0.121Benign0.004Benign4.17Benign0.00Affected4.321111.0-28.06
c.3181G>AG1061SLikely BenignUncertain 1-4.891Likely Benign0.079Likely BenignLikely Benign0.283Likely Benign-0.68Neutral0.004Benign0.004Benign4.00Benign0.00Affected10-0.430.03
c.3361A>GS1121GLikely BenignUncertain 16-33443913-A-G17.00e-7-1.220Likely Benign0.054Likely BenignLikely Benign0.067Likely Benign-0.53Neutral0.003Benign0.004Benign6.63Benign0.00Affected3.775010.4-30.03
c.3858A>TE1286DLikely BenignConflicting 46-33447906-A-T1439.22e-5-4.010Likely Benign0.081Likely BenignLikely Benign0.036Likely Benign1.02Neutral0.001Benign0.004Benign2.96Benign1.00Tolerated3.775320.0-14.0310.1016/j.ajhg.2020.11.011
c.3961C>TP1321SLikely BenignUncertain 26-33451835-C-T106.46e-6-4.897Likely Benign0.077Likely BenignLikely Benign0.049Likely Benign0.68Neutral0.028Benign0.004Benign4.27Benign0.71Tolerated3.7751-10.8-10.0410.1016/j.ajhg.2020.11.011
c.1260T>GF420L
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.432Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.146Likely Benign1.76Ambiguous0.01.41Ambiguous1.59Ambiguous1.04Destabilizing-5.39Deleterious0.009Benign0.005Benign4.22Benign0.39Tolerated3.3729201.0-34.02231.113.20.00.0-0.10.0XPotentially BenignIn the WT, the phenyl ring of the Phe420 side chain, located on an α helix (res. Met414-Glu436), packs against hydrophobic residues in the interhelix area of the GAP domain (e.g., Leu689, Leu714, Leu717, Leu718). In the variant simulations, the iso-butyl side chain of Leu420 also packs into the hydrophobic inter-helix niche, but due to its smaller size, the resulting steric interactions are not as favorable as with phenylalanine. In short, the residue swap does not cause severe effects on the protein structure based on the variant simulations.
c.1973G>AG658D
(3D Viewer)
GAPUncertain 16-33441232-G-A31.86e-6-7.786In-Between0.442AmbiguousLikely Benign0.144Likely Benign-0.40Likely Benign0.1-0.59Ambiguous-0.50Ambiguous0.46Likely Benign-2.64Deleterious0.008Benign0.005Benign3.53Benign0.38Tolerated3.39241-1-3.158.04219.8-84.30.00.00.20.1XPotentially PathogenicGly658, located on the outer surface of an α helix (res. Ser641-Glu666), weakens the helix integrity at that spot, which is necessary for the kink in the middle of the long helix. In the variant simulations, the carboxylic acid side chain of Asp658 is on the surface of the α helix and is not involved in any interactions. However, aspartate is not as effective a breaker of the secondary structure element as glycine, which may lead to misfolding.
c.2217G>CE739DLikely BenignUncertain 1-3.369Likely Benign0.062Likely BenignLikely Benign0.097Likely Benign-0.49Neutral0.002Benign0.005Benign2.59Benign0.00Affected320.0-14.03
c.2275A>CM759LLikely BenignUncertain 16-33441740-A-C21.24e-6-2.431Likely Benign0.093Likely BenignLikely Benign0.048Likely Benign-0.53Neutral0.002Benign0.005Benign2.84Benign1.00Tolerated3.995421.9-18.03
c.3092T>CM1031TLikely BenignUncertain 16-33443644-T-C21.24e-6-1.863Likely Benign0.540AmbiguousLikely Benign0.085Likely Benign-0.24Neutral0.002Benign0.005Benign2.67Benign1.00Tolerated3.775-1-1-2.6-30.09
c.3308G>TR1103LLikely BenignUncertain 16-33443860-G-T-2.330Likely Benign0.205Likely BenignLikely Benign0.173Likely Benign-2.35Neutral0.002Benign0.005Benign2.44Pathogenic0.02Affected3.775-3-28.3-43.03
c.3376G>TG1126CLikely BenignUncertain 16-33443928-G-T117.35e-6-9.389Likely Pathogenic0.113Likely BenignLikely Benign0.449Likely Benign-1.40Neutral0.005Benign0.005Benign4.74Benign0.02Affected3.775-3-32.946.09
c.3380G>TG1127VLikely BenignUncertain 16-33443932-G-T16.69e-7-6.097Likely Benign0.094Likely BenignLikely Benign0.230Likely Benign-1.01Neutral0.004Benign0.005Benign4.81Benign0.17Tolerated4.324-1-34.642.08
c.3929C>TT1310MLikely BenignBenign 16-33451803-C-T171.05e-5-4.822Likely Benign0.117Likely BenignLikely Benign0.069Likely Benign2.19Neutral0.021Benign0.005Benign2.98Benign0.93Tolerated3.775-1-12.630.09
c.2349G>AM783ILikely BenignBenign 16-33442901-G-A63.72e-6-3.560Likely Benign0.418AmbiguousLikely Benign0.042Likely Benign-0.54Neutral0.004Benign0.006Benign2.87Benign0.22Tolerated3.646122.6-18.03
c.2350G>AA784TLikely BenignBenign 1-3.579Likely Benign0.089Likely BenignLikely Benign0.046Likely Benign1.23Neutral0.001Benign0.006Benign2.92Benign1.00Tolerated3.64610-2.530.03
c.2578G>AV860ILikely BenignBenign 16-33443130-G-A211.30e-5-4.516Likely Benign0.095Likely BenignLikely Benign0.039Likely Benign-0.42Neutral0.009Benign0.006Benign4.24Benign0.00Affected3.775430.314.03
c.2632A>GT878ALikely BenignUncertain 1-2.154Likely Benign0.081Likely BenignLikely Benign0.088Likely Benign-0.67Neutral0.003Benign0.006Benign2.73Benign0.18Tolerated3.775102.5-30.03
c.3364G>AG1122SLikely BenignBenign/Likely benign 26-33443916-G-A271.79e-5-4.880Likely Benign0.072Likely BenignLikely Benign0.189Likely Benign-0.08Neutral0.022Benign0.006Benign4.89Benign0.92Tolerated3.77510-0.430.03
c.3394T>CS1132PLikely BenignConflicting 36-33443946-T-C16.74e-7-1.423Likely Benign0.144Likely BenignLikely Benign0.301Likely Benign0.38Neutral0.003Benign0.006Benign5.40Benign0.28Tolerated4.3241-1-0.810.04
c.218G>AR73KLikely BenignUncertain 16-33425826-G-A21.24e-6-4.033Likely Benign0.151Likely BenignLikely Benign0.077Likely Benign-0.46Neutral0.053Benign0.007Benign4.14Benign0.00Affected4.321230.6-28.01
c.221G>AS74NLikely BenignUncertain 16-33425829-G-A53.10e-6-5.156Likely Benign0.112Likely BenignLikely Benign0.031Likely Benign-0.89Neutral0.043Benign0.007Benign4.09Benign0.00Affected4.32111-2.727.03
c.2225G>AR742QLikely BenignUncertain 26-33441690-G-A241.49e-5-4.090Likely Benign0.068Likely BenignLikely Benign0.054Likely Benign-0.19Neutral0.032Benign0.007Benign2.73Benign0.07Tolerated4.322111.0-28.06
c.3397A>GI1133VLikely BenignBenign 16-33443949-A-G221.48e-5-3.362Likely Benign0.067Likely BenignLikely Benign0.180Likely Benign0.06Neutral0.007Benign0.007Benign5.47Benign0.58Tolerated4.32343-0.3-14.0310.1016/j.ajhg.2020.11.011
c.1594A>CT532P
(3D Viewer)
Likely BenignGAPBenign 1-2.143Likely Benign0.061Likely BenignLikely Benign0.201Likely Benign-0.30Likely Benign0.20.06Likely Benign-0.12Likely Benign0.08Likely Benign-0.90Neutral0.005Benign0.008Benign-1.28Pathogenic0.18Tolerated3.37350-1-0.9-3.99174.235.10.40.00.10.0XPotentially BenignThr532 is located on an α-α loop between the two α-helices (res. Gly502-Tyr518 and Ala533-Val560) facing the membrane. In the WT simulations, the hydroxyl group of Thr532 occasionally forms hydrogen bonds with the backbone atoms of other loop residues without any specific interaction. In the variant simulations, the Pro532 residue swap does not cause structural changes. Although hydrophilic residues seem more favorable in the loop, the pyrrolidine side chain of proline is well suited for unstructured protein regions such as loops. However, due to its location at the SynGAP-membrane interface, the effect of the residue swap cannot be fully addressed using the SynGAP solvent-only simulations.
c.263T>CV88ALikely BenignUncertain 1-5.860Likely Benign0.993Likely PathogenicLikely Pathogenic0.050Likely Benign-1.22Neutral0.053Benign0.008Benign3.75Benign0.00Affected4.32100-2.4-28.05
c.280C>TP94SLikely BenignBenign 16-33425888-C-T53.10e-6-3.151Likely Benign0.084Likely BenignLikely Benign0.093Likely Benign-2.36Neutral0.092Benign0.008Benign4.13Benign0.00Affected4.3211-10.8-10.04
c.286G>AG96SLikely BenignUncertain 16-33425894-G-A53.10e-6-3.049Likely Benign0.065Likely BenignLikely Benign0.071Likely Benign-0.76Neutral0.364Benign0.008Benign4.25Benign0.00Affected4.32110-0.430.03
c.3116T>CI1039TLikely BenignUncertain 16-33443668-T-C127.43e-6-2.465Likely Benign0.645Likely PathogenicLikely Benign0.193Likely Benign0.45Neutral0.004Benign0.008Benign2.75Benign0.10Tolerated3.775-10-5.2-12.05
c.3136C>GP1046ALikely BenignUncertain 16-33443688-C-G16.20e-7-3.246Likely Benign0.048Likely BenignLikely Benign0.041Likely Benign-1.67Neutral0.001Benign0.008Benign2.39Pathogenic0.29Tolerated3.775-113.4-26.04
c.3233T>AV1078DLikely BenignUncertain 1-5.155Likely Benign0.979Likely PathogenicLikely Pathogenic0.158Likely Benign-1.45Neutral0.003Benign0.008Benign3.84Benign0.00Affected3.775-3-2-7.715.96
c.3377G>TG1126VLikely BenignUncertain 16-33443929-G-T-6.536Likely Benign0.089Likely BenignLikely Benign0.357Likely Benign-1.20Neutral0.009Benign0.008Benign4.76Benign0.03Affected3.775-1-34.642.08
c.2302G>AD768NLikely BenignUncertain 16-33442460-G-A22.57e-6-6.892Likely Benign0.453AmbiguousLikely Benign0.048Likely Benign-0.77Neutral0.106Benign0.009Benign4.07Benign0.96Tolerated3.646120.0-0.98
c.2502G>CM834ILikely BenignUncertain 1-3.377Likely Benign0.291Likely BenignLikely Benign0.055Likely Benign-1.21Neutral0.026Benign0.009Benign2.56Benign0.00Affected4.324122.6-18.03
c.2702C>TA901VLikely BenignUncertain 26-33443254-C-T21.24e-6-5.043Likely Benign0.219Likely BenignLikely Benign0.029Likely Benign-1.83Neutral0.106Benign0.009Benign2.64Benign0.17Tolerated3.775002.428.05
c.371C>TA124VLikely BenignConflicting 26-33432236-C-T95.58e-6-4.259Likely Benign0.138Likely BenignLikely Benign0.073Likely Benign-1.52Neutral0.173Benign0.009Benign4.07Benign0.03Affected3.615002.428.05
c.2548G>AG850RLikely BenignUncertain 1-5.082Likely Benign0.398AmbiguousLikely Benign0.194Likely Benign-0.07Neutral0.010Benign0.010Benign4.30Benign0.01Affected3.775-3-2-4.199.14
c.819G>TE273D
(3D Viewer)
Likely BenignC2Benign 16-33437724-G-T21.24e-6-1.811Likely Benign0.058Likely BenignLikely Benign0.092Likely Benign0.26Likely Benign0.1-0.48Likely Benign-0.11Likely Benign-0.63Ambiguous1.99Neutral0.004Benign0.010Benign2.00Pathogenic1.00Tolerated3.3818320.0-14.03223.122.10.20.00.00.1XPotentially BenignThe negatively charged residue Glu273, located in a β hairpin loop (res. Glu273-Lys278) that connects two anti-parallel β sheet strands, is replaced with another negatively charged residue, aspartate. Because the C2 domain loop faces the membrane surface, the potentially crucial role of the carboxylate group of Glu273 or Asp273 on SynGAP-membrane association cannot be fully explored via solvent-only simulations.As a minor note, the neighboring residue Arg272, which stacks with the indole ring of the Trp362 side chain and directly faces RasGTPase, forms a salt bridge more often with Asp273 than with the non-mutated Glu273 in the simulations. Regardless, due to the similar physicochemical properties of the WT and variant residues at the membrane interface, the residue swap is likely to be well tolerated.
c.1312G>AA438T
(3D Viewer)
Likely BenignGAPConflicting 36-33438217-G-A169.91e-6-5.339Likely Benign0.085Likely BenignLikely Benign0.021Likely Benign0.21Likely Benign0.0-0.07Likely Benign0.07Likely Benign0.36Likely Benign-0.81Neutral0.300Benign0.011Benign4.18Benign0.14Tolerated3.382610-2.530.03214.2-42.7-0.30.1-0.40.1XPotentially BenignThe methyl group of Ala438, located in a four-residue loop connecting two α helices (res. Asn440-Thr458 and Pro413-Glu436), packs against hydrophobic residues from a nearby α helix or loop residues (e.g., Leu703, Val699). In the variant simulations, the methyl group of Thr438 is able to establish similar hydrophobic packing. Moreover, the hydroxyl group also H-bonds with nearby residues, such as the carbonyl group of the neighboring loop residue Pro437. Accordingly, the residue swap does not generate an apparent negative effect on the protein structure based on the simulations.
c.1888A>GI630V
(3D Viewer)
GAPBenign/Likely benign 46-33440940-A-G593.66e-5-7.264In-Between0.145Likely BenignLikely Benign0.143Likely Benign1.33Ambiguous0.00.94Ambiguous1.14Ambiguous0.64Ambiguous-0.38Neutral0.018Benign0.011Benign-1.37Pathogenic0.35Tolerated3.373443-0.3-14.03235.026.2-0.10.0-0.30.1XPotentially BenignThe sec-butyl side chain of Ile630, located in an α helix (res. Glu617-Asn635), packs with hydrophobic residues (e.g., Phe594, Leu633, Ile626, Ile602) in the hydrophobic inter-helix space between two α helices (res. Glu617-Asn635 and res. Glu582-Met603).In the variant simulations, the iso-propyl side chain of Val630, which shares a similar size and physicochemical properties with Ile630 in the WT, maintains similar interactions in the inter-helix space. Although no negative structural effects are observed during the simulations, the implications of the residue swap on the complex formation with the GTPase, due to its location, cannot be investigated using solvent-only simulations.
c.2914C>GP972ALikely BenignUncertain 16-33443466-C-G16.20e-7-0.167Likely Benign0.045Likely BenignLikely Benign0.046Likely Benign-0.89Neutral0.016Benign0.011Benign4.29Benign0.07Tolerated4.322-113.4-26.04
c.3607C>TH1203YLikely BenignCoiled-coilUncertain 16-33446599-C-T21.24e-6-6.834Likely Benign0.149Likely BenignLikely Benign0.233Likely Benign-1.52Neutral0.006Benign0.011Benign5.55Benign0.10Tolerated3.775201.926.03
c.558G>CL186FLikely PathogenicUncertain 1-11.861Likely Pathogenic0.993Likely PathogenicLikely Pathogenic0.132Likely Benign-3.03Deleterious0.009Benign0.012Benign3.50Benign0.00Affected20-1.034.02
c.2210A>CQ737PLikely BenignUncertain 1-2.407Likely Benign0.054Likely BenignLikely Benign0.154Likely Benign-1.22Neutral0.005Benign0.013Benign2.78Benign0.04Affected4.073-101.9-31.01
c.3160G>AG1054SLikely BenignBenign 16-33443712-G-A321.99e-5-5.294Likely Benign0.075Likely BenignLikely Benign0.160Likely Benign0.21Neutral0.121Benign0.013Benign4.04Benign0.63Tolerated3.77510-0.430.03
c.1511A>GK504R
(3D Viewer)
Likely BenignGAPUncertain16-33438543-A-G21.24e-6-4.365Likely Benign0.088Likely BenignLikely Benign0.238Likely Benign0.13Likely Benign0.10.51Ambiguous0.32Likely Benign0.94Ambiguous-2.16Neutral0.002Benign0.015Benign-1.41Pathogenic0.11Tolerated3.373523-0.628.01
c.2858C>AP953QLikely BenignUncertain 1-6.038Likely Benign0.079Likely BenignLikely Benign0.086Likely Benign-0.78Neutral0.058Benign0.015Benign2.78Benign0.29Tolerated3.7750-1-1.931.01
c.2983C>TP995SLikely BenignUncertain 1-4.457Likely Benign0.071Likely BenignLikely Benign0.042Likely Benign-1.03Neutral0.011Benign0.015Benign4.24Benign0.00Affected4.3211-10.8-10.04
c.44C>TA15VLikely BenignUncertain 16-33420308-C-T16.49e-7-3.560Likely Benign0.161Likely BenignLikely Benign0.105Likely Benign0.20Neutral0.602Possibly Damaging0.015Benign4.19Benign0.00Affected4.321002.428.05
c.2699C>TT900MLikely BenignConflicting 26-33443251-C-T148.68e-6-3.852Likely Benign0.176Likely BenignLikely Benign0.015Likely Benign-0.81Neutral0.060Benign0.016Benign2.79Benign0.08Tolerated4.324-1-12.630.09
c.3442A>TM1148LLikely BenignUncertain 1-1.777Likely Benign0.093Likely BenignLikely Benign0.068Likely Benign-1.13Neutral0.016Benign0.016Benign2.62Benign0.00Affected4.322421.9-18.03
c.223G>AE75KLikely BenignBenign/Likely benign 2-4.020Likely Benign0.358AmbiguousLikely Benign0.134Likely Benign-1.12Neutral0.748Possibly Damaging0.017Benign4.07Benign0.00Affected01-0.4-0.94
c.3338G>AG1113DLikely BenignUncertain 16-33443890-G-A-4.638Likely Benign0.354AmbiguousLikely Benign0.061Likely Benign-0.72Neutral0.029Benign0.017Benign2.58Benign0.34Tolerated4.322-11-3.158.04
c.3860C>TP1287LLikely BenignConflicting 26-33447908-C-T-2.800Likely Benign0.117Likely BenignLikely Benign0.061Likely Benign-1.66Neutral0.021Benign0.017Benign2.76Benign0.02Affected3.775-3-35.416.04
c.43G>AA15TLikely BenignUncertain 16-33420307-G-A42.60e-6-3.720Likely Benign0.125Likely BenignLikely Benign0.086Likely Benign-0.08Neutral0.602Possibly Damaging0.017Benign4.16Benign0.00Affected4.32110-2.530.03
c.2401G>AG801SLikely BenignSH3-binding motifUncertain 1-3.665Likely Benign0.087Likely BenignLikely Benign0.039Likely Benign-0.41Neutral0.009Benign0.019Benign2.76Benign0.48Tolerated4.32201-0.430.03
c.2506A>GS836GLikely BenignUncertain 16-33443058-A-G42.48e-6-4.749Likely Benign0.112Likely BenignLikely Benign0.066Likely Benign-1.65Neutral0.006Benign0.019Benign2.54Benign0.39Tolerated3.775100.4-30.03
c.277C>GR93GLikely BenignUncertain 1-2.674Likely Benign0.400AmbiguousLikely Benign0.093Likely Benign-1.69Neutral0.103Benign0.019Benign3.99Benign0.00Affected4.321-2-34.1-99.14
c.265C>GP89ALikely BenignUncertain 2-5.778Likely Benign0.920Likely PathogenicAmbiguous0.095Likely Benign-2.47Neutral0.225Benign0.020Benign3.77Benign0.00Affected4.3211-13.4-26.04
c.233G>TR78LLikely BenignUncertain 1-3.389Likely Benign0.635Likely PathogenicLikely Benign0.062Likely Benign-1.59Neutral0.385Benign0.021Benign3.84Benign0.00Affected-3-28.3-43.03
c.2420A>TY807FLikely BenignSH3-binding motifUncertain 1-3.667Likely Benign0.073Likely BenignLikely Benign0.057Likely Benign0.14Neutral0.012Benign0.022Benign2.92Benign0.98Tolerated3.775734.1-16.00
c.2710A>GM904VLikely BenignLikely Benign 26-33443262-A-G774.78e-5-2.907Likely Benign0.112Likely BenignLikely Benign0.058Likely Benign-0.33Neutral0.039Benign0.023Benign2.80Benign0.10Tolerated3.775212.3-32.06
c.3354C>AS1118RLikely BenignUncertain 1-2.670Likely Benign0.553AmbiguousLikely Benign0.166Likely Benign-0.74Neutral0.034Benign0.023Benign5.17Benign0.05Affected4.322-10-3.769.11
c.2101C>TP701S
(3D Viewer)
Likely BenignGAPUncertain 16-33441360-C-T31.86e-6-4.375Likely Benign0.221Likely BenignLikely Benign0.132Likely Benign1.33Ambiguous0.00.12Likely Benign0.73Ambiguous-0.36Likely Benign0.78Neutral0.044Benign0.025Benign3.48Benign1.00Tolerated3.4710-110.8-10.0410.1016/j.ajhg.2020.11.011
c.29G>CR10PLikely BenignUncertain 26-33420293-G-C21.30e-6-3.772Likely Benign0.162Likely BenignLikely Benign0.220Likely Benign-0.05Neutral0.233Benign0.026Benign4.13Benign0.00Affected4.3210-22.9-59.07
c.3328A>GS1110GLikely BenignLikely Benign 1-4.674Likely Benign0.079Likely BenignLikely Benign0.035Likely Benign-2.26Neutral0.036Benign0.026Benign2.19Pathogenic0.08Tolerated4.322100.4-30.03
c.2186A>GN729S
(3D Viewer)
Likely BenignGAPUncertain 1-1.578Likely Benign0.066Likely BenignLikely Benign0.063Likely Benign0.14Likely Benign0.11.34Ambiguous0.74Ambiguous-0.36Likely Benign-0.42Neutral0.221Benign0.027Benign3.38Benign0.93Tolerated3.597112.7-27.03
c.2116G>AE706K
(3D Viewer)
GAPUncertain 1-10.519Likely Pathogenic0.833Likely PathogenicAmbiguous0.080Likely Benign1.17Ambiguous0.10.51Ambiguous0.84Ambiguous0.08Likely Benign-1.51Neutral0.345Benign0.028Benign4.15Benign0.52Tolerated3.471001-0.4-0.94187.149.20.00.00.40.1XUncertainThe carboxylate side chain of Glu706, located at the end and outer surface of an α-helix (res. Thr704-Gly712), forms a salt bridge with Lys710 and a hydrogen bond with its own backbone amino group at the helix end in the WT simulations. Although Lys706 is unable to make these transient interactions in the variant simulations, there is no apparent negative effect on the protein structure due to the residue swap. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.3048C>AD1016ELikely BenignLikely Benign 16-33443600-C-A21.24e-6-3.422Likely Benign0.216Likely BenignLikely Benign0.017Likely Benign-0.37Neutral0.008Benign0.028Benign2.64Benign0.65Tolerated3.775230.014.03
c.3305C>TA1102VLikely BenignBenign 16-33443857-C-T-2.440Likely Benign0.077Likely BenignLikely Benign0.081Likely Benign-1.27Neutral0.017Benign0.028Benign2.29Pathogenic0.12Tolerated3.775002.428.05
c.2299A>GI767VLikely BenignUncertain 1-2.791Likely Benign0.064Likely BenignLikely Benign0.096Likely Benign0.10Neutral0.072Benign0.029Benign4.21Benign1.00Tolerated3.64643-0.3-14.03
c.2852A>GH951RLikely BenignLikely Pathogenic 1-4.964Likely Benign0.125Likely BenignLikely Benign0.185Likely Benign-1.08Neutral0.048Benign0.029Benign5.46Benign0.24Tolerated3.77520-1.319.05
c.2168C>TT723I
(3D Viewer)
Likely BenignGAPLikely Benign 16-33441633-C-T21.24e-6-2.591Likely Benign0.120Likely BenignLikely Benign0.045Likely Benign-0.39Likely Benign0.0-0.20Likely Benign-0.30Likely Benign0.26Likely Benign-2.09Neutral0.088Benign0.030Benign3.39Benign0.03Affected3.5080-15.212.05252.3-31.60.00.0-0.20.2XUncertainThe hydroxyl group of Thr723, located on the outer surface of an α-helix (res. Leu714-Arg726), continuously forms hydrogen bonds with the backbone carbonyl of Asn719 in the WT simulations, potentially lowering the stability of the α-helix. In the variant simulations, the sec-butyl side chain of Ile723 cannot form any hydrogen bonds, which, in theory, could increase the helix stability. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.70G>AV24ILikely BenignUncertain 16-33423479-G-A95.58e-6-3.701Likely Benign0.137Likely BenignLikely Benign0.069Likely Benign-0.25Neutral0.043Benign0.031Benign3.96Benign0.00Affected4.321340.314.03
c.50C>TS17FLikely BenignUncertain 16-33420314-C-T106.49e-6-3.888Likely Benign0.637Likely PathogenicLikely Benign0.048Likely Benign-0.99Neutral0.486Possibly Damaging0.032Benign3.99Benign0.00Affected4.321-2-33.660.10
c.2239G>CV747LLikely BenignUncertain 16-33441704-G-C21.24e-6-2.790Likely Benign0.096Likely BenignLikely Benign0.047Likely Benign-0.52Neutral0.065Benign0.033Benign2.67Benign0.00Affected4.32221-0.414.03
c.3962C>AP1321QLikely BenignBenign 16-33451836-C-A16.58e-7-5.594Likely Benign0.079Likely BenignLikely Benign0.055Likely Benign-0.74Neutral0.659Possibly Damaging0.034Benign4.24Benign0.09Tolerated3.7750-1-1.931.01
c.3846G>CE1282DLikely BenignUncertain 16-33447894-G-C16.44e-7-3.879Likely Benign0.074Likely BenignLikely Benign0.104Likely Benign-1.26Neutral0.112Benign0.036Benign2.70Benign0.39Tolerated3.775320.0-14.03
c.1832T>CM611T
(3D Viewer)
Likely BenignGAPUncertain 16-33440884-T-C16.19e-7-5.696Likely Benign0.101Likely BenignLikely Benign0.240Likely Benign1.98Ambiguous0.20.94Ambiguous1.46Ambiguous0.87Ambiguous-2.40Neutral0.034Benign0.038Benign-1.19Pathogenic0.29Tolerated3.3735-1-1-2.6-30.09
c.2408A>GK803RLikely BenignSH3-binding motifUncertain 1-2.281Likely Benign0.097Likely BenignLikely Benign0.018Likely Benign-1.52Neutral0.103Benign0.038Benign2.38Pathogenic0.00Affected3.77532-0.628.01
c.1195G>AA399T
(3D Viewer)
Likely BenignC2Benign 1-5.236Likely Benign0.114Likely BenignLikely Benign0.272Likely Benign1.24Ambiguous0.10.91Ambiguous1.08Ambiguous0.49Likely Benign-0.40Neutral0.131Benign0.039Benign5.41Benign0.69Tolerated3.382610-2.530.03211.4-41.40.00.00.60.4XPotentially PathogenicThe methyl group of Ala399, located in an anti-parallel β sheet strand (res. Ala399-Ile411), is swapped for a hydroxyl-containing threonine. In the variant simulations, the hydroxyl group of Thr399 can form H-bonds with the backbone atoms of the residues in the membrane-facing loops (e.g., Gly382) in the C2 domain. Consequently, the ability of the Thr399 side chain to form H-bonds with the membrane-facing loops could adversely affect the dynamics and stability of the SynGAP-membrane association. However, since the effects on the dynamics of the membrane-facing loops can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1957C>GL653VLikely BenignGAPUncertain 1-7.050In-Between0.301Likely BenignLikely Benign0.146Likely Benign3.28Destabilizing0.32.18Destabilizing2.73Destabilizing1.32Destabilizing-2.25Neutral0.227Benign0.039Benign3.28Benign0.08Tolerated210.4-14.03
c.2822C>TP941LLikely BenignUncertain 2-5.692Likely Benign0.066Likely BenignLikely Benign0.054Likely Benign-0.44Neutral0.144Benign0.039Benign2.76Benign0.01Affected-3-35.416.04
c.526A>GS176GUncertain 16-33435168-A-G16.20e-7-7.541In-Between0.360AmbiguousLikely Benign0.066Likely Benign-1.08Neutral0.131Benign0.039Benign4.08Benign0.22Tolerated3.546010.4-30.03
c.3859C>AP1287TLikely BenignUncertain 16-33447907-C-A-3.940Likely Benign0.077Likely BenignLikely Benign0.044Likely Benign-0.22Neutral0.126Benign0.041Benign2.78Benign0.04Affected3.775-100.93.99
c.3238G>AA1080TLikely BenignConflicting 26-33443790-G-A171.06e-5-3.928Likely Benign0.133Likely BenignLikely Benign0.144Likely Benign-0.19Neutral0.253Benign0.042Benign4.10Benign0.60Tolerated3.77510-2.530.03
c.2339C>GS780CLikely BenignUncertain 46-33442891-C-G169.94e-6-7.603In-Between0.278Likely BenignLikely Benign0.078Likely Benign-1.41Neutral0.065Benign0.043Benign2.59Benign0.10Tolerated3.646-103.316.06
c.1904A>GN635S
(3D Viewer)
GAPConflicting 46-33440956-A-G106.20e-6-9.002Likely Pathogenic0.101Likely BenignLikely Benign0.104Likely Benign0.80Ambiguous0.10.67Ambiguous0.74Ambiguous0.95Ambiguous-4.45Deleterious0.261Benign0.044Benign3.06Benign0.05Affected3.3734112.7-27.03196.030.90.10.0-0.30.2XUncertainIn the WT simulations, the carboxamide side chain of Asn635, located on the outer surface of an α helix (res. Glu617-Asn635), forms hydrogen bonds with Gln631 on the same α helix and with the hydroxyl side chain of Ser590 on an opposing α helix (res. Glu582-Met603).In the variant simulations, the side chain of Ser635 is shorter than asparagine and thus prefers to hydrogen bond with the carbonyl group of Gln631 on the same helix and, to a lesser extent, with Ser590 compared to Asn635 in the WT. Ser635 forms hydrogen bonds with the backbone atoms of the same helix, which may destabilize the helix, although this is not clearly evident in the simulations. The weakening of the hydrogen bond between Ser635 and Ser590 in the variant may also weaken the tertiary structure assembly between the helices.Additionally, Asn635 is at the GTPase interface. However, the implication of the residue swap on the complex formation with the GTPase cannot be investigated using solvent-only simulations.
c.1169G>AG390E
(3D Viewer)
C2Uncertain 1-7.913In-Between0.646Likely PathogenicLikely Benign0.575Likely Pathogenic2.61Destabilizing0.94.28Destabilizing3.45Destabilizing0.47Likely Benign-0.87Neutral0.276Benign0.045Benign1.32Pathogenic0.05Affected4.3280-2-3.172.06241.5-108.40.60.5-0.10.1UncertainGly390 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. This loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play significant roles in protein functions that require flexibility, and so they are rich in glycine residues, prolines, and to a lesser extent, small hydrophilic residues to ensure maximum flexibility. Thus, the variant’s Glu390 may not be as well tolerated in the Ω loop. Additionally, the carboxylate group of Glu390 occasionally forms H-bonds with other loop residues in the variant simulations. The interaction between the acidic carboxylate side chain and the acidic membrane lipids may further influence the SynGAP-membrane complex. However, since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.3949G>AG1317SLikely BenignConflicting 36-33451823-G-A16.26e-7-3.522Likely Benign0.145Likely BenignLikely Benign0.092Likely Benign-2.45Neutral0.127Benign0.045Benign4.08Benign0.00Affected3.77510-0.430.03
c.2353C>TR785CLikely PathogenicSH3-binding motifUncertain 16-33442905-C-T291.80e-5-5.887Likely Benign0.662Likely PathogenicLikely Benign0.126Likely Benign-5.06Deleterious0.144Benign0.046Benign2.22Pathogenic0.00Affected3.646-4-37.0-53.05
c.416G>AS139NLikely BenignUncertain 16-33432713-G-A32.22e-6-4.584Likely Benign0.688Likely PathogenicLikely Benign0.109Likely Benign-0.75Neutral0.149Benign0.047Benign4.14Benign0.24Tolerated3.61511-2.727.03
c.2200C>TP734SLikely BenignUncertain 26-33441665-C-T21.24e-6-4.291Likely Benign0.077Likely BenignLikely Benign0.030Likely Benign-2.44Neutral0.344Benign0.048Benign2.77Benign0.11Tolerated3.6461-10.8-10.0410.1016/j.ajhg.2020.11.011
c.314C>TS105LLikely BenignUncertain 26-33432179-C-T42.48e-6-3.710Likely Benign0.233Likely BenignLikely Benign0.095Likely Benign-1.52Neutral0.828Possibly Damaging0.048Benign4.06Benign0.00Affected4.321-3-24.626.08
c.3209G>AR1070KLikely BenignConflicting 2-5.093Likely Benign0.326Likely BenignLikely Benign0.104Likely Benign-1.42Neutral0.049Benign0.048Benign3.86Benign0.09Tolerated3.775320.6-28.01
c.2015C>AT672K
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.192Likely Pathogenic0.698Likely PathogenicLikely Benign0.065Likely Benign0.20Likely Benign0.51.21Ambiguous0.71Ambiguous0.72Ambiguous-4.31Deleterious0.745Possibly Damaging0.051Benign3.40Benign0.07Tolerated3.40250-1-3.227.07195.17.00.40.70.40.1XXPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. In the variant simulations, Lys672 can only form a hydrogen bond with the amino group of the Lys566 side chain via its backbone carbonyl group. Consequently, it cannot maintain the Lys566-Glu666 salt bridge through hydrogen bonding. However, the amino group of Lys periodically forms a salt bridge with the carboxylate group of Glu666, which prevents a drastic disruption of the hydrogen-bond network that keeps the loop close to the helices.
c.505G>AD169NUncertain 1-10.713Likely Pathogenic0.761Likely PathogenicLikely Benign0.110Likely Benign-2.04Neutral0.079Benign0.052Benign4.07Benign0.01Affected3.744210.0-0.98
c.3178G>AG1060SLikely BenignUncertain 16-33443730-G-A-4.759Likely Benign0.082Likely BenignLikely Benign0.376Likely Benign-0.08Neutral0.271Benign0.054Benign2.69Benign0.49Tolerated4.32210-0.430.03
c.335G>CG112ALikely BenignUncertain 16-33432200-G-C159.30e-6-2.456Likely Benign0.119Likely BenignLikely Benign0.114Likely Benign-2.34Neutral0.231Benign0.054Benign4.07Benign0.00Affected3.615102.214.03
c.865A>GM289V
(3D Viewer)
Likely BenignC2Benign 1-4.239Likely Benign0.117Likely BenignLikely Benign0.150Likely Benign1.09Ambiguous0.1-0.27Likely Benign0.41Likely Benign0.24Likely Benign-0.36Neutral0.136Benign0.054Benign1.80Pathogenic1.00Tolerated3.3823212.3-32.06204.251.00.00.00.20.0XPotentially BenignThe hydrophobic residue Met289, located in a β hairpin linking two anti-parallel β sheet strands (res. Met289-Arg299, res. Arg272-Leu286), is swapped for another hydrophobic residue, valine. In the variant simulations, the branched hydrocarbon side chain of Val289 packs against the phenol group of the Tyr291 side chain but is unable to form methionine-aromatic interactions. β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. However, based on the simulations, the residue swap does not cause adverse effects on the structure.
c.3449C>TA1150VLikely BenignUncertain 16-33444484-C-T31.86e-6-3.648Likely Benign0.192Likely BenignLikely Benign0.066Likely Benign-2.22Neutral0.114Benign0.055Benign2.32Pathogenic0.04Affected3.775002.428.05
c.3705G>AM1235ILikely BenignCoiled-coilUncertain 1-4.312Likely Benign0.310Likely BenignLikely Benign0.027Likely Benign-1.44Neutral0.139Benign0.056Benign2.69Benign0.04Affected3.775122.6-18.03
c.1055C>AT352N
(3D Viewer)
Likely BenignC2Likely Benign 16-33437960-C-A21.24e-6-4.817Likely Benign0.117Likely BenignLikely Benign0.027Likely Benign0.20Likely Benign0.0-0.04Likely Benign0.08Likely Benign0.45Likely Benign-0.92Neutral0.255Benign0.057Benign1.75Pathogenic0.19Tolerated3.372500-2.813.00208.4-14.5-0.20.1-0.10.0XPotentially BenignThr352 is located in a short α helical section within a loop connecting two β strands (res. Gly341-Pro349, res. Thr359-Pro364) originating from two different anti-parallel β sheets of the C2 domain. In the WT simulations, the side chain hydroxyl and backbone amide groups of Thr354 form hydrogen bonds with the backbone carbonyl group of Pro349 at the end of the preceding β strand. This arrangement likely stabilizes the α helical section and aids in folding, keeping the short secondary structure element intact in the variant simulations. However, the carboxamide group of the Asn352 side chain does not form hydrogen bonds with the backbone carbonyl group of Pro349. Instead, it packs against the cyclic ring and forms hydrogen bonds with the phenol group of the Tyr363 side chain in the other β strand.
c.266C>TP89LUncertain 2-6.775Likely Benign0.982Likely PathogenicLikely Pathogenic0.119Likely Benign-3.29Deleterious0.889Possibly Damaging0.058Benign3.73Benign0.00Affected4.321-3-35.416.04
c.2909A>GE970GLikely BenignBenign 1-0.167Likely Benign0.139Likely BenignLikely Benign0.139Likely Benign-0.93Neutral0.144Benign0.058Benign4.09Benign0.10Tolerated4.3220-23.1-72.06
c.667A>GT223A
(3D Viewer)
PHUncertain 16-33435518-A-G31.86e-6-7.076In-Between0.316Likely BenignLikely Benign0.574Likely Pathogenic0.30Likely Benign0.10.77Ambiguous0.54Ambiguous0.74Ambiguous-3.36Deleterious0.231Benign0.058Benign5.74Benign0.09Tolerated3.4113102.5-30.03186.444.00.00.00.00.0XXUncertainThe introduced residue Ala223 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr223 side chain in the WT protein, the methyl side chain of Ala223 cannot form hydrogen bonds with nearby residues Thr228 and Lys207. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and partially unfolds in the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.667A>TT223S
(3D Viewer)
PHConflicting 26-33435518-A-T31.86e-6-7.714In-Between0.410AmbiguousLikely Benign0.535Likely Pathogenic0.26Likely Benign0.10.50Ambiguous0.38Likely Benign0.62Ambiguous-2.86Deleterious0.421Benign0.058Benign5.80Benign0.02Affected3.411311-0.1-14.03200.717.3-0.20.20.00.0XUncertainThe introduced residue Ser223 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Its hydroxyl group forms hydrogen bonds with nearby residues Thr228 and Lys207 in the variant simulations, similar to the hydroxyl group of Thr223 in the WT simulations. These hydrogen-bonding interactions at the β sheet surface contribute to the stability of the secondary structure element and may prevent it from unfolding. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.3902C>GP1301RLikely BenignUncertain 16-33451776-C-G159.30e-6-4.753Likely Benign0.162Likely BenignLikely Benign0.076Likely Benign-1.13Neutral0.077Benign0.059Benign2.81Benign0.10Tolerated3.7750-2-2.959.07
c.2924C>GT975SLikely BenignUncertain 1-2.743Likely Benign0.068Likely BenignLikely Benign0.109Likely Benign-0.57Neutral0.059Benign0.061Benign4.16Benign0.20Tolerated11-0.1-14.03
c.3100C>GP1034ALikely BenignBenign 1-4.174Likely Benign0.178Likely BenignLikely Benign0.060Likely Benign-2.44Neutral0.059Benign0.061Benign2.47Pathogenic0.06Tolerated3.7751-13.4-26.04
c.502C>TH168YLikely BenignBenign 1-8.914Likely Pathogenic0.264Likely BenignLikely Benign0.065Likely Benign-1.53Neutral0.192Benign0.062Benign4.18Benign0.01Affected4.323021.926.03
c.106C>TH36YLikely BenignUncertain 16-33423515-C-T21.24e-6-3.461Likely Benign0.139Likely BenignLikely Benign0.023Likely Benign-1.03Neutral0.219Benign0.066Benign4.16Benign0.00Affected4.321021.926.03
c.3134C>GA1045GLikely BenignBenign/Likely benign 76-33443686-C-G14078.72e-4-3.246Likely Benign0.075Likely BenignLikely Benign0.024Likely Benign-1.21Neutral0.224Benign0.066Benign2.64Benign0.33Tolerated3.77510-2.2-14.0310.1016/j.ajhg.2020.11.011
c.3941C>TP1314LLikely BenignLikely Benign 16-33451815-C-T21.24e-6-4.040Likely Benign0.118Likely BenignLikely Benign0.049Likely Benign-0.20Neutral0.421Benign0.066Benign4.19Benign0.05Affected3.775-3-35.416.04
c.762G>CK254N
(3D Viewer)
Likely PathogenicPHUncertain 1-13.306Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.757Likely Pathogenic0.73Ambiguous0.21.87Ambiguous1.30Ambiguous1.19Destabilizing-4.23Deleterious0.384Benign0.070Benign5.93Benign0.01Affected3.3915100.4-14.07215.3-21.0-1.01.70.20.3XPotentially PathogenicThe amino group of Lys254, located in an α-β loop connecting the PH and C2 domains (res. Lys251-Arg258), forms salt bridges with the carboxylate groups of Glu244 and Asp684. Since the neutral carboxamide group of the Asn254 side chain cannot form salt bridges with acidic residues, the residue swap potentially weakens the tertiary structure assembly and/or influences the loop positioning. Regardless, in both the variant and WT simulations, all hydrogen bonds formed by the residue’s side chain were broken, and the residue rotated outwards. The partially α helical conformation of the loop, which extends to a nearby α helix (res. Met414-Asn426), is dynamic, making it unclear if the mutation affects it.
c.3237C>AS1079RLikely BenignUncertain 16-33443789-C-A42.51e-6-4.579Likely Benign0.955Likely PathogenicAmbiguous0.123Likely Benign-1.81Neutral0.177Benign0.075Benign3.86Benign0.00Affected3.7750-1-3.769.11
c.3237C>GS1079RLikely BenignBenign 1-4.579Likely Benign0.955Likely PathogenicAmbiguous0.124Likely Benign-1.81Neutral0.177Benign0.075Benign3.86Benign0.00Affected3.7750-1-3.769.11
c.1160G>TG387V
(3D Viewer)
Likely BenignC2Uncertain 16-33438065-G-T221.37e-5-6.199Likely Benign0.153Likely BenignLikely Benign0.390Likely Benign5.13Destabilizing1.86.44Destabilizing5.79Destabilizing-0.33Likely Benign-0.54Neutral0.069Benign0.077Benign1.32Pathogenic0.01Affected4.323-1-34.642.08207.7-68.4-0.70.8-0.50.1UncertainGly387 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. This loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Val387 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1970G>TW657L
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.411Likely Pathogenic0.960Likely PathogenicLikely Pathogenic0.213Likely Benign0.14Likely Benign0.10.73Ambiguous0.44Likely Benign0.87Ambiguous-10.86Deleterious0.277Benign0.078Benign3.52Benign0.14Tolerated3.3924-2-24.7-73.05
c.2695A>GI899VLikely BenignBenign 16-33443247-A-G63.72e-6-2.569Likely Benign0.074Likely BenignLikely Benign0.040Likely Benign0.09Neutral0.220Benign0.078Benign2.75Benign0.92Tolerated4.32443-0.3-14.03
c.4006G>AE1336KLikely BenignBenign 26-33451880-G-A64.20e-6-4.697Likely Benign0.977Likely PathogenicLikely Pathogenic0.272Likely Benign-2.44Neutral0.748Possibly Damaging0.079Benign3.23Benign0.00Affected3.77501-0.4-0.94
c.670A>GT224A
(3D Viewer)
PHUncertain 36-33435521-A-G21.24e-6-7.379In-Between0.651Likely PathogenicLikely Benign0.464Likely Benign0.33Likely Benign0.11.05Ambiguous0.69Ambiguous0.91Ambiguous-2.96Deleterious0.243Benign0.079Benign5.57Benign0.57Tolerated3.4113102.5-30.03169.041.4-0.51.1-0.40.0XXUncertainThe introduced residue Ala224 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr224 side chain in the WT model, the methyl side chain of Ala224 cannot form hydrogen bonds with nearby residues Ser204, Ser226, and Gly227. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and unfolds during the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.2047A>GI683V
(3D Viewer)
Likely BenignGAPUncertain 16-33441306-A-G21.24e-6-7.588In-Between0.138Likely BenignLikely Benign0.112Likely Benign0.90Ambiguous0.00.60Ambiguous0.75Ambiguous0.76Ambiguous-0.78Neutral0.538Possibly Damaging0.080Benign3.35Benign0.14Tolerated3.421743-0.3-14.03215.629.10.00.0-0.70.1XPotentially BenignThe sec-butyl side chain of Ile683, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is sterically packed against His453 and Glu688. In the variant simulations, the iso-propyl side chain of Val683 has similar size and physicochemical properties as Ile630 in the WT, and thus, it is able to maintain similar interactions in the inter-helix space. Consequently, no negative structural effects are observed during the simulations due to the residue swap.
c.597C>AN199K
(3D Viewer)
PHUncertain 1-8.198Likely Pathogenic0.686Likely PathogenicLikely Benign0.024Likely Benign-0.19Likely Benign0.10.03Likely Benign-0.08Likely Benign0.33Likely Benign-1.48Neutral0.276Benign0.083Benign4.27Benign0.13Tolerated3.47910-0.414.07207.821.5-0.11.50.10.0XUncertainAsn199, located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by a positively charged lysine. On the protein surface, both the carboxamide group of Asn199 and the amino group of Lys199 side chains can form hydrogen bonds with the backbone carbonyl groups of residues (e.g., Ala249) at the end of an α helix (res. Ala236-Lys251). However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.1027G>AV343I
(3D Viewer)
Likely BenignC2Uncertain 26-33437932-G-A16.20e-7-6.020Likely Benign0.117Likely BenignLikely Benign0.020Likely Benign-0.27Likely Benign0.0-0.04Likely Benign-0.16Likely Benign-0.39Likely Benign-0.14Neutral0.159Benign0.084Benign1.98Pathogenic0.27Tolerated3.3725430.314.03240.2-26.9-0.20.2-0.20.2XPotentially BenignThe iso-propyl side chain of Val343, located in an anti-parallel β sheet strand (res. Gly341-Pro349), is packing against multiple hydrophobic residues of the C2 domain (e.g., Leu327, Leu274, Val365). In the variant simulations, the sec-butyl side chain of Ile343 is basically able to form the same interactions as valine due to its similar hydrophobic profile. The residue swap also does not seem to cause negative effects on the protein structure based on the simulations.
c.2987C>GP996RLikely BenignBenign 1-4.457Likely Benign0.141Likely BenignLikely Benign0.040Likely Benign-1.04Neutral0.144Benign0.085Benign4.26Benign0.01Affected4.324-20-2.959.07
c.172A>GM58VLikely BenignUncertain 1-2.211Likely Benign0.688Likely PathogenicLikely Benign0.160Likely Benign-0.71Neutral0.006Benign0.091Benign4.19Benign0.00Affected4.321122.3-32.06
c.515G>AR172QUncertain 16-33435157-G-A31.86e-6-7.245In-Between0.465AmbiguousLikely Benign0.135Likely Benign-1.72Neutral0.804Possibly Damaging0.091Benign4.04Benign0.04Affected3.615111.0-28.06
c.3970C>TP1324SLikely BenignLikely Benign 16-33451844-C-T53.26e-6-5.451Likely Benign0.068Likely BenignLikely Benign0.049Likely Benign0.35Neutral0.225Benign0.092Benign4.33Benign0.00Affected4.3211-10.8-10.04
c.1947G>CM649I
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.361Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.449Likely Benign2.42Destabilizing0.21.96Ambiguous2.19Destabilizing1.01Destabilizing-3.99Deleterious0.672Possibly Damaging0.093Benign3.40Benign0.02Affected3.3827212.6-18.03243.721.50.00.10.00.1XPotentially BenignThe thioether side chain of Met649, located on an α helix (res. Ser641-Glu666), bridges Phe652, Phe648, and Phe639 in an inter-helix hydrophobic cavity in the WT simulations. In the variant simulations, the sec-butyl side chain of Ile649 maintains hydrophobic interactions with nearby residues, with no significant effects on the protein structure.However, methionine is known as a bridging motif for aromatic residues, and these Met-aromatic interactions are lost in the variant. Indeed, in the second variant simulation,the bridging of Phe652, Phe648 and Phe639 is completely lost. In reality, the effect could be more severe on the structure during the protein folding.
c.127G>AG43SLikely BenignUncertain 26-33423536-G-A16.20e-7-3.301Likely Benign0.078Likely BenignLikely Benign0.057Likely Benign-0.30Neutral0.162Benign0.096Benign4.29Benign0.00Affected4.32110-0.430.03
c.256G>AV86ILikely BenignUncertain 1-4.726Likely Benign0.338Likely BenignLikely Benign0.076Likely Benign-0.31Neutral0.267Benign0.097Benign3.94Benign0.00Affected4.321430.314.03
c.3983G>AR1328QLikely BenignUncertain 36-33451857-G-A351.49e-4-2.921Likely Benign0.273Likely BenignLikely Benign0.043Likely Benign-1.02Neutral0.799Possibly Damaging0.098Benign4.12Benign0.03Affected3.775111.0-28.06
c.404G>AR135QUncertain 16-33432701-G-A53.84e-6-8.011Likely Pathogenic0.853Likely PathogenicAmbiguous0.087Likely Benign-1.94Neutral0.327Benign0.100Benign3.76Benign0.02Affected3.615111.0-28.06
c.2845G>AG949SLikely BenignBenign/Likely benign 46-33443397-G-A1227.56e-5-5.693Likely Benign0.072Likely BenignLikely Benign0.321Likely Benign0.30Neutral0.611Possibly Damaging0.102Benign2.23Pathogenic0.00Affected4.32410-0.430.0310.1016/j.ajhg.2020.11.011
c.2928T>GF976LLikely BenignUncertain 1-2.432Likely Benign0.825Likely PathogenicAmbiguous0.212Likely Benign-0.87Neutral0.264Benign0.102Benign4.20Benign0.53Tolerated4.322201.0-34.02
c.2711T>CM904TLikely BenignUncertain 1-2.721Likely Benign0.668Likely PathogenicLikely Benign0.042Likely Benign-1.15Neutral0.277Benign0.103Benign2.78Benign0.18Tolerated3.775-1-1-2.6-30.09
c.2111G>CS704T
(3D Viewer)
Likely BenignGAPUncertain 1-4.930Likely Benign0.265Likely BenignLikely Benign0.071Likely Benign0.80Ambiguous0.00.15Likely Benign0.48Likely Benign0.29Likely Benign-1.72Neutral0.525Possibly Damaging0.107Benign3.45Benign0.07Tolerated3.4710110.114.03201.7-18.00.00.0-0.20.7XPotentially BenignSer704 is located at the end and outer surface of an α-helix (res. Thr704-Gly712), which is connected via a tight turn or loop to another α-helix (res. Asp684-Gln702). The hydroxyl side chain of Ser704 occasionally forms a hydrogen bond with the amide group of Ala707. Similarly, in the variant simulations, the hydroxyl side chain of Thr704 forms hydrogen bonds with the amide groups of Ala707 and Leu708. Thus, the residue swap does not cause any apparent structural change.
c.603T>AD201E
(3D Viewer)
Likely BenignPHBenign 1-2.640Likely Benign0.406AmbiguousLikely Benign0.165Likely Benign0.42Likely Benign0.21.99Ambiguous1.21Ambiguous0.23Likely Benign-0.69Neutral0.633Possibly Damaging0.108Benign4.30Benign1.00Tolerated3.469320.014.03258.7-24.80.90.1-0.30.2XUncertainAsp201, an acidic residue located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by another acidic residue, glutamate. The carboxylate groups of both Asp201 and Glu201 side chains form hydrogen bonds with the hydroxyl group of Ser221 in the simulations. Due to its shorter side chain, Asp201 can also hydrogen bond with the backbone amide groups of neighboring loop residues Ser204 and Asp203. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.603T>GD201E
(3D Viewer)
Likely BenignPHConflicting 26-33435245-T-G201.24e-5-2.640Likely Benign0.406AmbiguousLikely Benign0.165Likely Benign0.42Likely Benign0.21.99Ambiguous1.21Ambiguous0.23Likely Benign-0.69Neutral0.633Possibly Damaging0.108Benign4.30Benign1.00Tolerated3.469320.014.03258.7-24.80.90.1-0.30.2XUncertainAsp201, an acidic residue located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by another acidic residue, glutamate. The carboxylate groups of both Asp201 and Glu201 side chains form hydrogen bonds with the hydroxyl group of Ser221 in the simulations. Due to its shorter side chain, Asp201 can also hydrogen bond with the backbone amide groups of neighboring loop residues Ser204 and Asp203. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.958G>AV320I
(3D Viewer)
Likely BenignC2Uncertain 1-5.220Likely Benign0.111Likely BenignLikely Benign0.027Likely Benign-0.27Likely Benign0.20.66Ambiguous0.20Likely Benign0.01Likely Benign-0.21Neutral0.198Benign0.114Benign1.77Pathogenic0.45Tolerated3.3823340.314.03
c.2591C>TA864VLikely BenignUncertain 26-33443143-C-T63.72e-6-4.749Likely Benign0.126Likely BenignLikely Benign0.038Likely Benign-1.35Neutral0.767Possibly Damaging0.119Benign2.45Pathogenic0.30Tolerated3.824002.428.05
c.1493T>GM498R
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-8.812Likely Pathogenic0.988Likely PathogenicLikely Pathogenic0.869Likely Pathogenic3.85Destabilizing0.22.35Destabilizing3.10Destabilizing1.76Destabilizing-4.53Deleterious0.464Possibly Damaging0.120Benign-1.36Pathogenic0.00Affected0-1-6.424.99
c.2989G>AA997TLikely BenignUncertain 1-4.102Likely Benign0.071Likely BenignLikely Benign0.085Likely Benign-0.62Neutral0.224Benign0.120Benign4.17Benign0.00Affected4.32410-2.530.03
c.3125A>GQ1042RLikely BenignUncertain 26-33443677-A-G21.24e-6-2.928Likely Benign0.413AmbiguousLikely Benign0.300Likely Benign-1.39Neutral0.586Possibly Damaging0.120Benign5.48Benign0.12Tolerated3.77511-1.028.06
c.3293G>AS1098NLikely BenignConflicting 26-33443845-G-A63.89e-6-5.120Likely Benign0.156Likely BenignLikely Benign0.063Likely Benign-0.58Neutral0.369Benign0.120Benign2.76Benign0.36Tolerated3.77511-2.727.03
c.43G>CA15PLikely BenignUncertain 1-3.436Likely Benign0.097Likely BenignLikely Benign0.146Likely Benign-0.23Neutral0.880Possibly Damaging0.123Benign4.09Benign0.00Affected1-1-3.426.04

Found 757 rows. Show 200 rows per page. Page 1/4 |