SynGap Missense Server

Table of SynGAP1 Isoform α2 (UniProt Q96PV0-1) Missense Variants.

c.dna Variant SGM Consensus Domain ClinVar gnomAD ESM1b AlphaMissense REVEL FoldX Rosetta Foldetta PremPS PROVEAN PolyPhen-2 HumDiv PolyPhen-2 HumVar FATHMM SIFT PAM Physical SASA Normalized B-factor backbone Normalized B-factor sidechain SynGAP Structural Annotation DOI
Clinical Status Review Subm. ID Allele count Allele freq. LLR score Prediction Pathogenicity Class Optimized Score Prediction Average ΔΔG Prediction StdDev ΔΔG Prediction ΔΔG Prediction ΔΔG Prediction Score Prediction pph2_prob Prediction pph2_prob Prediction Nervous System Score Prediction Prediction Status Conservation Sequences PAM250 PAM120 Hydropathy Δ MW Δ Average Δ Δ StdDev Δ StdDev Secondary Tertiary bonds Inside out GAP-Ras interface At membrane No effect MD Alert Verdict Description
c.1480A>GI494V
(3D Viewer)
GAPConflicting 26-33438512-A-G362.23e-5-7.102In-Between0.112Likely BenignLikely Benign0.439Likely Benign1.16Ambiguous0.00.71Ambiguous0.94Ambiguous1.02Destabilizing-0.83Neutral0.278Benign0.179Benign-1.30Pathogenic0.07Tolerated3.373543-0.3-14.03248.629.30.00.0-1.10.5XPotentially BenignThe sec-butyl side chain of Ile494, located in an α-helix (res. Leu489-Glu519), packs against hydrophobic residues (e.g., Phe484, Leu465, Trp572, Ala493, Met468) in an inter-helix space (res. Leu489-Glu519 and res. Ala461-Phe476). In the variant simulations, the hydrophobic iso-propyl side chain of Val494, which is of a similar size and has similar physicochemical properties to Ile494 in the WT, resides similarly in the inter-helix hydrophobic space. Thus, no negative effects on the protein structure are observed.
c.1485A>CE495D
(3D Viewer)
Likely PathogenicGAPConflicting 2-3.574Likely Benign0.958Likely PathogenicLikely Pathogenic0.566Likely Pathogenic1.39Ambiguous0.11.03Ambiguous1.21Ambiguous0.98Ambiguous-2.52Deleterious0.998Probably Damaging0.989Probably Damaging-1.41Pathogenic0.17Tolerated3.3735320.0-14.03220.638.80.00.00.10.1XXUncertainGlu495 is located in the α-helix (res. Leu489-Glu519), and its carboxylate group forms salt bridges with the neighboring Lys492 and with Arg596 on an opposing α-helix (res. Glu582-Met603) in the WT simulations. In the variant simulations, the acidic carboxylate side chain of Asp495 can also form salt bridges with both Lys492 and Arg596. However, the shorter side chain of aspartate tends to favor forming a salt bridge with the nearby Arg499 on the same α-helix instead. Asp495 might not maintain the salt bridge with Arg596 on the opposing α-helix as efficiently as Glu495 in the WT, potentially weakening the tertiary structure. Regardless, the potential negative effect is likely to be minor, with no deleterious effects observed on the protein structure during the simulations. However, due to its location at the GAP-Ras interface, the effect of the residue swap on SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.1717C>TR573W
(3D Viewer)
Likely PathogenicGAPConflicting 8-14.078Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.758Likely Pathogenic2.37Destabilizing0.70.57Ambiguous1.47Ambiguous0.88Ambiguous-6.94Deleterious1.000Probably Damaging0.997Probably Damaging-1.48Pathogenic0.00Affected3.37352-33.630.03257.639.00.10.00.20.0XXPotentially PathogenicThe guanidinium group of Arg573, located in an α-helix (res. Arg563-Glu578), forms a salt bridge with the carboxylate groups of Glu582 and/or Asp586 from a nearby α-helix (res. Glu582-Met603) in the WT simulations. Additionally, the Arg573 side chain stacks planarly with the aromatic phenol ring of Tyr665 and hydrogen bonds with the hydroxyl group of Ser668 from another α-helix (res. Ser641-Ser668). In the variant simulations, the indole ring of the Trp573 side chain is unable to maintain the same level of coordination as the positively charged Arg573 side chain. Indeed, Trp573 is seen hydrogen bonding only briefly with the carboxylate group of Glu582. Consequently, the integrity of the opposing α-helix end (res. Glu582-Met603) is weakened. Overall, the residue swap has the potential to substantially affect the tertiary structure assembly during the protein folding process.
c.2195G>AR732KLikely BenignConflicting 26-33441660-G-A42.48e-6-5.278Likely Benign0.240Likely BenignLikely Benign0.045Likely Benign-0.82Neutral0.973Probably Damaging0.943Probably Damaging2.69Benign0.21Tolerated3.597320.6-28.01
c.2206C>TR736CConflicting 36-33441671-C-T84.96e-6-7.113In-Between0.120Likely BenignLikely Benign0.190Likely Benign-2.06Neutral0.999Probably Damaging0.825Possibly Damaging2.48Pathogenic0.00Affected4.073-4-37.0-53.05
c.1723C>TR575C
(3D Viewer)
Likely PathogenicGAPConflicting 36-33440775-C-T231.43e-5-11.179Likely Pathogenic0.630Likely PathogenicLikely Benign0.715Likely Pathogenic1.39Ambiguous0.20.50Ambiguous0.95Ambiguous0.73Ambiguous-5.43Deleterious1.000Probably Damaging1.000Probably Damaging-1.30Pathogenic0.02Affected3.3735-4-37.0-53.05227.799.20.00.00.00.1XPotentially PathogenicThe guanidinium group of Arg575, located in an α-helix (res. Arg563-Glu578), forms salt bridges with the carboxylate groups of Asp463 and Asp467, and it also hydrogen bonds with the hydroxyl group of Ser466 on an opposing α-helix (res. Ala461-Phe476) in the WT simulations. In the variant simulations, the thiol group of the Cys575 side chain, which is neither positively charged nor particularly hydrophilic, packs against the hydrophobic Met470 on an opposing α-helix (res. Ala461-Arg475). Additionally, although the thiol group is not an effective hydrogen bonder, the Cys575 side chain rotates to hydrogen bond with the backbone carbonyl group of Ser571 in the same α-helix, which could theoretically lower the helix integrity. Overall, the residue swap has the potential to substantially affect the tertiary structure assembly during the protein folding process.
c.1724G>AR575H
(3D Viewer)
GAPConflicting 46-33440776-G-A2041.27e-4-11.142Likely Pathogenic0.496AmbiguousLikely Benign0.707Likely Pathogenic0.81Ambiguous0.2-0.22Likely Benign0.30Likely Benign1.31Destabilizing-2.34Neutral1.000Probably Damaging0.998Probably Damaging-1.33Pathogenic0.05Affected3.3735201.3-19.05244.780.60.00.00.30.0XPotentially PathogenicThe guanidinium group of Arg575, located in an α-helix (res. Arg563-Glu578), forms salt bridges with the carboxylate groups of Asp463 and Asp467, and it also hydrogen bonds with the hydroxyl group of Ser466 on an opposing α-helix (res. Ala461-Phe476) in the WT simulations. In the variant simulations, the imidazole ring of His575 (in its neutral epsilon protonated form) cannot form the same salt bridges as the guanidinium group of the non-mutated Arg575. Instead, His575 only forms weak hydrogen bonds with the hydroxyl groups of Ser466 and Ser571. Overall, the residue swap has the potential to substantially affect the tertiary structure assembly during the protein folding process.
c.2243T>GL748RLikely BenignConflicting 26-33441708-T-G31.86e-6-3.331Likely Benign0.245Likely BenignLikely Benign0.055Likely Benign-0.67Neutral0.912Possibly Damaging0.448Possibly Damaging2.73Benign0.02Affected4.322-3-2-8.343.03
c.1768A>GS590G
(3D Viewer)
Likely PathogenicGAPConflicting 26-33440820-A-G148.67e-6-14.277Likely Pathogenic0.574Likely PathogenicLikely Benign0.379Likely Benign0.67Ambiguous0.11.28Ambiguous0.98Ambiguous0.71Ambiguous-3.92Deleterious1.000Probably Damaging0.922Probably Damaging3.42Benign0.06Tolerated3.3735100.4-30.03186.749.40.00.00.10.0XPotentially PathogenicIn the WT simulations, the hydroxyl group of Ser590, located on an α helix (res. Glu582-Met603), forms hydrogen bonds with the backbone carbonyl of Ala634 and/or the carboxamide group of the Asn635 side chain at the end of the opposing α helix (res. Thr619-Ala634).The residue swap could weaken the integrity of the α helix, as glycine is known as an “α helix breaker.” However, no discernible difference was observed between the WT and variant simulations in this regard. Importantly, Gly590 cannot form hydrogen bonds with the opposing helix in the same way that serine can, which could weaken the tertiary structure assembly between the two helices.
c.1771G>AA591T
(3D Viewer)
Likely PathogenicGAPConflicting 36-33440823-G-A181.12e-5-9.572Likely Pathogenic0.704Likely PathogenicLikely Benign0.270Likely Benign1.61Ambiguous0.21.00Ambiguous1.31Ambiguous1.19Destabilizing-3.40Deleterious0.955Possibly Damaging0.209Benign3.48Benign0.01Affected3.373510-2.530.03202.9-43.40.20.00.70.1XPotentially BenignThe methyl group of the Ala591 side chain, located in the middle of an α helix (res. Glu582-Met603), packs against hydrophobic residues (e.g., Ile483, Phe484) of an opposing partially helical loop (res. Phe476-Asn487).In the variant simulations, the hydroxyl group of Thr591 can form hydrogen bonds with the backbone carbonyl of Ile843 in the opposing loop or the backbone carbonyl group of Arg587. These interactions could either reinforce the tertiary assembly or weaken the α helix unity. Additionally, the Thr591 side chain can hydrogen bond with the guanidinium group of the Arg587 side chain, potentially strengthening the α helix unity.Overall, the residue swap does not seem to cause any major negative effects on the protein structure.
c.1786C>TR596C
(3D Viewer)
Likely PathogenicGAPConflicting 26-33440838-C-T63.72e-6-10.805Likely Pathogenic0.972Likely PathogenicLikely Pathogenic0.633Likely Pathogenic2.94Destabilizing0.01.49Ambiguous2.22Destabilizing-0.03Likely Benign-7.96Deleterious1.000Probably Damaging1.000Probably Damaging2.41Pathogenic0.00Affected3.3735-4-37.0-53.05230.797.9-0.10.0-0.30.4XXPotentially PathogenicThe guanidinium group of Arg596, located in an α helix (res. Glu582-Met603), forms a salt bridge with the carboxylate group of Glu495 from another α helix (res. Leu489-Glu519). In the WT simulations, the side chain of Arg596 hydrogen bonds with the backbone carbonyl groups of Asn487, Glu486, Arg485, and Phe484. Additionally, Arg596 can hydrogen bond with the carboxamide group of the Asn487 side chain on an opposing loop that links two α helices (res. Ala461-Arg475, res. Leu489-Glu519).In the variant simulations, the thiol group of the Cys596 side chain is unable to form salt bridges or any of the hydrogen bonds that the Arg596 side chain can. Thus, the residue swap could affect the tertiary structure assembly more profoundly than observed in the simulations. Notably, Arg596 plays a key role in positioning the aforementioned loop, which is crucial for the placement of the “arginine finger” or the Arg485 side chain during RasGTPase activation.
c.1802C>AA601E
(3D Viewer)
Likely PathogenicGAPConflicting 2-16.752Likely Pathogenic0.992Likely PathogenicLikely Pathogenic0.588Likely Pathogenic6.68Destabilizing0.85.76Destabilizing6.22Destabilizing1.24Destabilizing-4.98Deleterious1.000Probably Damaging0.999Probably Damaging2.54Benign0.00Affected3.37350-1-5.358.04240.0-82.30.00.00.70.1XXXPotentially PathogenicThe methyl side chain of Ala601, located on an α helix (res. Glu582-Met603), packs hydrophobically against other hydrophobic residues in the inter-helix space (e.g., Phe597, Leu598, Leu506, Phe608).In the variant simulations, the carboxylate group of Glu601 faces the inter-helix space and is forced to shift slightly away from the hydrophobic niche. Additionally, in two of the simulations, Glu601 forms a salt bridge with Arg499, causing the otherwise stable salt bridge between Arg499 and Glu496 at the outer surface of an α helix (res. Leu489-Glu519) to break due to the residue swap.These effects suggest that the protein folding process could be seriously affected. Moreover, due to its location at the GAP-Ras interface, it could also impact the complex formation with the GTPase.
c.2324G>AR775QLikely BenignConflicting 36-33442482-G-A111.41e-5-4.476Likely Benign0.229Likely BenignLikely Benign0.085Likely Benign-0.63Neutral0.969Probably Damaging0.863Possibly Damaging4.17Benign0.16Tolerated3.646111.0-28.0610.1016/j.ajhg.2020.11.011
c.2369C>AT790NSH3-binding motifConflicting 36-33442921-C-A694.28e-5-5.243Likely Benign0.276Likely BenignLikely Benign0.103Likely Benign-2.54Deleterious0.999Probably Damaging0.997Probably Damaging2.27Pathogenic0.02Affected3.64600-2.813.00
c.1904A>GN635S
(3D Viewer)
GAPConflicting 46-33440956-A-G106.20e-6-9.002Likely Pathogenic0.101Likely BenignLikely Benign0.104Likely Benign0.80Ambiguous0.10.67Ambiguous0.74Ambiguous0.95Ambiguous-4.45Deleterious0.261Benign0.044Benign3.06Benign0.05Affected3.3734112.7-27.03196.030.90.10.0-0.30.2XUncertainIn the WT simulations, the carboxamide side chain of Asn635, located on the outer surface of an α helix (res. Glu617-Asn635), forms hydrogen bonds with Gln631 on the same α helix and with the hydroxyl side chain of Ser590 on an opposing α helix (res. Glu582-Met603).In the variant simulations, the side chain of Ser635 is shorter than asparagine and thus prefers to hydrogen bond with the carbonyl group of Gln631 on the same helix and, to a lesser extent, with Ser590 compared to Asn635 in the WT. Ser635 forms hydrogen bonds with the backbone atoms of the same helix, which may destabilize the helix, although this is not clearly evident in the simulations. The weakening of the hydrogen bond between Ser635 and Ser590 in the variant may also weaken the tertiary structure assembly between the helices.Additionally, Asn635 is at the GTPase interface. However, the implication of the residue swap on the complex formation with the GTPase cannot be investigated using solvent-only simulations.
c.2015C>TT672M
(3D Viewer)
GAPConflicting 26-33441274-C-T191.18e-5-9.472Likely Pathogenic0.174Likely BenignLikely Benign0.127Likely Benign0.31Likely Benign0.41.52Ambiguous0.92Ambiguous0.41Likely Benign-4.34Deleterious0.993Probably Damaging0.520Possibly Damaging3.39Benign0.00Affected3.4025-1-12.630.09231.9-52.91.10.10.50.0XXPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. Met672 can only form a hydrogen bond with the amino group of the Lys566 side chain via its backbone carbonyl group. Nevertheless, the Lys566-Glu666 salt bridge forms intermittently. This is possible because Asn669 keeps the carboxylate group of Glu666 in the vicinity through hydrogen bonding, and the hydrophobic side chain of Met stays mostly rotated away from the salt bridge. Consequently, no drastic disruption of the hydrogen-bond network that keeps the loop close to the helices occurs in the variant simulations.
c.2147G>AR716Q
(3D Viewer)
GAPConflicting 26-33441612-G-A42.48e-6-8.338Likely Pathogenic0.308Likely BenignLikely Benign0.210Likely Benign-0.01Likely Benign0.00.47Likely Benign0.23Likely Benign0.58Ambiguous-3.14Deleterious1.000Probably Damaging0.990Probably Damaging3.35Benign0.02Affected3.509111.0-28.06250.048.90.00.0-0.50.0XUncertainThe guanidinium group of Arg716, located on the outer surface of an α-helix (res. Leu714-Arg726), forms a salt bridge with the carboxylate group of Asp720. In the variant simulations, the carboxamide group of Gln716 also forms a hydrogen bond with the carboxylate group of Asp720, although this bond is weaker than the Arg716 salt bridge in the WT. Overall, no adverse effects on the protein structure are observed in the simulations. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.2596G>AV866ILikely BenignConflicting 36-33443148-G-A53.10e-6-4.652Likely Benign0.118Likely BenignLikely Benign0.059Likely Benign-0.39Neutral0.957Probably Damaging0.541Possibly Damaging2.69Benign0.27Tolerated3.824430.314.03
c.2699C>TT900MLikely BenignConflicting 26-33443251-C-T148.68e-6-3.852Likely Benign0.176Likely BenignLikely Benign0.015Likely Benign-0.81Neutral0.060Benign0.016Benign2.79Benign0.08Tolerated4.324-1-12.630.09
c.2713C>TR905CConflicting 26-33443265-C-T159.31e-6-5.578Likely Benign0.723Likely PathogenicLikely Benign0.194Likely Benign-3.14Deleterious1.000Probably Damaging0.980Probably Damaging2.57Benign0.01Affected3.775-4-37.0-53.05
c.2724G>CQ908HLikely BenignConflicting 46-33443276-G-C16.20e-7-4.658Likely Benign0.311Likely BenignLikely Benign0.112Likely Benign-0.74Neutral0.996Probably Damaging0.995Probably Damaging2.58Benign0.05Affected3.775300.39.01
c.2835T>AH945QLikely BenignConflicting 26-33443387-T-A31.86e-6-5.248Likely Benign0.091Likely BenignLikely Benign0.343Likely Benign-0.36Neutral0.995Probably Damaging0.939Probably Damaging5.03Benign0.06Tolerated4.32430-0.3-9.01
c.2854G>AG952SLikely BenignConflicting 26-33443406-G-A21.24e-6-6.190Likely Benign0.077Likely BenignLikely Benign0.167Likely Benign0.19Neutral0.000Benign0.002Benign3.31Benign0.07Tolerated3.77510-0.430.03
c.2864C>TS955FConflicting 46-33443416-C-T955.89e-5-7.374In-Between0.176Likely BenignLikely Benign0.093Likely Benign-1.73Neutral0.977Probably Damaging0.721Possibly Damaging2.32Pathogenic0.00Affected3.775-3-23.660.10
c.2881C>TH961YLikely BenignConflicting 26-33443433-C-T31.86e-6-8.051Likely Pathogenic0.157Likely BenignLikely Benign0.102Likely Benign-1.07Neutral0.716Possibly Damaging0.147Benign4.10Benign0.55Tolerated3.775021.926.03
c.2971G>AG991RLikely BenignConflicting 36-33443523-G-A84.96e-6-3.934Likely Benign0.411AmbiguousLikely Benign0.102Likely Benign-1.20Neutral0.984Probably Damaging0.772Possibly Damaging4.11Benign0.01Affected4.322-3-2-4.199.14
c.3055C>TR1019CLikely PathogenicConflicting 26-33443607-C-T106.19e-6-7.386In-Between0.646Likely PathogenicLikely Benign0.168Likely Benign-4.00Deleterious0.999Probably Damaging0.880Possibly Damaging2.36Pathogenic0.00Affected3.775-4-37.0-53.0510.1016/j.ajhg.2020.11.011
c.3056G>AR1019HLikely BenignConflicting 26-33443608-G-A674.15e-5-4.610Likely Benign0.258Likely BenignLikely Benign0.122Likely Benign-1.95Neutral0.995Probably Damaging0.845Possibly Damaging2.39Pathogenic0.01Affected3.775201.3-19.05
c.3121C>TP1041SLikely BenignConflicting 26-33443673-C-T16.20e-7-4.246Likely Benign0.121Likely BenignLikely Benign0.344Likely Benign-2.72Deleterious0.664Possibly Damaging0.283Benign5.48Benign0.11Tolerated3.7751-10.8-10.04
c.3172G>AG1058SLikely BenignConflicting 36-33443724-G-A1147.08e-5-5.178Likely Benign0.081Likely BenignLikely Benign0.108Likely Benign0.26Neutral0.001Benign0.001Benign5.38Benign0.04Affected3.77510-0.430.03
c.3181G>TG1061CLikely BenignConflicting 26-33443733-G-T63.73e-6-9.511Likely Pathogenic0.119Likely BenignLikely Benign0.409Likely Benign-1.46Neutral0.938Possibly Damaging0.665Possibly Damaging3.97Benign0.00Affected4.322-3-32.946.09
c.3184G>AG1062RLikely BenignConflicting 26-33443736-G-A74.35e-6-6.933Likely Benign0.353AmbiguousLikely Benign0.403Likely Benign-0.34Neutral0.797Possibly Damaging0.139Benign4.10Benign0.01Affected4.322-3-2-4.199.14
c.3209G>AR1070KLikely BenignConflicting 2-5.093Likely Benign0.326Likely BenignLikely Benign0.104Likely Benign-1.42Neutral0.049Benign0.048Benign3.86Benign0.09Tolerated3.775320.6-28.01
c.3238G>AA1080TLikely BenignConflicting 26-33443790-G-A171.06e-5-3.928Likely Benign0.133Likely BenignLikely Benign0.144Likely Benign-0.19Neutral0.253Benign0.042Benign4.10Benign0.60Tolerated3.77510-2.530.03
c.3293G>AS1098NLikely BenignConflicting 26-33443845-G-A63.89e-6-5.120Likely Benign0.156Likely BenignLikely Benign0.063Likely Benign-0.58Neutral0.369Benign0.120Benign2.76Benign0.36Tolerated3.77511-2.727.03
c.3326T>CL1109PLikely BenignConflicting 2-5.313Likely Benign0.120Likely BenignLikely Benign0.151Likely Benign-0.52Neutral0.002Benign0.003Benign2.65Benign0.07Tolerated4.322-3-3-5.4-16.04
c.3370G>AG1124RConflicting 36-33443922-G-A241.60e-5-8.918Likely Pathogenic0.534AmbiguousLikely Benign0.243Likely Benign-0.58Neutral0.002Benign0.002Benign4.81Benign0.01Affected3.775-3-2-4.199.14
c.3379G>CG1127RLikely BenignConflicting 26-33443931-G-C161.07e-5-5.949Likely Benign0.629Likely PathogenicLikely Benign0.341Likely Benign-0.87Neutral0.001Benign0.001Benign4.86Benign0.12Tolerated4.324-2-3-4.199.14
c.3380G>CG1127ALikely BenignConflicting 46-33443932-G-C42.68e-6-5.949Likely Benign0.080Likely BenignLikely Benign0.164Likely Benign-0.43Neutral0.001Benign0.002Benign4.83Benign1.00Tolerated4.324102.214.03
c.3394T>CS1132PLikely BenignConflicting 36-33443946-T-C16.74e-7-1.423Likely Benign0.144Likely BenignLikely Benign0.301Likely Benign0.38Neutral0.003Benign0.006Benign5.40Benign0.28Tolerated4.3241-1-0.810.04
c.3404A>CK1135TLikely BenignConflicting 26-33443956-A-C16.75e-7-4.778Likely Benign0.779Likely PathogenicLikely Benign0.210Likely Benign-0.90Neutral0.411Benign0.321Benign5.46Benign0.10Tolerated4.3220-13.2-27.07
c.3494C>TS1165LLikely BenignConflicting 2-2.984Likely Benign0.793Likely PathogenicAmbiguous0.166Likely Benign-2.01Neutral0.998Probably Damaging0.992Probably Damaging2.60Benign0.33Tolerated3.883-3-24.626.0810.1016/j.ajhg.2020.11.011
c.3635C>TS1212FLikely PathogenicCoiled-coilConflicting 2-14.445Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.271Likely Benign-4.52Deleterious0.999Probably Damaging0.998Probably Damaging2.03Pathogenic0.00Affected3.775-3-23.660.10
c.3638A>CN1213TLikely BenignCoiled-coilConflicting 26-33446630-A-C462.85e-5-5.428Likely Benign0.266Likely BenignLikely Benign0.097Likely Benign-1.08Neutral0.959Probably Damaging0.721Possibly Damaging2.74Benign1.00Tolerated3.775002.8-13.00
c.3661C>TR1221WLikely PathogenicCoiled-coilConflicting 36-33446653-C-T16.20e-7-10.938Likely Pathogenic0.651Likely PathogenicLikely Benign0.174Likely Benign-4.57Deleterious1.000Probably Damaging0.987Probably Damaging2.50Benign0.01Affected3.7752-33.630.03
c.3662G>AR1221QLikely BenignCoiled-coilConflicting 26-33446654-G-A42.48e-6-5.491Likely Benign0.115Likely BenignLikely Benign0.078Likely Benign-1.46Neutral0.836Possibly Damaging0.153Benign2.56Benign0.12Tolerated3.775111.0-28.06
c.371C>TA124VLikely BenignConflicting 26-33432236-C-T95.58e-6-4.259Likely Benign0.138Likely BenignLikely Benign0.073Likely Benign-1.52Neutral0.173Benign0.009Benign4.07Benign0.03Affected3.615002.428.05
c.3858A>TE1286DLikely BenignConflicting 46-33447906-A-T1439.22e-5-4.010Likely Benign0.081Likely BenignLikely Benign0.036Likely Benign1.02Neutral0.001Benign0.004Benign2.96Benign1.00Tolerated3.775320.0-14.0310.1016/j.ajhg.2020.11.011
c.3860C>TP1287LLikely BenignConflicting 26-33447908-C-T-2.800Likely Benign0.117Likely BenignLikely Benign0.061Likely Benign-1.66Neutral0.021Benign0.017Benign2.76Benign0.02Affected3.775-3-35.416.04
c.3902C>AP1301HLikely BenignConflicting 26-33451776-C-A53.10e-6-5.756Likely Benign0.104Likely BenignLikely Benign0.232Likely Benign-1.13Neutral0.642Possibly Damaging0.378Benign2.79Benign0.04Affected3.7750-2-1.640.02
c.3913A>GT1305ALikely BenignConflicting 46-33451787-A-G301.86e-5-2.692Likely Benign0.055Likely BenignLikely Benign0.069Likely Benign1.74Neutral0.000Benign0.001Benign3.24Benign1.00Tolerated3.775102.5-30.03
c.3922C>TR1308CConflicting 26-33451796-C-T42.48e-6-4.994Likely Benign0.421AmbiguousLikely Benign0.352Likely Benign-4.89Deleterious0.999Probably Damaging0.993Probably Damaging2.31Pathogenic0.00Affected3.775-4-37.0-53.05
c.3949G>AG1317SLikely BenignConflicting 36-33451823-G-A16.26e-7-3.522Likely Benign0.145Likely BenignLikely Benign0.092Likely Benign-2.45Neutral0.127Benign0.045Benign4.08Benign0.00Affected3.77510-0.430.03
c.3G>AM1ILikely BenignConflicting 3-5.397Likely Benign0.227Likely Benign-0.17Neutral0.001Benign0.000Benign4.25Benign0.00Affected4.321212.6-18.03
c.4003G>AG1335SLikely PathogenicConflicting 26-33451877-G-A32.37e-6-4.495Likely Benign0.986Likely PathogenicLikely Pathogenic0.362Likely Benign-3.79Deleterious1.000Probably Damaging0.997Probably Damaging2.04Pathogenic0.00Affected3.77510-0.430.03
c.4013G>AR1338QLikely BenignConflicting 36-33451887-G-A128.40e-6-3.494Likely Benign0.317Likely BenignLikely Benign0.076Likely Benign-1.87Neutral0.896Possibly Damaging0.194Benign3.81Benign0.02Affected3.775111.0-28.06
c.4021G>AA1341TLikely BenignConflicting 36-33451895-G-A453.44e-5-3.224Likely Benign0.081Likely BenignLikely Benign0.099Likely Benign-0.58Neutral0.000Benign0.000Benign4.09Benign0.03Affected3.77510-2.530.03
c.458C>AT153NLikely BenignConflicting 3-0.739Likely Benign0.226Likely BenignLikely Benign0.161Likely Benign0.88Neutral0.888Possibly Damaging0.537Possibly Damaging4.23Benign0.81Tolerated3.61500-2.813.00
c.603T>GD201E
(3D Viewer)
Likely BenignPHConflicting 26-33435245-T-G201.24e-5-2.640Likely Benign0.406AmbiguousLikely Benign0.165Likely Benign0.42Likely Benign0.21.99Ambiguous1.21Ambiguous0.23Likely Benign-0.69Neutral0.633Possibly Damaging0.108Benign4.30Benign1.00Tolerated3.469320.014.03258.7-24.80.90.1-0.30.2XUncertainAsp201, an acidic residue located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by another acidic residue, glutamate. The carboxylate groups of both Asp201 and Glu201 side chains form hydrogen bonds with the hydroxyl group of Ser221 in the simulations. Due to its shorter side chain, Asp201 can also hydrogen bond with the backbone amide groups of neighboring loop residues Ser204 and Asp203. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.667A>TT223S
(3D Viewer)
PHConflicting 26-33435518-A-T31.86e-6-7.714In-Between0.410AmbiguousLikely Benign0.535Likely Pathogenic0.26Likely Benign0.10.50Ambiguous0.38Likely Benign0.62Ambiguous-2.86Deleterious0.421Benign0.058Benign5.80Benign0.02Affected3.411311-0.1-14.03200.717.3-0.20.20.00.0XUncertainThe introduced residue Ser223 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Its hydroxyl group forms hydrogen bonds with nearby residues Thr228 and Lys207 in the variant simulations, similar to the hydroxyl group of Thr223 in the WT simulations. These hydrogen-bonding interactions at the β sheet surface contribute to the stability of the secondary structure element and may prevent it from unfolding. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.680G>AG227E
(3D Viewer)
Likely PathogenicPHConflicting 26-33435531-G-A31.86e-6-9.186Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.792Likely Pathogenic2.56Destabilizing0.45.36Destabilizing3.96Destabilizing0.94Ambiguous-6.49Deleterious0.906Possibly Damaging0.360Benign5.72Benign0.01Affected3.43120-2-3.172.06237.7-112.10.10.30.00.3XXUncertainThe introduced residue Glu227 is located in a β hairpin loop connecting two anti-parallel β sheet strands (res. Cys219-Thr224 and Thr228-Ala232). In the variant simulations, the carboxylate group of Glu227 frequently forms a salt bridge with the amino group of the neighboring residue Lys229. Despite this interaction, the integrity of the secondary structure element is not compromised. However, the β hairpins are potential nucleation sites during the initial stages of protein folding. Additionally, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.961C>TR321C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33437866-C-T95.58e-6-10.025Likely Pathogenic0.387AmbiguousLikely Benign0.495Likely Benign0.57Ambiguous0.10.56Ambiguous0.57Ambiguous0.18Likely Benign-4.59Deleterious1.000Probably Damaging0.998Probably Damaging1.89Pathogenic0.01Affected3.3823-3-47.0-53.05
c.895C>TR299C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33437800-C-T31.86e-6-6.326Likely Benign0.572Likely PathogenicLikely Benign0.344Likely Benign1.85Ambiguous0.40.61Ambiguous1.23Ambiguous0.76Ambiguous-3.54Deleterious1.000Probably Damaging0.998Probably Damaging1.65Pathogenic0.06Tolerated3.3919-4-37.0-53.05210.791.30.10.00.00.2XXPotentially PathogenicThe guanidinium group of Arg299, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), forms hydrogen bonds that stabilize the tight turn. In the WT simulations, the Arg299 side chain hydrogen bonds with the loop backbone carbonyl groups (e.g., Ser302, Thr305, Leu274, Gly303), the hydroxyl group of Ser300, and even forms a salt bridge with the carboxylate group of Asp304.In the variant simulations, the thiol group of the Cys299 side chain is unable to form any of these well-coordinated or strong interactions, which could affect the initial formation of the secondary hairpin loop during folding. β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Moreover, the positively charged Arg299 side chain faces the polar head group region of the inner leaflet membrane and could directly anchor the C2 domain to the membrane. In short, the residue swap could negatively affect both protein folding and the stability of the SynGAP-membrane association.
c.896G>AR299H
(3D Viewer)
C2Conflicting 26-33437801-G-A106.20e-6-7.731In-Between0.388AmbiguousLikely Benign0.238Likely Benign3.97Destabilizing1.00.94Ambiguous2.46Destabilizing1.41Destabilizing-3.35Deleterious1.000Probably Damaging0.998Probably Damaging1.69Pathogenic0.02Affected3.3919201.3-19.05211.272.5-0.10.2-0.20.3XPotentially PathogenicThe guanidinium group of Arg299, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), forms hydrogen bonds that stabilize the tight turn. In the WT simulations, the Arg299 side chain hydrogen bonds with the loop backbone carbonyl groups (e.g., Ser302, Thr305, Leu274, Gly303), the hydroxyl group of Ser300, and even forms a salt bridge with the carboxylate group of Asp304.In the variant simulations, the imidazole ring of His299 (epsilon protonated state) hydrogen bonds with the carbonyl group of Asp304 and the hydroxyl group of Ser300. However, it does not form as many or as strong interactions as arginine, which could affect the initial formation of the secondary hairpin loop during folding. β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant.Additionally, His299 prefers to hydrophobically interact with other hydrophobic residues inside the C2 domain core (e.g., Val306, Leu274), which destabilizes the C2 domain. Indeed, the β strand partially unfolds during the second simulation. Moreover, the positively charged Arg299 side chain faces the polar head group region of the inner leaflet membrane and could directly anchor the C2 domain to the membrane. In short, the residue swap could negatively affect both protein folding and the stability of the SynGAP-membrane association.
c.913A>GT305A
(3D Viewer)
Likely BenignC2Conflicting 26-33437818-A-G138.05e-6-4.307Likely Benign0.078Likely BenignLikely Benign0.144Likely Benign1.30Ambiguous0.61.55Ambiguous1.43Ambiguous0.77Ambiguous-2.10Neutral0.939Possibly Damaging0.645Possibly Damaging1.76Pathogenic0.12Tolerated3.4020102.5-30.03177.943.5-0.20.10.40.0UncertainThe hydroxyl group of Thr305, located at the beginning of an anti-parallel β strand (res. Thr305-Asn315), hydrogen bonds with the carboxylate groups of Glu270 and Asp304 in the anti-parallel β strand and the adjacent β hairpin loop, respectively. In the variant simulations, the methyl group of the Ala305 side chain cannot hydrogen bond with either of the acidic residues, which could weaken the integrity of the tertiary structure and the β hairpin loop. Indeed, the guanidinium group of Arg299 does not acquire its central hairpin loop position due to the residue swap.β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Due to its location near the membrane surface, the residue swap could also affect the C2 loop dynamics and SynGAP-membrane association. However, this is beyond the scope of the solvent-only simulations to unravel.
c.928G>AE310K
(3D Viewer)
Likely PathogenicC2Conflicting 4-14.601Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.764Likely Pathogenic1.97Ambiguous1.23.66Destabilizing2.82Destabilizing1.02Destabilizing-3.68Deleterious1.000Probably Damaging0.995Probably Damaging1.19Pathogenic0.01Affected3.381901-0.4-0.94213.458.00.10.00.20.1XPotentially PathogenicThe carboxylate group of Glu310, located in an anti-parallel β sheet strand (res. Thr305-Asn315), is ideally positioned to interact with the side chain hydroxyl and backbone amide groups of Thr295 on a twisted anti-parallel β strand (res. Met289-Arg299). Because the carboxylate group can also interact with the GAP domain residues (e.g., Gln612, Tyr614), Glu310 plays a key role in maintaining the tertiary assembly between the C2 and GAP domains. In the variant simulations, the amino group of the Lys310 side chain hydrogen bonds with the GAP domain residues and forms a salt bridge with Glu613. Although no apparent negative effects are seen due to the residue swap, it is possible that the loss of hydrogen bonding with the hydroxyl group of the Thr295 side chain causes problems during folding, potentially compromising the twisting of the β sheet.
c.1003C>TR335C
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437908-C-T16.20e-7-14.354Likely Pathogenic0.938Likely PathogenicAmbiguous0.277Likely Benign0.53Ambiguous0.10.85Ambiguous0.69Ambiguous0.46Likely Benign-5.69Deleterious1.000Probably Damaging0.998Probably Damaging1.67Pathogenic0.01Affected3.3822-3-47.0-53.05
c.1004G>AR335H
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437909-G-A21.24e-6-12.521Likely Pathogenic0.831Likely PathogenicAmbiguous0.132Likely Benign0.58Ambiguous0.10.22Likely Benign0.40Likely Benign0.72Ambiguous-3.02Deleterious1.000Probably Damaging0.998Probably Damaging1.70Pathogenic0.03Affected3.3822201.3-19.05242.482.1-2.40.6-0.10.1UncertainThe guanidinium group of Arg335, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Ala322-Asp330, res. Gly341-Pro349), faces the post-synaptic inner membrane surface. In the WT simulations, the Arg335 side chain dynamically forms salt bridges with the carboxylate groups of Asp322, Asp338, and Asp616. In contrast, the imidazole ring of His335, which is not double protonated and thus not positively charged in the variant simulations, continues to move dynamically without forming any lasting or strong interactions. Importantly, the positively charged arginine residues of the C2 domain are ideal membrane anchors for ensuring SynGAP-membrane association. However, this phenomenon cannot be addressed using solvent-only simulations.
c.1025A>CY342S
(3D Viewer)
Likely PathogenicC2Uncertain 2-7.996In-Between0.925Likely PathogenicAmbiguous0.407Likely Benign3.03Destabilizing0.12.87Destabilizing2.95Destabilizing0.93Ambiguous-6.60Deleterious1.000Probably Damaging0.998Probably Damaging1.75Pathogenic0.04Affected3.3725-3-20.5-76.10200.177.80.00.0-0.20.1Potentially PathogenicThe phenol ring of Tyr342, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), faces outward in the C2 domain. In the WT simulations, the phenol ring of Tyr342 contributes to a triple tyrosine stack (Tyr342, Tyr328, and Tyr281) that links together three anti-parallel β sheet strands. Additionally, it shields Gly344 from the solvent, reducing its exposure and providing stability for the β-sandwich. This motif also contributes to a twist formation in the β sheet.In the variant simulations, the Ser342 side chain cannot participate in the stack formation. Instead, the hydroxyl group of the Ser342 side chain forms a hydrogen bond with the imidazole ring of His326 in a neighboring β strand (res. Ala322-Asp330). This disrupts the formation of a hydrogen bond between His326 and the carboxylate group of the Glu283 side chain from another β strand (res. Arg279-Cys285). Although these changes in surface interactions could weaken the characteristic twist that strengthens the β sheet fold, no major structural effects are observed in the variant simulations. The residue swap could also affect the SynGAP-membrane association, as the hydroxyl group of Ser342 could form hydrogen bonds with membrane-facing loop residues. However, this phenomenon cannot be addressed using solvent-only simulations.
c.1027G>AV343I
(3D Viewer)
Likely BenignC2Uncertain 26-33437932-G-A16.20e-7-6.020Likely Benign0.117Likely BenignLikely Benign0.020Likely Benign-0.27Likely Benign0.0-0.04Likely Benign-0.16Likely Benign-0.39Likely Benign-0.14Neutral0.159Benign0.084Benign1.98Pathogenic0.27Tolerated3.3725430.314.03240.2-26.9-0.20.2-0.20.2XPotentially BenignThe iso-propyl side chain of Val343, located in an anti-parallel β sheet strand (res. Gly341-Pro349), is packing against multiple hydrophobic residues of the C2 domain (e.g., Leu327, Leu274, Val365). In the variant simulations, the sec-butyl side chain of Ile343 is basically able to form the same interactions as valine due to its similar hydrophobic profile. The residue swap also does not seem to cause negative effects on the protein structure based on the simulations.
c.103G>AV35ILikely BenignUncertain 16-33423512-G-A53.10e-6-3.764Likely Benign0.081Likely BenignLikely Benign0.017Likely Benign-0.32Neutral0.672Possibly Damaging0.369Benign4.16Benign0.00Affected4.321340.314.03
c.1040C>AT347N
(3D Viewer)
Likely BenignC2Uncertain 16-33437945-C-A95.58e-6-5.545Likely Benign0.165Likely BenignLikely Benign0.059Likely Benign0.41Likely Benign0.10.46Likely Benign0.44Likely Benign-0.06Likely Benign1.96Neutral0.001Benign0.001Benign1.67Pathogenic0.60Tolerated3.372500-2.813.00
c.1058T>CL353P
(3D Viewer)
Likely PathogenicC2Uncertain 1-7.913In-Between0.936Likely PathogenicAmbiguous0.464Likely Benign4.63Destabilizing0.110.19Destabilizing7.41Destabilizing2.17Destabilizing-3.70Deleterious0.947Possibly Damaging0.454Possibly Damaging1.29Pathogenic0.02Affected3.3725-3-3-5.4-16.04
c.106C>TH36YLikely BenignUncertain 16-33423515-C-T21.24e-6-3.461Likely Benign0.139Likely BenignLikely Benign0.023Likely Benign-1.03Neutral0.219Benign0.066Benign4.16Benign0.00Affected4.321021.926.03
c.1118G>AG373E
(3D Viewer)
C2Uncertain 1-7.281In-Between0.569Likely PathogenicLikely Benign0.420Likely Benign4.13Destabilizing3.20.52Ambiguous2.33Destabilizing-0.02Likely Benign-0.69Neutral0.001Benign0.000Benign3.90Benign0.01Affected0-2-3.172.06
c.1042G>AV348M
(3D Viewer)
C2Uncertain 1-7.076In-Between0.546AmbiguousLikely Benign0.191Likely Benign-1.19Ambiguous0.10.72Ambiguous-0.24Likely Benign0.76Ambiguous-1.62Neutral0.966Probably Damaging0.564Possibly Damaging1.58Pathogenic0.03Affected3.372521-2.332.06253.8-47.4-0.30.10.20.1XPotentially BenignThe iso-propyl side chain of Val348, located in an anti-parallel β sheet strand (res. Gly341-Pro349), packs against multiple hydrophobic C2 domain residues (e.g., Leu353, Leu323, Leu402). In the variant simulations, the thioether side chain of Met348 can form similar interactions as valine due to its comparable hydrophobic profile. In fact, the thioether group of methionine can even stack favorably with the phenol ring of Tyr363 in the anti-parallel β sheet strand (res. Ala399-Ile411). Overall, the residue swap does not appear to cause negative effects on the protein structure based on the simulations.
c.1045C>TP349S
(3D Viewer)
C2Uncertain 1-7.654In-Between0.217Likely BenignLikely Benign0.277Likely Benign1.92Ambiguous0.12.28Destabilizing2.10Destabilizing0.87Ambiguous-6.13Deleterious1.000Probably Damaging0.996Probably Damaging1.66Pathogenic0.06Tolerated3.37251-10.8-10.04194.9-18.1-0.10.00.20.1XXPotentially PathogenicThe cyclic pyrrolidine side chain of Pro349, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), allows the strand to end and make a tight turn before a short α helical section within a loop connecting to another β strand (res. Thr359-Pro364). In the variant simulations, the hydroxyl group of Ser349 forms a hydrogen bond with the backbone amide group of Ala351 in the short helical section. Conversely, the backbone amide group of Ser349 (absent in proline) does not form any intra-protein hydrogen bonds. However, the β strand end connects to the α helical section in a more stable and consistent manner compared to the WT. Although the residue swap does not cause major adverse effects on the protein structure in the simulations, it is possible that the tight turn at the β strand end could not be created during folding without the presence of proline.
c.1126G>TG376CC2Uncertain 1-7.686In-Between0.125Likely BenignLikely Benign0.560Likely Pathogenic2.56Destabilizing0.50.22Likely Benign1.39Ambiguous0.16Likely Benign-1.15Neutral1.000Probably Damaging1.000Probably Damaging1.32Pathogenic0.01Affected-3-32.946.09
c.1131G>AM377I
(3D Viewer)
Likely BenignC2Uncertain 16-33438036-G-A16.23e-7-2.895Likely Benign0.212Likely BenignLikely Benign0.227Likely Benign0.76Ambiguous0.30.54Ambiguous0.65Ambiguous0.24Likely Benign-0.41Neutral0.000Benign0.001Benign5.46Benign0.26Tolerated4.3212122.6-18.03
c.1147G>TG383W
(3D Viewer)
C2Uncertain 16-33438052-G-T16.22e-7-10.161Likely Pathogenic0.439AmbiguousLikely Benign0.469Likely Benign5.81Destabilizing3.64.44Destabilizing5.13Destabilizing0.08Likely Benign-1.01Neutral0.959Probably Damaging0.704Possibly Damaging4.09Benign0.00Affected4.327-2-7-0.5129.16
c.1157G>AG386E
(3D Viewer)
C2Uncertain 16-33438062-G-A-9.286Likely Pathogenic0.686Likely PathogenicLikely Benign0.447Likely Benign3.69Destabilizing2.90.79Ambiguous2.24Destabilizing0.54Ambiguous-0.83Neutral0.860Possibly Damaging0.354Benign3.93Benign0.01Affected4.323-20-3.172.06
c.1202G>AR401Q
(3D Viewer)
Likely PathogenicC2Uncertain 16-33438107-G-A-11.213Likely Pathogenic0.969Likely PathogenicLikely Pathogenic0.780Likely Pathogenic0.96Ambiguous0.11.50Ambiguous1.23Ambiguous1.20Destabilizing-3.69Deleterious0.999Probably Damaging0.978Probably Damaging5.47Benign0.04Affected3.3827111.0-28.06
c.1214G>CR405P
(3D Viewer)
Likely PathogenicC2Uncertain 1-14.206Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.572Likely Pathogenic3.11Destabilizing0.35.19Destabilizing4.15Destabilizing1.26Destabilizing-6.32Deleterious1.000Probably Damaging1.000Probably Damaging3.62Benign0.01Affected3.3828-202.9-59.07
c.1108G>AG370S
(3D Viewer)
Likely BenignC2Uncertain 16-33438013-G-A159.31e-6-3.533Likely Benign0.081Likely BenignLikely Benign0.282Likely Benign2.83Destabilizing2.01.05Ambiguous1.94Ambiguous-0.02Likely Benign0.47Neutral0.000Benign0.000Benign1.33Pathogenic0.77Tolerated3.421910-0.430.03196.6-49.60.92.2-0.10.4UncertainGly370 is located in the Gly-rich Ω loop (res. Pro364- Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because, the Ω loop is assumed to be directly interacting with the membrane, it is only seen to move arbitrarily throughout the WT solvent simulations. The Ω loop is potentially playing a crucial loop in the SynGAP-membrane complex association, stability and dynamics, regardless, this aspect cannot be addressed through the solvent simulations only. The Ω-loops are known to have a major role in protein functions that requires flexibility and thus, they are rich in glycines, prolines and to a lesser extent, hydrophilic residues to ensure maximum flexibility. Thus, Ser370 in the variant is potentially tolerated in the Ω loop. However, since the effect on the Gly-rich Ω loop dynamics can only be well-studied through the SynGAP-membrane complex, no definite conclusions can be withdrawn.
c.1118G>TG373V
(3D Viewer)
Likely BenignC2Uncertain 16-33438023-G-T65.03e-6-6.062Likely Benign0.112Likely BenignLikely Benign0.428Likely Benign5.32Destabilizing3.20.82Ambiguous3.07Destabilizing0.09Likely Benign-0.98Neutral0.007Benign0.001Benign3.90Benign0.00Affected3.5316-1-34.642.08207.6-68.11.91.1-0.60.1UncertainGly373 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Val373 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on the Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1221G>TQ407H
(3D Viewer)
Likely PathogenicC2Uncertain 1-10.526Likely Pathogenic0.830Likely PathogenicAmbiguous0.206Likely Benign0.59Ambiguous0.00.61Ambiguous0.60Ambiguous1.10Destabilizing-4.51Deleterious0.982Probably Damaging0.947Probably Damaging3.88Benign0.01Affected3.3828030.39.01
c.1222A>GT408AC2Uncertain 1-8.304Likely Pathogenic0.114Likely BenignLikely Benign0.118Likely Benign0.37Likely Benign0.6-0.06Likely Benign0.16Likely Benign0.72Ambiguous-3.07Deleterious0.540Possibly Damaging0.131Benign4.16Benign0.14Tolerated102.5-30.03
c.1240A>GM414VGAPUncertain 1-8.003Likely Pathogenic0.541AmbiguousLikely Benign0.261Likely Benign1.81Ambiguous0.41.73Ambiguous1.77Ambiguous0.95Ambiguous-2.95Deleterious0.999Probably Damaging0.987Probably Damaging3.43Benign0.24Tolerated212.3-32.06
c.127G>AG43SLikely BenignUncertain 26-33423536-G-A16.20e-7-3.301Likely Benign0.078Likely BenignLikely Benign0.057Likely Benign-0.30Neutral0.162Benign0.096Benign4.29Benign0.00Affected4.32110-0.430.03
c.1300G>AV434I
(3D Viewer)
Likely BenignGAPUncertain 16-33438205-G-A16.19e-7-6.999Likely Benign0.129Likely BenignLikely Benign0.192Likely Benign-0.04Likely Benign0.00.22Likely Benign0.09Likely Benign0.31Likely Benign-0.82Neutral0.947Possibly Damaging0.851Possibly Damaging3.53Benign0.18Tolerated3.3729430.314.03246.7-27.70.00.00.10.0XPotentially BenignThe iso-propyl side chain of Val434, located at the end of an α helix (res. Met414-Glu436), packs against hydrophobic residues in an interhelix space (e.g., Met430, Ala707, Leu711). In the variant simulations, the sec-butyl group of Ile434 is able to form the same hydrophobic interactions. Accordingly, the residue swap does not negatively affect the protein structure based on the simulations.
c.1121C>AS374Y
(3D Viewer)
C2Uncertain 1-7.774In-Between0.344AmbiguousLikely Benign0.310Likely Benign0.71Ambiguous1.20.66Ambiguous0.69Ambiguous-0.02Likely Benign-1.18Neutral0.875Possibly Damaging0.271Benign5.41Benign0.01Affected4.3213-3-2-0.576.10237.3-76.90.50.40.50.3UncertainSer374 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus, large and relatively hydrophobic residues like tyrosine are rarely tolerated. Additionally, the hydroxyl group of Tyr374 frequently forms various hydrogen bonds with other loop residues in the variant simulations. Although no negative structural effects are observed in the variant simulations, Tyr374 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1136C>GS379W
(3D Viewer)
C2Uncertain 16-33438041-C-G-8.898Likely Pathogenic0.388AmbiguousLikely Benign0.520Likely Pathogenic4.32Destabilizing3.43.56Destabilizing3.94Destabilizing0.16Likely Benign-1.02Neutral0.998Probably Damaging0.844Possibly Damaging3.82Benign0.01Affected4.3211-2-3-0.199.14271.3-75.71.41.00.60.5UncertainSer379 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like tryptophan are rarely tolerated. Although no major negative structural effects are observed in the variant simulations, Trp379 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn
c.1142G>TG381V
(3D Viewer)
Likely BenignC2Uncertain 16-33438047-G-T21.25e-6-5.967Likely Benign0.146Likely BenignLikely Benign0.618Likely Pathogenic7.16Destabilizing1.04.10Destabilizing5.63Destabilizing-0.32Likely Benign-0.95Neutral0.386Benign0.157Benign1.32Pathogenic0.10Tolerated4.329-1-34.642.08214.6-68.80.30.7-0.50.3UncertainGly381 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Val381 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effects on Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1339G>CV447L
(3D Viewer)
Likely BenignGAPUncertain 1-5.136Likely Benign0.491AmbiguousLikely Benign0.180Likely Benign-1.13Ambiguous0.10.54Ambiguous-0.30Likely Benign0.03Likely Benign-0.29Neutral0.947Possibly Damaging0.851Possibly Damaging3.61Benign0.90Tolerated3.373212-0.414.03
c.1345A>GS449G
(3D Viewer)
Likely BenignGAPUncertain 16-33438250-A-G31.86e-6-5.936Likely Benign0.071Likely BenignLikely Benign0.116Likely Benign0.47Likely Benign0.00.55Ambiguous0.51Ambiguous0.85Ambiguous-2.32Neutral0.948Possibly Damaging0.124Benign3.35Benign0.13Tolerated3.3732010.4-30.03
c.1354G>AV452I
(3D Viewer)
GAPUncertain 1-8.985Likely Pathogenic0.361AmbiguousLikely Benign0.218Likely Benign-0.08Likely Benign0.10.51Ambiguous0.22Likely Benign0.25Likely Benign-0.99Neutral0.947Possibly Damaging0.851Possibly Damaging3.26Benign0.05Affected430.314.03
c.1367A>CQ456P
(3D Viewer)
Likely PathogenicGAPUncertain 1-15.250Likely Pathogenic0.993Likely PathogenicLikely Pathogenic0.469Likely Benign3.68Destabilizing0.28.43Destabilizing6.06Destabilizing0.82Ambiguous-5.66Deleterious1.000Probably Damaging0.999Probably Damaging3.34Benign0.07Tolerated3.3734-101.9-31.01
c.136C>TP46SLikely BenignUncertain 1-3.338Likely Benign0.302Likely BenignLikely Benign0.066Likely Benign-0.60Neutral0.909Possibly Damaging0.901Possibly Damaging4.15Benign0.00Affected1-10.8-10.04
c.1370G>AS457NLikely PathogenicGAPUncertain 1-10.221Likely Pathogenic0.949Likely PathogenicAmbiguous0.241Likely Benign0.19Likely Benign0.0-0.22Likely Benign-0.02Likely Benign0.67Ambiguous-2.76Deleterious0.940Possibly Damaging0.843Possibly Damaging3.28Benign0.06Tolerated11-2.727.03
c.13C>GR5GLikely BenignUncertain 1-3.639Likely Benign0.150Likely BenignLikely Benign0.169Likely Benign-0.16Neutral0.013Benign0.003Benign4.12Benign0.00Affected4.321-2-34.1-99.14
c.1150G>AG384S
(3D Viewer)
Likely BenignC2Uncertain 16-33438055-G-A16.22e-7-5.243Likely Benign0.090Likely BenignLikely Benign0.315Likely Benign1.92Ambiguous0.21.66Ambiguous1.79Ambiguous0.19Likely Benign-0.67Neutral0.980Probably Damaging0.968Probably Damaging1.33Pathogenic0.04Affected4.32210-0.430.03202.4-49.80.51.0-0.20.0UncertainGly384 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and so they are rich in glycines, prolines, and, to a lesser extent, small hydrophilic residues to ensure maximum flexibility. Thus, the variant’s Ser384 is potentially tolerated in the Ω loop, although the hydroxyl group of Ser384 forms various hydrogen bonds with several other loop residues in the variant simulations. However, since the effects on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1153T>CS385P
(3D Viewer)
Likely BenignC2Uncertain 16-33438058-T-C-5.431Likely Benign0.123Likely BenignLikely Benign0.385Likely Benign0.91Ambiguous0.6-0.90Ambiguous0.01Likely Benign0.19Likely Benign-0.26Neutral0.676Possibly Damaging0.693Possibly Damaging4.63Benign0.04Affected4.3231-1-0.810.04210.318.51.80.90.30.0UncertainSer385 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and so they are rich in glycine residues, prolines, and, to a lesser extent, small hydrophilic residues to ensure maximum flexibility. Thus, the variant’s Pro385 is potentially tolerated in the Ω loop. However, since the effects on Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1154C>TS385L
(3D Viewer)
Likely BenignC2Uncertain 26-33438059-C-T94.60e-5-6.018Likely Benign0.167Likely BenignLikely Benign0.304Likely Benign0.16Likely Benign0.10.08Likely Benign0.12Likely Benign-0.26Likely Benign-0.68Neutral0.829Possibly Damaging0.706Possibly Damaging4.63Benign0.01Affected4.323-3-24.626.08244.6-50.10.00.6-0.10.1UncertainSer385 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like leucine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Leu385 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effects on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1402A>GM468V
(3D Viewer)
GAPUncertain 1-9.461Likely Pathogenic0.361AmbiguousLikely Benign0.570Likely Pathogenic2.69Destabilizing0.12.20Destabilizing2.45Destabilizing0.89Ambiguous-1.66Neutral0.998Probably Damaging0.993Probably Damaging-1.21Pathogenic0.08Tolerated3.3731122.3-32.06
c.1404G>AM468I
(3D Viewer)
Likely PathogenicGAPUncertain 16-33438436-G-A16.20e-7-8.583Likely Pathogenic0.907Likely PathogenicAmbiguous0.508Likely Pathogenic2.53Destabilizing0.21.89Ambiguous2.21Destabilizing0.37Likely Benign-1.06Neutral0.748Possibly Damaging0.886Possibly Damaging-1.10Pathogenic0.07Tolerated3.3731122.6-18.03
c.1405G>AA469T
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.540Likely Pathogenic0.723Likely PathogenicLikely Benign0.527Likely Pathogenic2.26Destabilizing0.11.90Ambiguous2.08Destabilizing0.34Likely Benign-1.46Neutral0.994Probably Damaging0.986Probably Damaging-1.21Pathogenic0.42Tolerated10-2.530.03
c.1408A>GM470V
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.856Likely Pathogenic0.478AmbiguousLikely Benign0.770Likely Pathogenic2.73Destabilizing0.11.88Ambiguous2.31Destabilizing1.31Destabilizing-3.58Deleterious0.999Probably Damaging0.993Probably Damaging-1.20Pathogenic0.15Tolerated3.3734122.3-32.06
c.1417G>AV473I
(3D Viewer)
GAPUncertain 16-33438449-G-A16.20e-7-7.481In-Between0.418AmbiguousLikely Benign0.203Likely Benign-0.12Likely Benign0.01.20Ambiguous0.54Ambiguous-0.06Likely Benign-0.91Neutral0.929Possibly Damaging0.917Probably Damaging3.74Benign0.18Tolerated3.3734340.314.03
c.1436G>AR479Q
(3D Viewer)
Likely BenignGAPUncertain 16-33438468-G-A74.34e-6-7.109In-Between0.259Likely BenignLikely Benign0.191Likely Benign0.54Ambiguous0.10.57Ambiguous0.56Ambiguous0.49Likely Benign-1.16Neutral1.000Probably Damaging0.991Probably Damaging3.42Benign0.31Tolerated3.3932111.0-28.06
c.1160G>TG387V
(3D Viewer)
Likely BenignC2Uncertain 16-33438065-G-T221.37e-5-6.199Likely Benign0.153Likely BenignLikely Benign0.390Likely Benign5.13Destabilizing1.86.44Destabilizing5.79Destabilizing-0.33Likely Benign-0.54Neutral0.069Benign0.077Benign1.32Pathogenic0.01Affected4.323-1-34.642.08207.7-68.4-0.70.8-0.50.1UncertainGly387 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. This loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Val387 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1169G>AG390E
(3D Viewer)
C2Uncertain 1-7.913In-Between0.646Likely PathogenicLikely Benign0.575Likely Pathogenic2.61Destabilizing0.94.28Destabilizing3.45Destabilizing0.47Likely Benign-0.87Neutral0.276Benign0.045Benign1.32Pathogenic0.05Affected4.3280-2-3.172.06241.5-108.40.60.5-0.10.1UncertainGly390 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. This loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play significant roles in protein functions that require flexibility, and so they are rich in glycine residues, prolines, and to a lesser extent, small hydrophilic residues to ensure maximum flexibility. Thus, the variant’s Glu390 may not be as well tolerated in the Ω loop. Additionally, the carboxylate group of Glu390 occasionally forms H-bonds with other loop residues in the variant simulations. The interaction between the acidic carboxylate side chain and the acidic membrane lipids may further influence the SynGAP-membrane complex. However, since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1193C>TP398L
(3D Viewer)
C2Uncertain 16-33438098-C-T84.96e-6-7.518In-Between0.547AmbiguousLikely Benign0.599Likely Pathogenic1.48Ambiguous0.2-0.54Ambiguous0.47Likely Benign0.62Ambiguous-7.10Deleterious0.961Probably Damaging0.256Benign5.72Benign0.01Affected3.4016-3-35.416.04245.8-68.6-0.10.0-0.30.2XPotentially PathogenicPro398 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. Although the residue swap does not influence the nearby secondary structure elements, proline is often found at the ends of β sheets due to its disfavored status during folding.Additionally, the Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone. Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like leucine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Leu398 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1436G>CR479P
(3D Viewer)
Likely PathogenicGAPUncertain 1-11.795Likely Pathogenic0.938Likely PathogenicAmbiguous0.277Likely Benign2.86Destabilizing0.23.88Destabilizing3.37Destabilizing0.81Ambiguous-3.52Deleterious1.000Probably Damaging1.000Probably Damaging3.41Benign0.18Tolerated0-22.9-59.07
c.1453C>AR485S
(3D Viewer)
Likely PathogenicGAPUncertain 1-15.603Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.609Likely Pathogenic0.40Likely Benign0.11.07Ambiguous0.74Ambiguous0.82Ambiguous-5.97Deleterious1.000Probably Damaging1.000Probably Damaging1.93Pathogenic0.00Affected0-13.7-69.11
c.1463C>TT488M
(3D Viewer)
Likely PathogenicGAPUncertain 16-33438495-C-T21.24e-6-12.459Likely Pathogenic0.973Likely PathogenicLikely Pathogenic0.746Likely Pathogenic0.66Ambiguous0.31.62Ambiguous1.14Ambiguous0.46Likely Benign-5.70Deleterious1.000Probably Damaging0.999Probably Damaging3.21Benign0.00Affected3.3735-1-12.630.09
c.1468G>CA490P
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.905Likely Pathogenic0.941Likely PathogenicAmbiguous0.878Likely Pathogenic-1.27Ambiguous0.11.31Ambiguous0.02Likely Benign1.07Destabilizing-4.81Deleterious1.000Probably Damaging0.998Probably Damaging-1.42Pathogenic0.01Affected3.3735-11-3.426.04
c.1199T>AV400E
(3D Viewer)
Likely PathogenicC2Uncertain 1-13.686Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.810Likely Pathogenic3.70Destabilizing0.22.46Destabilizing3.08Destabilizing2.29Destabilizing-4.88Deleterious0.920Possibly Damaging0.335Benign5.31Benign0.00Affected3.3827-2-2-7.729.98249.1-38.8-0.10.11.00.0XXXPotentially PathogenicThe iso-propyl side chain of Val400, located in an anti-parallel β sheet strand (res. Ala399-Ile411), hydrophobically packs against hydrophobic residues within the anti-parallel β sheet of the C2 domain (e.g., Ile268, Ala404, Leu325, Leu402). In the variant simulations, the negatively charged carboxylate group of the Glu400 side chain is not suitable for occupying the hydrophobic niche. Consequently, the side chain escapes the center of the C2 domain and interacts with the backbone amide groups of Leu402 in the same β strand and/or Ile269 and Glu270 in a neighboring β strand (res. Arg259-Arg272). This residue swap disrupts the hydrophobic packing and generally has extensive negative effects on the C2 domain structure. At a minimum, the residue swap could affect the C2 domain stability and membrane association.
c.1483G>AE495K
(3D Viewer)
Likely PathogenicGAPUncertain 1-11.478Likely Pathogenic0.986Likely PathogenicLikely Pathogenic0.869Likely Pathogenic0.15Likely Benign0.20.66Ambiguous0.41Likely Benign0.70Ambiguous-3.91Deleterious0.999Probably Damaging0.994Probably Damaging-1.29Pathogenic0.01Affected3.373510-0.4-0.94
c.1484A>GE495G
(3D Viewer)
Likely PathogenicGAPUncertain 16-33438516-A-G16.20e-7-9.400Likely Pathogenic0.923Likely PathogenicAmbiguous0.867Likely Pathogenic1.21Ambiguous0.02.06Destabilizing1.64Ambiguous0.78Ambiguous-6.70Deleterious1.000Probably Damaging0.999Probably Damaging-1.46Pathogenic0.02Affected3.3735-203.1-72.06
c.1511A>GK504R
(3D Viewer)
Likely BenignGAPUncertain16-33438543-A-G21.24e-6-4.365Likely Benign0.088Likely BenignLikely Benign0.238Likely Benign0.13Likely Benign0.10.51Ambiguous0.32Likely Benign0.94Ambiguous-2.16Neutral0.002Benign0.015Benign-1.41Pathogenic0.11Tolerated3.373523-0.628.01
c.1256A>GE419G
(3D Viewer)
Likely PathogenicGAPUncertain 1-10.589Likely Pathogenic0.956Likely PathogenicLikely Pathogenic0.469Likely Benign1.41Ambiguous0.01.94Ambiguous1.68Ambiguous0.83Ambiguous-6.42Deleterious1.000Probably Damaging0.997Probably Damaging3.31Benign0.02Affected3.37290-23.1-72.06165.3110.80.00.0-0.10.0XPotentially PathogenicThe carboxylate group of Glu419, located on an α helix (res. Met414-Glu436), forms a salt bridge with the side chain of either Arg716 or Lys418 from an opposing helix (res. Pro713-Arg726). The backbone amide group of Glu419 does not form H-bonds, resulting in a slight bend in the α helix. Thus, although glycine is known as an “α helix breaker,” the residue swap does not disrupt the continuity or integrity of the α helix. However, because Gly419 cannot form a salt bridge with the guanidinium group of the Arg716 side chain, the C2-GAP domain tertiary structure could be compromised during folding.
c.1260T>GF420L
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.432Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.146Likely Benign1.76Ambiguous0.01.41Ambiguous1.59Ambiguous1.04Destabilizing-5.39Deleterious0.009Benign0.005Benign4.22Benign0.39Tolerated3.3729201.0-34.02231.113.20.00.0-0.10.0XPotentially BenignIn the WT, the phenyl ring of the Phe420 side chain, located on an α helix (res. Met414-Glu436), packs against hydrophobic residues in the interhelix area of the GAP domain (e.g., Leu689, Leu714, Leu717, Leu718). In the variant simulations, the iso-butyl side chain of Leu420 also packs into the hydrophobic inter-helix niche, but due to its smaller size, the resulting steric interactions are not as favorable as with phenylalanine. In short, the residue swap does not cause severe effects on the protein structure based on the variant simulations.
c.1516C>TL506F
(3D Viewer)
Likely PathogenicGAPUncertain 1-11.262Likely Pathogenic0.883Likely PathogenicAmbiguous0.464Likely Benign4.92Destabilizing0.85.76Destabilizing5.34Destabilizing0.91Ambiguous-3.98Deleterious0.999Probably Damaging0.997Probably Damaging1.62Pathogenic0.01Affected3.373502-1.034.02
c.1540A>TI514F
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.383Likely Pathogenic0.962Likely PathogenicLikely Pathogenic0.601Likely Pathogenic2.35Destabilizing0.33.74Destabilizing3.05Destabilizing0.93Ambiguous-3.98Deleterious0.997Probably Damaging0.993Probably Damaging2.89Benign0.00Affected3.373501-1.734.02
c.1552T>CY518H
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.797Likely Pathogenic0.943Likely PathogenicAmbiguous0.496Likely Benign2.39Destabilizing0.40.82Ambiguous1.61Ambiguous1.31Destabilizing-4.74Deleterious1.000Probably Damaging1.000Probably Damaging3.40Benign0.08Tolerated02-1.9-26.03
c.1558T>CS520P
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.707Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.855Likely Pathogenic3.72Destabilizing0.88.86Destabilizing6.29Destabilizing0.83Ambiguous-4.57Deleterious0.997Probably Damaging0.986Probably Damaging-1.32Pathogenic0.01Affected1-1-0.810.04
c.1559C>TS520F
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.541Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.833Likely Pathogenic-1.20Ambiguous0.40.39Likely Benign-0.41Likely Benign0.25Likely Benign-5.57Deleterious0.999Probably Damaging0.996Probably Damaging-1.36Pathogenic0.00Affected3.3735-2-33.660.10
c.155C>TS52LUncertain 16-33423564-C-T16.20e-7-7.199In-Between0.688Likely PathogenicLikely Benign0.087Likely Benign-1.41Neutral0.829Possibly Damaging0.706Possibly Damaging4.10Benign0.00Affected4.321-3-24.626.08
c.1600T>CS534P
(3D Viewer)
Likely BenignGAPUncertain 16-33438843-T-C31.86e-6-5.056Likely Benign0.265Likely BenignLikely Benign0.203Likely Benign-0.40Likely Benign0.20.35Likely Benign-0.03Likely Benign0.47Likely Benign-3.81Deleterious0.993Probably Damaging0.993Probably Damaging3.32Benign0.05Affected3.3735-11-0.810.04
c.1286G>AR429Q
(3D Viewer)
Likely BenignGAPUncertain 26-33438191-G-A106.20e-6-8.227Likely Pathogenic0.143Likely BenignLikely Benign0.156Likely Benign0.45Likely Benign0.10.36Likely Benign0.41Likely Benign0.98Ambiguous-1.25Neutral1.000Probably Damaging0.979Probably Damaging3.47Benign0.58Tolerated3.3825111.0-28.06235.859.50.00.0-0.30.4XPotentially PathogenicThe guanidinium group of the Arg429 side chain, located in an α helix (res. Met414-Glu436), either forms a salt bridge with the carboxylate group of an acidic residue (Asp474, Asp467) or an H-bond with the hydroxyl group of Ser471 in an opposing α helix (res. Ala461-Phe476). In the variant simulations, Gln429 cannot form ionic interactions with the acidic residues; however, the carboxamide group can form multiple H-bonds. The H-bonding coordination of the Asn429 side chain varied between the replica simulations. In one simulation, three H-bonds were formed simultaneously with the Asp467 side chain, the backbone carbonyl group of Asn426, and the amide group of Met430 at the end of the same α helix. The residue swap could affect the tertiary structure assembly during folding due to weaker bond formation, but no large-scale negative effects were seen during the simulations.
c.1304T>GL435W
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.889Likely Pathogenic0.992Likely PathogenicLikely Pathogenic0.572Likely Pathogenic2.11Destabilizing0.10.69Ambiguous1.40Ambiguous1.66Destabilizing-5.63Deleterious1.000Probably Damaging0.998Probably Damaging3.15Benign0.00Affected3.3729-2-2-4.773.05242.2-25.20.00.00.30.1XPotentially PathogenicThe iso-butyl side chain of Leu435, located in an α helix (res. Met414-Glu436), packs against other hydrophobic residues in an interhelix space (e.g., Val699, Val447, Leu489, Leu439) in the WT simulations. In the variant simulations, the indole ring of Trp435 fits into the same niche despite its considerably bulkier size. Additionally, the side chain forms an H-bond with the backbone carbonyl of Leu696 in an α helix (res. Asp684-Gln702). Although no apparent negative changes are observed during the variant simulation, the size difference between the swapped residues could affect the protein folding process.
c.1306G>AE436K
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.869Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.829Likely Pathogenic0.56Ambiguous0.12.86Destabilizing1.71Ambiguous0.82Ambiguous-3.77Deleterious0.994Probably Damaging0.951Probably Damaging4.71Benign0.02Affected3.372901-0.4-0.94186.839.80.00.0-0.20.0XXXPotentially PathogenicThe carboxylate group of Glu436, located on the α helix (res. Met414-Glu436), forms a salt bridge with the amino group of the Lys444 side chain on an opposing α helix (res. Val441-Ser457). The backbone carbonyl of Glu436 also H-bonds with the Lys444 side chain, which helps keep the ends of the two α helices tightly connected. In contrast, in the variant simulations, the salt bridge formation with Lys444 is not possible. Instead, the repelled Lys436 side chain rotates outward, causing a change in the α helix backbone H-bonding: the amide group of Lys444 H-bonds with the carbonyl of Ala433 instead of the carbonyl of Cys432.
c.1606T>GL536V
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.014Likely Pathogenic0.269Likely BenignLikely Benign0.586Likely Pathogenic1.25Ambiguous0.31.22Ambiguous1.24Ambiguous1.20Destabilizing-2.81Deleterious0.998Probably Damaging0.992Probably Damaging-1.34Pathogenic0.09Tolerated3.3734210.4-14.03204.726.40.20.0-0.20.2XPotentially BenignLeu536 is located on an α-helix (res. Ala533-Val560) at the membrane interface. The iso-butyl group of Leu536 interacts with nearby hydrophobic residues in the preceding loop (e.g., Val526, Pro528, Cys531). In the variant simulations, the iso-propyl side chain of Val536 forms similar hydrophobic interactions as Leu536 in the WT, causing no negative structural effects.
c.1622C>GA541G
(3D Viewer)
GAPUncertain 16-33438865-C-G21.24e-6-7.233In-Between0.341AmbiguousLikely Benign0.421Likely Benign0.67Ambiguous0.00.94Ambiguous0.81Ambiguous0.76Ambiguous-1.48Neutral0.999Probably Damaging0.995Probably Damaging-1.31Pathogenic0.57Tolerated3.373510-2.2-14.03170.123.60.00.00.00.0XPotentially PathogenicAla541 is located on the outer surface of an α-helix (res. Ala533-Val560). The methyl group of Ala541 is on the surface and does not form any interactions. Glycine, known as an “α-helix breaker,” weakens the integrity of the helix. Indeed, in the variant simulations, the hydrogen bond formation between Gly541 and the backbone carbonyl of Ala537 is disrupted.
c.1631G>AR544Q
(3D Viewer)
Likely PathogenicGAPUncertain 16-33438874-G-A16.20e-7-10.281Likely Pathogenic0.596Likely PathogenicLikely Benign0.542Likely Pathogenic0.19Likely Benign0.20.87Ambiguous0.53Ambiguous1.40Destabilizing-2.41Neutral1.000Probably Damaging0.997Probably Damaging-1.40Pathogenic0.09Tolerated3.3735111.0-28.06
c.1349C>AA450E
(3D Viewer)
Likely PathogenicGAPUncertain 1-16.578Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.653Likely Pathogenic3.86Destabilizing0.25.23Destabilizing4.55Destabilizing1.59Destabilizing-4.67Deleterious0.999Probably Damaging0.992Probably Damaging3.38Benign0.07Tolerated3.37320-1-5.358.04240.1-82.60.00.00.70.0XXPotentially PathogenicThe methyl group of Ala450, located in an α helix (res. Asn440-Thr458), packs against hydrophobic residues in the inter-helix space (e.g., Leu692). In the variant simulations, the carboxylate group of the Glu450 side chain rotates outward, away from the hydrophobic niche, where it does not form any lasting salt bridges or H-bonds. Although the residue swap does not negatively affect the protein structure based on the simulations, it is possible that the introduction of the negatively charged residue adversely affects the folding process or tertiary assembly.
c.1354G>TV452F
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.769Likely Pathogenic0.975Likely PathogenicLikely Pathogenic0.511Likely Pathogenic9.21Destabilizing0.10.37Likely Benign4.79Destabilizing0.61Ambiguous-4.94Deleterious0.999Probably Damaging0.993Probably Damaging3.29Benign0.00Affected3.3734-1-1-1.448.04249.4-35.70.00.00.40.1XPotentially PathogenicThe iso-propyl side chain of Val452, located in the middle of an α helix (res. Val441-Ser457), packs against hydrophobic residues in the inter-helix space at the intersection of three α helices (e.g., Leu500, His453, Leu465). In the variant simulations, the larger side chain of Phe452 cannot pack against the opposing α helix (res. Leu489-Glu519) as efficiently as valine. Due to space restrictions, the phenol ring adjusts to make room by rotating slightly sideways in the inter-helix space. Besides this small and local shift, no large-scale effects on the protein structure are seen based on the simulations. However, the size difference between the swapped residues could affect the protein folding process.
c.1390T>GF464V
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.254Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.592Likely Pathogenic3.61Destabilizing0.12.89Destabilizing3.25Destabilizing1.40Destabilizing-6.96Deleterious0.998Probably Damaging0.996Probably Damaging3.36Benign0.04Affected3.3734-1-11.4-48.04210.140.5-0.10.0-0.90.3XPotentially PathogenicThe phenyl ring of Phe464, located in the middle of an α helix (res. Ala461–Phe476), packs against hydrophobic residues (e.g., Met468, Leu451, Leu455, and Tyr428) in the inter-helix space formed with two other α helices (res. Asn440-Lys460 and res. Pro413-Glu436). The iso-propyl side chain of Val464 is similarly hydrophobic but considerably smaller than the original phenyl ring of Phe464. To compensate for the size difference, neighboring residues need to fill in the gap in the variant simulations.The phenolic side chain of Tyr428, located at the middle bend of an α helix (res. Glu436-Pro413), assumes a new position in the inter-helix space or rotates inward next to the third α helix (res. Asn440-Lys460) when the stable H-bond between Tyr428 and Asp467 seen in the WT simulations breaks. The residue swap also leads to the loss of the methionine-aromatic interaction between the Met468 and Phe464 side chains, which could weaken the integrity of the parent α helix (res. Ala461-Phe476). Although the simulations likely underestimate the full adverse effect of the introduced mutation during folding, the two opposing α helices (res. Ala461–Phe476 and res. Glu436-Pro413) move substantially closer to each other in the variant simulations.
c.1393C>GL465V
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.893Likely Pathogenic0.838Likely PathogenicAmbiguous0.276Likely Benign2.46Destabilizing0.12.66Destabilizing2.56Destabilizing1.21Destabilizing-2.98Deleterious0.996Probably Damaging0.992Probably Damaging2.44Pathogenic0.10Tolerated3.3734210.4-14.03204.330.90.00.0-0.40.6XPotentially BenignThe iso-butyl side chain of Leu465, located in the middle of an α helix (res. Ala461–Phe476), packs with hydrophobic residues (e.g., Phe464, Met468, Tyr497, Ile494) in an inter-helix space formed with two other α helices (res. Ala461–Phe476 and res. Thr488-Gly502). In the variant simulations, the iso-propyl side chain of Val465 is equally sized and similarly hydrophobic as the original side chain of Leu465. Hence, the mutation does not exert any negative effects on the protein structure based on the variant simulations.
c.1635G>AM545I
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.348Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.592Likely Pathogenic0.47Likely Benign0.10.14Likely Benign0.31Likely Benign0.63Ambiguous-3.61Deleterious0.935Possibly Damaging0.941Probably Damaging-1.27Pathogenic0.28Tolerated3.3735122.6-18.03
c.163C>AQ55KLikely BenignUncertain 26-33423572-C-A241.49e-5-5.840Likely Benign0.612Likely PathogenicLikely Benign0.085Likely Benign-1.21Neutral0.140Benign0.184Benign3.91Benign0.00Affected4.32111-0.40.04
c.1651C>AL551M
(3D Viewer)
GAPUncertain 16-33438894-C-A74.34e-6-9.937Likely Pathogenic0.480AmbiguousLikely Benign0.544Likely Pathogenic-0.07Likely Benign0.10.13Likely Benign0.03Likely Benign0.71Ambiguous-0.56Neutral1.000Probably Damaging1.000Probably Damaging-1.48Pathogenic0.06Tolerated3.373542-1.918.03246.5-18.60.00.00.30.0XPotentially BenignL551 is located on an α-helix (res. Ala533-Val560). The iso-butyl side chain of Leu551 hydrophobically packs with nearby hydrophobic residues such as Cys547, Phe652, Leu633, and Ile630 in the inter-helix space. In the variant simulations, the thioether side chain of Met551 can maintain similar hydrophobic interactions as Leu551 in the WT, thus causing no negative effect on the protein structure during the simulations.
c.1663G>AV555I
(3D Viewer)
Likely BenignGAPUncertain 1-4.544Likely Benign0.084Likely BenignLikely Benign0.253Likely Benign-0.82Ambiguous0.0-0.41Likely Benign-0.62Ambiguous-0.55Ambiguous0.45Neutral0.002Benign0.002Benign-1.26Pathogenic1.00Tolerated430.314.03
c.1403T>CM468T
(3D Viewer)
Likely PathogenicGAPUncertain 26-33438435-T-C16.20e-7-12.399Likely Pathogenic0.862Likely PathogenicAmbiguous0.801Likely Pathogenic3.47Destabilizing0.13.10Destabilizing3.29Destabilizing1.84Destabilizing-3.85Deleterious0.994Probably Damaging0.985Probably Damaging-1.31Pathogenic0.01Affected3.3731-1-1-2.6-30.09214.647.10.00.00.10.0XPotentially PathogenicThe thioether group of Met468, located in the middle of an α helix (res. Ala461–Phe476), interacts with hydrophobic residues (e.g., Phe464, Leu465, Leu489) in an inter-helix space formed by two other α helices (res. Ala461–Phe476, res. Thr488–Gly502). In the variant simulations, the hydrophilic side chain of Thr468 does not pack favorably in the hydrophobic niche, and the methionine-aromatic stacking is lost. Although the hydroxyl group of Thr468 forms an H-bond with the backbone carbonyl group of Phe464, the integrity of the α helix is not affected in the simulations. No large-scale structural changes are observed during the variant simulations; however, due to the importance of hydrophobic packing, the effects could be more pronounced during protein folding.
c.1406C>AA469D
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.643Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.738Likely Pathogenic5.09Destabilizing0.24.16Destabilizing4.63Destabilizing1.68Destabilizing-3.48Deleterious0.999Probably Damaging0.996Probably Damaging-1.34Pathogenic0.21Tolerated3.37340-2-5.344.01237.0-58.2-0.20.10.80.1XXPotentially PathogenicThe methyl group of Ala469, located in an α helix (res. Ala461–Phe476), interacts with hydrophobic residues (e.g., Trp572, Leu588, Met470) in an inter-helix space formed by two other α helices (res. Glu582–Ser604, res. Arg563–Gly580). In the variant simulations, Asp469 introduces a negatively charged and bulky side chain into the hydrophobic niche. Consequently, the side chain of Asp469 rotates outward, allowing the carboxylate group to form a salt bridge with the guanidinium group of Arg575 on the protein surface. This interaction affects the continuity of the parent α helix (Ala461–Phe476). Due to the importance of hydrophobic packing, the structural effects could be more pronounced during actual protein folding.
c.1673A>GH558R
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.445Likely Pathogenic0.554AmbiguousLikely Benign0.587Likely Pathogenic-1.14Ambiguous0.1-0.23Likely Benign-0.69Ambiguous1.03Destabilizing-4.94Deleterious0.677Possibly Damaging0.239Benign-1.24Pathogenic0.14Tolerated3.373502-1.319.05
c.1678G>AV560M
(3D Viewer)
GAPUncertain 26-33440730-G-A159.50e-6-9.598Likely Pathogenic0.517AmbiguousLikely Benign0.520Likely Pathogenic-0.33Likely Benign0.10.88Ambiguous0.28Likely Benign0.72Ambiguous-2.42Neutral0.999Probably Damaging0.863Possibly Damaging-1.25Pathogenic0.14Tolerated3.373521-2.332.06234.9-52.60.00.0-0.10.1XPotentially BenignVal560 is located on the surface at the end of an α-helix (res. Ala533-Val560). The iso-propyl group of Val560 favorably packs against Asp508 of the opposing α-helix (res. Gln503-Glu519). However, in the variant simulations, the bulkier thioether side chain of Met560 does not form equally favorable inter-helix interactions. Regardless, no negative structural effects are observed during the simulations.
c.169C>TL57FLikely BenignUncertain 2-5.096Likely Benign0.459AmbiguousLikely Benign0.051Likely Benign-0.78Neutral0.824Possibly Damaging0.879Possibly Damaging3.96Benign0.00Affected4.32120-1.034.02
c.1702G>TV568L
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.503Likely Pathogenic0.921Likely PathogenicAmbiguous0.651Likely Pathogenic-0.30Likely Benign0.30.57Ambiguous0.14Likely Benign0.56Ambiguous-2.69Deleterious0.511Possibly Damaging0.147Benign-1.23Pathogenic0.04Affected3.373512-0.414.03
c.1712C>TS571L
(3D Viewer)
Likely PathogenicGAPUncertain 16-33440764-C-T16.23e-7-11.651Likely Pathogenic0.660Likely PathogenicLikely Benign0.841Likely Pathogenic-1.53Ambiguous0.1-1.05Ambiguous-1.29Ambiguous0.27Likely Benign-5.61Deleterious1.000Probably Damaging0.996Probably Damaging-1.25Pathogenic0.04Affected3.3735-2-34.626.08
c.1409T>CM470T
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.104Likely Pathogenic0.976Likely PathogenicLikely Pathogenic0.763Likely Pathogenic3.19Destabilizing0.12.68Destabilizing2.94Destabilizing1.49Destabilizing-5.30Deleterious0.996Probably Damaging0.985Probably Damaging-1.08Pathogenic0.24Tolerated3.3734-1-1-2.6-30.09213.846.50.00.0-0.20.2XXPotentially PathogenicThe thioether group of Met470, located in the middle of an α helix (res. Ala461–Phe476), interacts with hydrophobic residues in the inter-helix space (e.g., Val473, Leu558, Cys576, Trp572) formed by two other α helices (res. Ser604–Arg581, res. Pro562–Arg579). In the WT simulations, the Met470 side chain also packs against the positively charged guanidinium groups of Arg575, Arg429, and Arg579, which form salt bridges with the negatively charged carboxylate groups of the Asp474 and Asp467 side chains at the protein surface. In the variant simulations, the hydroxyl group of the Thr470 side chain forms an H-bond with the backbone carbonyl group of Ser466 in the α helix, potentially lowering its structural integrity. Importantly, the hydroxyl group of Thr470 also forms an H-bond with the guanidinium group of Arg575, which helps it form a more permanent salt bridge with Asp467.
c.1423C>TR475W
(3D Viewer)
Likely PathogenicGAPUncertain 16-33438455-C-T16.20e-7-13.235Likely Pathogenic0.962Likely PathogenicLikely Pathogenic0.725Likely Pathogenic1.44Ambiguous0.4-0.92Ambiguous0.26Likely Benign0.56Ambiguous-7.56Deleterious1.000Probably Damaging0.995Probably Damaging-1.45Pathogenic0.00Affected3.39282-33.630.03266.939.60.00.00.00.1XXXPotentially PathogenicIn the WT simulations, the guanidinium group of Arg475, located near the end of an α-helix (res. Ala461-Phe476), stacks with the phenyl ring of Phe476 and forms a salt bridge with Glu472. Additionally, Arg475 occasionally forms another salt bridge with the carboxylate group of Glu486 on the α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. Therefore, Arg475 potentially plays a key role in positioning the loop by interacting with Glu486, which is necessary for the positioning of the “arginine finger” (Arg485) and, ultimately, for RasGTPase activation.In the variant simulations, Trp475 moves and stacks with Arg479 on the proceeding α-α loop, disrupting the terminal end of the α-helix. Lastly, the potential effect of the residue swap on the SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.1424G>AR475Q
(3D Viewer)
Likely PathogenicGAPUncertain 26-33438456-G-A53.10e-6-12.087Likely Pathogenic0.721Likely PathogenicLikely Benign0.632Likely Pathogenic0.71Ambiguous0.10.12Likely Benign0.42Likely Benign0.82Ambiguous-3.65Deleterious1.000Probably Damaging0.991Probably Damaging-1.32Pathogenic0.01Affected3.3928111.0-28.06253.652.70.00.0-0.80.0XXXPotentially PathogenicIn the WT simulations, the guanidinium group of Arg475, located near the end of an α-helix (res. Ala461-Phe476), stacks with the phenyl ring of Phe476 and forms a salt bridge with Glu472. Additionally, Arg475 occasionally forms another salt bridge with the carboxylate group of Glu486 on the α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. Therefore, Arg475 potentially plays a key role in positioning the loop by interacting with Glu486, which is necessary for the positioning of the “arginine finger” (Arg485) and, ultimately, for RasGTPase activation. In the variant simulations, Asn475 forms a hydrogen bond with Arg479 on the proceeding α-α loop. The absence of Phe476/Arg475 stacking and the Arg475-Glu472 salt bridge weakens the integrity of the terminal end of the α-helix during the variant simulations. Lastly, the potential effect of the residue swap on the SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.1428C>GF476L
(3D Viewer)
GAPUncertain 26-33438460-C-G42.48e-6-10.109Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.180Likely Benign1.00Ambiguous0.11.04Ambiguous1.02Ambiguous0.75Ambiguous-1.10Neutral0.997Probably Damaging0.978Probably Damaging3.53Benign0.60Tolerated3.4022201.0-34.02235.916.10.00.1-0.20.0XPotentially BenignIn the WT simulations, the phenyl ring of Phe476, located at the end of an α-helix (res. Ala461-Phe476), packs with the hydrophobic side chains of Leu482 and Ile483. Additionally, Phe476 stacks with the Arg475 side chain on the preceding α-α loop connecting the two α-helices (res. Ala461-Phe476 and res. Leu489-Glu519) near the GAP-Ras interface.In the variant simulations, Leu476 can maintain hydrophobic packing with neighboring residues, although not as efficiently as the phenylalanine in the WT system. The absence of Phe476/Arg475 stacking weakens the integrity of the α-helix end in the variant simulations. Nonetheless, no large-scale adverse effects are observed in the simulations. Lastly, the potential effect of the residue swap on SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.172A>GM58VLikely BenignUncertain 1-2.211Likely Benign0.688Likely PathogenicLikely Benign0.160Likely Benign-0.71Neutral0.006Benign0.091Benign4.19Benign0.00Affected4.321122.3-32.06
c.1736G>AR579Q
(3D Viewer)
Likely PathogenicGAPUncertain 16-33440788-G-A181.12e-5-9.193Likely Pathogenic0.690Likely PathogenicLikely Benign0.673Likely Pathogenic0.65Ambiguous0.10.70Ambiguous0.68Ambiguous1.13Destabilizing-3.31Deleterious1.000Probably Damaging0.995Probably Damaging-1.34Pathogenic0.06Tolerated3.3734111.0-28.06
c.1738G>AG580S
(3D Viewer)
Likely PathogenicGAPUncertain 16-33440790-G-A16.20e-7-10.788Likely Pathogenic0.861Likely PathogenicAmbiguous0.644Likely Pathogenic2.84Destabilizing0.20.59Ambiguous1.72Ambiguous0.87Ambiguous-5.73Deleterious1.000Probably Damaging0.999Probably Damaging-1.23Pathogenic0.07Tolerated3.373410-0.430.03233.9-49.30.80.00.60.1XPotentially BenignGly580 is located on the outer surface in a short α-α loop turn connecting two α-helices (res. Arg563-Glu578, res. Glu582-Phe608) in the WT simulations. In the variant simulations, the side chain of Ser580 faces outward, and its hydroxyl group does not make any new or additional interactions compared to Gly580 in the WT simulations that could affect the protein structure.
c.1763T>CL588P
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.771Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.932Likely Pathogenic5.61Destabilizing0.512.91Destabilizing9.26Destabilizing2.33Destabilizing-6.97Deleterious1.000Probably Damaging1.000Probably Damaging-1.42Pathogenic0.00Affected3.3834-3-3-5.4-16.04
c.1778T>CL593P
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.961Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.777Likely Pathogenic5.75Destabilizing0.910.77Destabilizing8.26Destabilizing2.43Destabilizing-6.77Deleterious1.000Probably Damaging1.000Probably Damaging2.77Benign0.00Affected-3-3-5.4-16.04
c.1453C>TR485C
(3D Viewer)
Likely PathogenicGAPUncertain 26-33438485-C-T95.58e-6-14.294Likely Pathogenic0.976Likely PathogenicLikely Pathogenic0.597Likely Pathogenic1.00Ambiguous0.10.26Likely Benign0.63Ambiguous0.44Likely Benign-7.96Deleterious1.000Probably Damaging1.000Probably Damaging1.90Pathogenic0.00Affected3.3735-4-37.0-53.05225.599.6-0.10.0-0.30.2XUncertainThe guanidinium group of Arg485 is located in a short helical structure (res. Glu480-Leu482) within an α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. The side chain of Arg485 acts as the “arginine finger” of SynGAP, playing a crucial role in Ras-GTPase activation. Consequently, the residue swap inhibits the conversion of GTP to GDP at the enzyme’s active site. Although no negative effects on the protein structure are observed during the simulations, no definite conclusions can be drawn due to the critical role of Arg485 in GTPase activation.
c.1456G>AE486K
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.545Likely Pathogenic0.988Likely PathogenicLikely Pathogenic0.435Likely Benign0.06Likely Benign0.10.37Likely Benign0.22Likely Benign0.41Likely Benign-3.58Deleterious1.000Probably Damaging0.988Probably Damaging3.40Benign0.12Tolerated3.373501-0.4-0.94206.852.1-0.30.10.20.0XXUncertainGlu486 is located in an α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. It is adjacent to the arginine finger (Arg485) and is expected to closely interact with Ras. The residue swap could affect complex formation with the GTPase and its activation. In the WT simulations, the carboxylate group of Glu486 forms salt bridges with Arg485 and Arg475 on the preceding α-helix (res. Ala461-Phe476). In the variant simulations, Lys486 does not form any specific interactions. Although the amino group of the Lys486 side chain cannot form these salt bridges, no negative effects on the protein structure are observed. Nevertheless, the potential role of Glu486 in SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations, and no definite conclusions can be drawn.
c.1465C>TL489F
(3D Viewer)
Likely PathogenicGAPUncertain 26-33438497-C-T16.20e-7-12.066Likely Pathogenic0.965Likely PathogenicLikely Pathogenic0.724Likely Pathogenic1.72Ambiguous0.51.14Ambiguous1.43Ambiguous0.56Ambiguous-3.76Deleterious1.000Probably Damaging0.997Probably Damaging-1.51Pathogenic0.01Affected3.373520-1.034.02246.4-17.80.00.00.60.1XPotentially BenignThe iso-butyl side chain of Leu489, located in the α-helix (res. Leu489-Glu519) within an inter-helix space of four helices (res. Ala461-Phe476, res. Val441-Ser457, and res. Met414-Glu436), packs with hydrophobic residues (e.g., Cys432, Ala448, Lys444, Ala493, Val447, Met468) in the inter-helix space. In the variant simulations, the phenyl ring of the Phe489 side chain can also pack favorably in the hydrophobic region. However, due to the size difference, the aromatic side chain of Phe489 tends to reposition to escape the tight region to accommodate the larger side chain, stacking with Lys444. Although no apparent negative changes are observed during the variant simulation, the size difference between the swapped residues could affect the protein folding process.
c.1784T>AL595Q
(3D Viewer)
Likely PathogenicGAPUncertain 1-15.101Likely Pathogenic0.984Likely PathogenicLikely Pathogenic0.733Likely Pathogenic0.79Ambiguous0.11.40Ambiguous1.10Ambiguous1.99Destabilizing-5.97Deleterious1.000Probably Damaging1.000Probably Damaging2.75Benign0.00Affected3.3735-2-2-7.314.97
c.1784T>CL595P
(3D Viewer)
Likely PathogenicGAPUncertain 1-11.856Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.747Likely Pathogenic2.09Destabilizing0.85.88Destabilizing3.99Destabilizing1.78Destabilizing-6.97Deleterious1.000Probably Damaging1.000Probably Damaging2.72Benign0.00Affected3.3735-3-3-5.4-16.04
c.1789T>CF597L
(3D Viewer)
Likely PathogenicGAPUncertain 1-10.173Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.929Likely Pathogenic0.74Ambiguous0.12.12Destabilizing1.43Ambiguous1.20Destabilizing-5.97Deleterious0.999Probably Damaging0.994Probably Damaging-2.06Pathogenic0.13Tolerated201.0-34.02
c.1792C>GL598V
(3D Viewer)
Likely PathogenicGAPUncertain 1-10.002Likely Pathogenic0.578Likely PathogenicLikely Benign0.221Likely Benign1.89Ambiguous0.11.58Ambiguous1.74Ambiguous1.01Destabilizing-2.92Deleterious0.944Possibly Damaging0.786Possibly Damaging3.21Benign0.02Affected3.3735210.4-14.03218.429.60.00.00.80.0XPotentially BenignThe iso-butyl side chain of Leu598, located on an α helix (res. Glu582-Met603), packs hydrophobically with other hydrophobic residues in the inter-helix space (e.g., Ile602, Phe594, Ile510).In the variant simulations, Val598, which has similar size and physicochemical properties to leucine, resides in the inter-helix hydrophobic space in a similar manner to Leu598 in the WT. This causes no negative effects on the protein structure.
c.1487A>GE496G
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.529Likely Pathogenic0.850Likely PathogenicAmbiguous0.825Likely Pathogenic1.83Ambiguous0.11.76Ambiguous1.80Ambiguous0.92Ambiguous-6.16Deleterious1.000Probably Damaging0.999Probably Damaging-1.45Pathogenic0.02Affected3.37350-23.1-72.06173.9103.10.00.0-0.70.0XXPotentially PathogenicGlu496 is located in the α-helix (res. Leu489-Glu519), and its carboxylate group forms salt bridges with the neighbouring residues Lys492 and Arg499 in the WT simulations. Glu496 also forms a hydrogen bond with Ser449 on an opposing helix (res. Val441-Ser457). In the variant simulations, Gly496 cannot form these salt bridges, which could weaken the secondary structure. Additionally, the loss of the hydrogen bond with Ser449 on the opposite helix can weaken the tertiary structure assembly. Moreover, glycine is an α-helix breaker, and it is seen to weaken the integrity of the helix as the hydrogen bonding between the backbone atoms of Gly496 and Ala493 breaks down. Also, due to its location at the GAP-Ras interface, the interaction of Glu496 with Arg499 and Lys492 might play a role in complex association and stability, which cannot be fully addressed using the SynGAP solvent-only simulations.
c.1490A>GY497C
(3D Viewer)
Likely PathogenicGAPUncertain 1-11.872Likely Pathogenic0.948Likely PathogenicAmbiguous0.806Likely Pathogenic3.88Destabilizing0.14.76Destabilizing4.32Destabilizing1.40Destabilizing-8.82Deleterious1.000Probably Damaging0.995Probably Damaging-1.65Pathogenic0.03Affected3.37350-23.8-60.04209.959.1-0.10.0-0.30.1XXPotentially PathogenicTyr497 is located in the α-helix (res. Leu489-Glu519) within the inter-helix space of four α-helices (res. Leu489-Ile501, res. Val441-Ser457, res. Arg563-Glu578, res. Ala461-Val473). In the WT simulations, the phenol ring of Tyr497 hydrophobically packs with other residues in the inter-helix space (e.g., Leu465, Leu565, Val568). The hydroxyl group of Tyr497 also alternately forms hydrogen bonds with the carboxylate side chain of Gln456 and the backbone carbonyl of Glu564. Thus, Tyr497 plays a role in the folding and maintenance of the tertiary structure assembly between these four helices.In the variant simulations, the comparatively smaller residue, Cys497, cannot maintain any of the interactions seen with Tyr497 in the WT. Although no severe deleterious consequences are observed in the simulations, the structural effects could be more pronounced during actual protein folding. Indeed, the tertiary structure is seen to slightly break apart in the variant simulations.
c.182A>CE61ALikely BenignUncertain 1-5.235Likely Benign0.453AmbiguousLikely Benign0.074Likely Benign-1.52Neutral0.458Possibly Damaging0.678Possibly Damaging4.12Benign0.00Affected0-15.3-58.04
c.1832T>CM611T
(3D Viewer)
Likely BenignGAPUncertain 16-33440884-T-C16.19e-7-5.696Likely Benign0.101Likely BenignLikely Benign0.240Likely Benign1.98Ambiguous0.20.94Ambiguous1.46Ambiguous0.87Ambiguous-2.40Neutral0.034Benign0.038Benign-1.19Pathogenic0.29Tolerated3.3735-1-1-2.6-30.09
c.1835A>CQ612P
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.684Likely Pathogenic0.673Likely PathogenicLikely Benign0.671Likely Pathogenic-0.19Likely Benign0.33.06Destabilizing1.44Ambiguous0.56Ambiguous-5.84Deleterious1.000Probably Damaging1.000Probably Damaging-1.31Pathogenic0.19Tolerated0-11.9-31.01
c.1851G>TE617D
(3D Viewer)
Likely BenignGAPUncertain 1-1.349Likely Benign0.241Likely BenignLikely Benign0.322Likely Benign0.12Likely Benign0.10.80Ambiguous0.46Likely Benign0.07Likely Benign-0.01Neutral0.994Probably Damaging0.979Probably Damaging-1.35Pathogenic0.88Tolerated3.3735230.0-14.03
c.1855A>TT619S
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.608Likely Pathogenic0.677Likely PathogenicLikely Benign0.602Likely Pathogenic1.09Ambiguous0.21.35Ambiguous1.22Ambiguous0.85Ambiguous-3.42Deleterious0.999Probably Damaging0.998Probably Damaging-1.30Pathogenic0.05Affected3.373511-0.1-14.03
c.1873C>GL625VLikely PathogenicGAPUncertain 1-11.319Likely Pathogenic0.833Likely PathogenicAmbiguous0.480Likely Benign1.80Ambiguous0.71.69Ambiguous1.75Ambiguous1.42Destabilizing-2.96Deleterious0.998Probably Damaging0.992Probably Damaging3.07Benign0.01Affected210.4-14.03
c.1502T>CI501T
(3D Viewer)
Likely BenignGAPUncertain 1-5.996Likely Benign0.252Likely BenignLikely Benign0.362Likely Benign2.40Destabilizing0.11.81Ambiguous2.11Destabilizing1.57Destabilizing-3.48Deleterious1.000Probably Damaging1.000Probably Damaging3.44Benign0.16Tolerated3.37350-1-5.2-12.05214.526.90.00.00.50.0XPotentially PathogenicIle501 is located near a hinge in the middle of an α-helix (res. Leu489-Glu519). The sec-butyl side chain of Ile501 is hydrophobically packed with other residues in the inter-helix space (e.g., Leu500, Tyr497, Phe679) in the WT simulations. In the variant simulations, the hydroxyl group of Thr501 forms a hydrogen bond with the backbone atoms of Tyr497 on the same α-helix, which may weaken the α-helix integrity. Additionally, the polar hydroxyl group of Thr501 is not suitable for the hydrophobic inter-helix space, and thus, the residue swap could affect protein folding. However, Ile501 is followed by Gly502, which facilitates a hinge in the middle of the α-helix, making further weakening caused by Thr501 unlikely to be harmful to the α-helix integrity.
c.1505G>AG502D
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.796Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.915Likely Pathogenic3.79Destabilizing0.95.69Destabilizing4.74Destabilizing1.38Destabilizing-6.80Deleterious0.999Probably Damaging0.977Probably Damaging-1.66Pathogenic0.00Affected3.37351-1-3.158.04224.2-80.0-0.80.70.60.3XXXPotentially PathogenicGly502 is located in a hinge in the middle of an α-helix (res. Leu489-Glu519). In the WT, Gly502 acts as an α-helix breaker due to its lack of a side chain, facilitating a bend in the middle of the α-helix. In the variant simulations, the carboxylate group of Asp502 forms hydrogen bonds with neighboring residues (e.g., Ser677, Lys504), disrupting the hinge. Additionally, Asp502 struggles to fit into the α-helix hinge and cannot generate a similar bend as Gly502, which would drastically affect the secondary structure during folding. Thus, the deleterious effect seen in the simulations is likely an underestimate of the impact of the residue swap on the protein structure during protein folding.
c.1877T>CI626TLikely PathogenicGAPUncertain 1-10.420Likely Pathogenic0.946Likely PathogenicAmbiguous0.640Likely Pathogenic2.94Destabilizing0.12.70Destabilizing2.82Destabilizing2.23Destabilizing-4.18Deleterious1.000Probably Damaging1.000Probably Damaging3.04Benign0.00Affected0-1-5.2-12.05
c.187G>AE63KLikely BenignUncertain 1-4.976Likely Benign0.894Likely PathogenicAmbiguous0.103Likely Benign-0.70Neutral0.458Possibly Damaging0.678Possibly Damaging3.98Benign0.00Affected4.32110-0.4-0.94
c.187G>CE63QLikely BenignUncertain 1-4.038Likely Benign0.687Likely PathogenicLikely Benign0.078Likely Benign-0.85Neutral0.659Possibly Damaging0.775Possibly Damaging3.90Benign0.00Affected4.321220.0-0.98
c.1913A>GK638R
(3D Viewer)
Likely BenignGAPUncertain 1-2.700Likely Benign0.110Likely BenignLikely Benign0.216Likely Benign0.09Likely Benign0.1-0.04Likely Benign0.03Likely Benign0.53Ambiguous-2.55Deleterious0.649Possibly Damaging0.240Benign3.41Benign0.13Tolerated3.373123-0.628.01
c.1942T>CF648LLikely PathogenicGAPUncertain 1-9.296Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.468Likely Benign2.71Destabilizing0.82.08Destabilizing2.40Destabilizing1.04Destabilizing-5.98Deleterious0.999Probably Damaging0.976Probably Damaging3.45Benign0.08Tolerated201.0-34.02
c.194A>GH65RLikely BenignUncertain 16-33425802-A-G16.20e-7-1.980Likely Benign0.967Likely PathogenicLikely Pathogenic0.073Likely Benign-1.60Neutral0.462Possibly Damaging0.227Benign4.19Benign0.00Affected4.32120-1.319.05
c.1544G>AR515H
(3D Viewer)
Likely PathogenicGAPUncertain 16-33438787-G-A31.86e-6-10.774Likely Pathogenic0.337Likely BenignLikely Benign0.730Likely Pathogenic1.07Ambiguous0.20.74Ambiguous0.91Ambiguous1.09Destabilizing-3.44Deleterious1.000Probably Damaging0.998Probably Damaging-1.32Pathogenic0.01Affected3.3735201.3-19.05239.277.80.00.00.40.2XPotentially BenignThe guanidinium group of Arg515, located in the middle of an α-helix at the GAP domain (res. Gly502-Tyr518), forms salt bridges with the carboxylate groups of Glu512 on the same helix and Glu217 on a loop in the PH domain. Additionally, the positively charged Arg515 side chain forms hydrogen bonds with Leu610 and Gln612 in an opposing loop (res. Gly609-Asp616). In contrast, in the variant simulations, the imidazole ring of His515 cannot form salt bridges with either of the acidic residues, and its side chain is too short to form hydrogen bonds with the loop residues. Accordingly, the residue swap could weaken the tertiary structure assembly of the protein. Due to the missing N-terminal part of the SynGAP model, the effect could be largely underestimated or missing. Notably, the doubly protonated and positively charged form of histidine was not simulated here.
c.1579G>TD527Y
(3D Viewer)
Likely PathogenicGAPUncertain 1-15.386Likely Pathogenic0.978Likely PathogenicLikely Pathogenic0.905Likely Pathogenic-0.77Ambiguous0.21.89Ambiguous0.56Ambiguous-0.14Likely Benign-8.79Deleterious1.000Probably Damaging0.999Probably Damaging-2.41Pathogenic0.00Affected3.3735-4-32.248.09270.9-45.70.10.1-0.10.0XPotentially PathogenicAsp527 is located on an α-α loop between the two α-helices (res. Gly502-Tyr518 and Ala533-Val560). In the WT simulations, the carboxylate group of the Asp527 side chain forms hydrogen bonds with the backbone atoms of loop residues (e.g., Ile529, Lys530) facing the membrane surface. In the variant simulations, Tyr527 is a bulkier residue that faces away from the loop and stacks with Phe646 in a nearby α-helix (res. Ser614-Ser668). Regardless, no negative structural effects are observed during the variant simulations. However, due to its location near the SynGAP-membrane interface, the effect of the residue swap cannot be fully addressed using the SynGAP solvent-only simulations.
c.1586T>CI529T
(3D Viewer)
Likely BenignGAPUncertain 1-0.539Likely Benign0.336Likely BenignLikely Benign0.343Likely Benign0.22Likely Benign0.20.16Likely Benign0.19Likely Benign0.17Likely Benign0.24Neutral0.872Possibly Damaging0.820Possibly Damaging-1.23Pathogenic0.55Tolerated3.37350-1-5.2-12.05207.229.80.20.00.20.1XPotentially BenignIle529 is located on an α-α loop between the two α-helices (res. Gly502-Tyr518 and Ala533-Val560). In the WT simulations, the sec-butyl side chain of Ile529 faces the membrane interface and shows no specific interactions. In the variant simulations, the hydroxyl group of Thr529 forms a hydrogen bond with the carboxylate side chain of Asp527, but no negative structural changes are observed. However, due to its location near the SynGAP-membrane interface, the effect of the residue swap cannot be fully addressed using the SynGAP solvent-only simulations.
c.1957C>GL653VLikely BenignGAPUncertain 1-7.050In-Between0.301Likely BenignLikely Benign0.146Likely Benign3.28Destabilizing0.32.18Destabilizing2.73Destabilizing1.32Destabilizing-2.25Neutral0.227Benign0.039Benign3.28Benign0.08Tolerated210.4-14.03
c.1964T>AL655Q
(3D Viewer)
Likely BenignGAPUncertain 1-5.278Likely Benign0.144Likely BenignLikely Benign0.139Likely Benign-0.01Likely Benign0.00.69Ambiguous0.34Likely Benign-0.15Likely Benign0.61Neutral0.955Possibly Damaging0.602Possibly Damaging3.59Benign0.65Tolerated3.3924-2-2-7.314.97229.9-8.60.00.00.40.0XPotentially BenignThe iso-butyl side chain of Leu655, located on the surface of an α helix (res. Ser641-Glu666), is not involved in any interactions in the WT simulations. In the variant simulations, the carboxamide side chain of Gln655 dynamically interacts with neighboring residues (e.g., Glu651, Glu656, Arg544) on the protein surface, with no negative structural effects.
c.196C>GP66ALikely BenignUncertain 1-2.845Likely Benign0.891Likely PathogenicAmbiguous0.091Likely Benign-1.56Neutral0.805Possibly Damaging0.539Possibly Damaging4.04Benign0.00Affected4.3211-13.4-26.04
c.1970G>TW657L
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.411Likely Pathogenic0.960Likely PathogenicLikely Pathogenic0.213Likely Benign0.14Likely Benign0.10.73Ambiguous0.44Likely Benign0.87Ambiguous-10.86Deleterious0.277Benign0.078Benign3.52Benign0.14Tolerated3.3924-2-24.7-73.05
c.1971G>CW657CLikely PathogenicGAPUncertain 1-12.035Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.463Likely Benign2.74Destabilizing0.31.69Ambiguous2.22Destabilizing1.30Destabilizing-11.06Deleterious1.000Probably Damaging0.982Probably Damaging3.43Benign0.03Affected-8-23.4-83.07
c.1973G>AG658D
(3D Viewer)
GAPUncertain 16-33441232-G-A31.86e-6-7.786In-Between0.442AmbiguousLikely Benign0.144Likely Benign-0.40Likely Benign0.1-0.59Ambiguous-0.50Ambiguous0.46Likely Benign-2.64Deleterious0.008Benign0.005Benign3.53Benign0.38Tolerated3.39241-1-3.158.04219.8-84.30.00.00.20.1XPotentially PathogenicGly658, located on the outer surface of an α helix (res. Ser641-Glu666), weakens the helix integrity at that spot, which is necessary for the kink in the middle of the long helix. In the variant simulations, the carboxylic acid side chain of Asp658 is on the surface of the α helix and is not involved in any interactions. However, aspartate is not as effective a breaker of the secondary structure element as glycine, which may lead to misfolding.
c.1621G>CA541P
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.733Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.594Likely Pathogenic2.47Destabilizing0.37.26Destabilizing4.87Destabilizing0.86Ambiguous-3.16Deleterious1.000Probably Damaging0.998Probably Damaging-1.34Pathogenic0.07Tolerated3.37351-1-3.426.04170.4-11.20.10.00.10.0XPotentially PathogenicAla541 is located on the outer surface of an α-helix (res. Ala533-Val560). The methyl group of Ala541 is on the surface and does not form any interactions. Proline lacks a free backbone amide group, and thus, Pro541 is unable to form a hydrogen bond with the carbonyl group of Ala537 in the variant simulations. Consequently, Pro541 disrupts the continuity of the secondary structure element, causing the α-helix to bend slightly in the variant simulations.
c.1631G>CR544P
(3D Viewer)
Likely PathogenicGAPUncertain 2-16.905Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.762Likely Pathogenic4.70Destabilizing0.14.19Destabilizing4.45Destabilizing1.14Destabilizing-4.88Deleterious1.000Probably Damaging1.000Probably Damaging-1.48Pathogenic0.05Affected3.37350-22.9-59.07192.0123.80.10.0-0.30.0XXPotentially PathogenicArg544 is located in the middle of an α-helix (res. Ala533-Val560). In the WT simulations, the guanidinium side chain of Arg544 forms a salt bridge with the carboxylate groups of Glu548 on the same α-helix, and with Glu651 and Glu656 on an opposing α-helix (res. Glu666-Asp644). In the variant simulations, the pyrrolidine side chain of Pro544 cannot form any of the salt bridges that Arg544 does in the WT, potentially weakening the tertiary structure assembly. Additionally, Pro544 lacks the amide group, and thus, unlike Arg544 in the WT, is unable to form a hydrogen bond with the carbonyl of Gln540. This disruption breaks the continuity of the secondary structure element, causing the α-helix to bend slightly in the variant simulations. These negative structural effects could be more pronounced during protein folding and are likely to be undermined in the MD simulations.
c.1976C>TS659F
(3D Viewer)
Likely PathogenicGAPUncertain 1-10.925Likely Pathogenic0.662Likely PathogenicLikely Benign0.194Likely Benign-0.81Ambiguous0.1-0.25Likely Benign-0.53Ambiguous0.32Likely Benign-4.59Deleterious0.806Possibly Damaging0.171Benign3.39Benign0.05Affected3.3828-3-23.660.10221.3-61.20.00.00.60.4XPotentially BenignIn the WT simulations, the hydroxyl group of Ser659, located in a kink in the middle of the long α-helix (res. Ser641-Glu666), forms a hydrogen bond with the carboxylate group of Glu656. However, the phenol ring of the Phe659 side chain cannot form a similar hydrogen bond. Instead, it interacts with the hydrophobic isopropyl side chain of Val555 from the opposing α-helix (res. Ala533-Val560). This residue swap may therefore cause issues during protein folding.
c.2050G>AD684N
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.155Likely Pathogenic0.985Likely PathogenicLikely Pathogenic0.382Likely Benign1.47Ambiguous0.81.76Ambiguous1.62Ambiguous0.37Likely Benign-4.99Deleterious0.999Probably Damaging0.746Possibly Damaging3.39Benign0.01Affected210.0-0.98
c.2050G>CD684H
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.194Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.613Likely Pathogenic3.36Destabilizing1.02.95Destabilizing3.16Destabilizing0.55Ambiguous-6.98Deleterious1.000Probably Damaging0.972Probably Damaging3.36Benign0.00Affected3.4217-110.322.05
c.1639T>CC547R
(3D Viewer)
Likely PathogenicGAPUncertain 1-16.967Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.900Likely Pathogenic7.76Destabilizing0.85.83Destabilizing6.80Destabilizing1.69Destabilizing-11.60Deleterious1.000Probably Damaging0.998Probably Damaging-1.33Pathogenic0.02Affected3.3735-4-3-7.053.05267.4-90.30.00.0-0.10.1XXXXPotentially PathogenicCys547 is located in an α-helix (res. Ala533-Val560). The thiol side chain of Cys is situated in a hydrophobic inter-helix space, where it packs hydrophobically with other residues such as Ile626, Leu551, and Phe652. Additionally, the thiol side chain of Cys547 weakly hydrogen bonds with the carbonyl group of Leu543 in the same α-helix. In the variant simulations, the bulkier, positively charged guanidinium group of Arg547 must rotate out of the hydrophobic space. Consequently, it forms ionic interactions with the carboxylate groups of Glu548 in the same helix and Glu656 in the neighboring α-helix (res. Glu666-Asp644). This causes the two helices to slightly separate, significantly affecting the secondary structure integrity of the latter helix. These negative structural effects could be more pronounced during protein folding and are likely to be undermined in the MD simulations.
c.1658A>CK553T
(3D Viewer)
Likely PathogenicGAPUncertain 1-15.328Likely Pathogenic0.990Likely PathogenicLikely Pathogenic0.761Likely Pathogenic1.06Ambiguous0.20.48Likely Benign0.77Ambiguous0.79Ambiguous-5.77Deleterious1.000Probably Damaging1.000Probably Damaging-1.34Pathogenic0.14Tolerated3.37350-13.2-27.07218.2-10.70.00.0-0.20.5XPotentially PathogenicLys533 is located on an α-helix (res. Ala533-Val560). In the WT simulations, Lys533 packs against Phe513, and its amino side chain occasionally forms an ionic interaction with the carboxylate group of Glu512 from an opposing α-helix (res. Gln503-Tyr518). In the variant simulations, Thr533 is unable to reproduce these interactions, potentially weakening the integrity of the tertiary structure. Additionally, Thr533 forms a hydrogen bond with the backbone carbonyl group of Leu549 in the same helix, which could potentially weaken the secondary structure. Regardless, the residue swap does not cause significant structural effects based on the simulations.
c.1667A>GN556S
(3D Viewer)
GAPUncertain 16-33438910-A-G31.86e-6-6.576Likely Benign0.197Likely BenignLikely Benign0.449Likely Benign0.52Ambiguous0.10.14Likely Benign0.33Likely Benign0.16Likely Benign-3.60Deleterious1.000Probably Damaging0.989Probably Damaging-1.22Pathogenic0.14Tolerated3.3735112.7-27.03198.831.00.00.0-0.50.2XPotentially BenignAsn556 is located on the outer surface of an α-helix (res. Ala533-Val560). The carboxamide group of Asn556 forms hydrogen bonds with nearby residues such as Lys553 and Cys552. It also forms a hydrogen bond with the backbone carbonyl group of Cys552, which weakens the α-helix integrity. In the variant simulations, the hydroxyl group of Ser556 forms a more stable hydrogen bond with the backbone carbonyl oxygen of the same helix residue, Cys552, compared to Asn556 in the WT. Serine has a slightly lower propensity to reside in an α-helix than asparagine, which may exacerbate the negative effect on the α-helix integrity. However, the residue swap does not cause negative structural effects during the simulations.
c.2086C>GL696V
(3D Viewer)
Likely PathogenicGAPUncertain 1-11.909Likely Pathogenic0.745Likely PathogenicLikely Benign0.351Likely Benign2.35Destabilizing0.11.85Ambiguous2.10Destabilizing1.46Destabilizing-2.79Deleterious0.992Probably Damaging0.970Probably Damaging3.16Benign0.00Affected3.4613120.4-14.03

Found 757 rows. Show 200 rows per page. Page 2/4 |