SynGap Missense Server

Table of SynGAP1 Isoform α2 (UniProt Q96PV0-1) Missense Variants.

c.dna Variant SGM Consensus Domain ClinVar gnomAD ESM1b AlphaMissense REVEL FoldX Rosetta Foldetta PremPS PROVEAN PolyPhen-2 HumDiv PolyPhen-2 HumVar FATHMM SIFT PAM Physical SASA Normalized B-factor backbone Normalized B-factor sidechain SynGAP Structural Annotation DOI
Clinical Status Review Subm. ID Allele count Allele freq. LLR score Prediction Pathogenicity Class Optimized Score Prediction Average ΔΔG Prediction StdDev ΔΔG Prediction ΔΔG Prediction ΔΔG Prediction Score Prediction pph2_prob Prediction pph2_prob Prediction Nervous System Score Prediction Prediction Status Conservation Sequences PAM250 PAM120 Hydropathy Δ MW Δ Average Δ Δ StdDev Δ StdDev Secondary Tertiary bonds Inside out GAP-Ras interface At membrane No effect MD Alert Verdict Description
c.1835A>CQ612P
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.684Likely Pathogenic0.673Likely PathogenicLikely Benign0.671Likely Pathogenic-0.19Likely Benign0.33.06Destabilizing1.44Ambiguous0.56Ambiguous-5.84Deleterious1.000Probably Damaging1.000Probably Damaging-1.31Pathogenic0.19Tolerated0-11.9-31.01
c.1625A>GN542S
(3D Viewer)
Likely PathogenicGAPLikely Benign 1-9.675Likely Pathogenic0.767Likely PathogenicLikely Benign0.752Likely Pathogenic0.98Ambiguous0.10.99Ambiguous0.99Ambiguous0.91Ambiguous-4.40Deleterious1.000Probably Damaging0.989Probably Damaging-1.36Pathogenic0.13Tolerated3.3735112.7-27.03212.532.10.00.0-0.60.3XPotentially PathogenicAsn542 is located in an α-helix (res. Ala533-Val560) next to an α-α loop between two α-helices (res. Gly502-Tyr518 and Ala533-Val560). In the WT simulations, the carboxamide group of the Asn542 side chain forms a hydrogen bond with the backbone carbonyl group of Asn523 and packs favourably against Glu522 from the loop. In contrast, in the variant simulations, the hydroxyl group of the Ser542 side chain is unable to maintain either the hydrogen bond with Asn523 or the packing against the Glu522 side chain. Instead, the hydroxyl group of Ser542 occasionally forms a hydrogen bond with the backbone carbonyl group of Glu538.Altogether, the residue swap results in a looser helix-loop association, which is especially evident in the third replica simulation, where Asn523 moves away from its initial placement next to the α-helix. In short, based on the simulations, the residue swap weakens the GAP domain tertiary structure assembly, which in turn could negatively affect protein folding.
c.1678G>AV560M
(3D Viewer)
GAPUncertain 26-33440730-G-A159.50e-6-9.598Likely Pathogenic0.517AmbiguousLikely Benign0.520Likely Pathogenic-0.33Likely Benign0.10.88Ambiguous0.28Likely Benign0.72Ambiguous-2.42Neutral0.999Probably Damaging0.863Possibly Damaging-1.25Pathogenic0.14Tolerated3.373521-2.332.06234.9-52.60.00.0-0.10.1XPotentially BenignVal560 is located on the surface at the end of an α-helix (res. Ala533-Val560). The iso-propyl group of Val560 favorably packs against Asp508 of the opposing α-helix (res. Gln503-Glu519). However, in the variant simulations, the bulkier thioether side chain of Met560 does not form equally favorable inter-helix interactions. Regardless, no negative structural effects are observed during the simulations.
c.1771G>AA591T
(3D Viewer)
Likely PathogenicGAPConflicting 36-33440823-G-A181.12e-5-9.572Likely Pathogenic0.704Likely PathogenicLikely Benign0.270Likely Benign1.61Ambiguous0.21.00Ambiguous1.31Ambiguous1.19Destabilizing-3.40Deleterious0.955Possibly Damaging0.209Benign3.48Benign0.01Affected3.373510-2.530.03202.9-43.40.20.00.70.1XPotentially BenignThe methyl group of the Ala591 side chain, located in the middle of an α helix (res. Glu582-Met603), packs against hydrophobic residues (e.g., Ile483, Phe484) of an opposing partially helical loop (res. Phe476-Asn487).In the variant simulations, the hydroxyl group of Thr591 can form hydrogen bonds with the backbone carbonyl of Ile843 in the opposing loop or the backbone carbonyl group of Arg587. These interactions could either reinforce the tertiary assembly or weaken the α helix unity. Additionally, the Thr591 side chain can hydrogen bond with the guanidinium group of the Arg587 side chain, potentially strengthening the α helix unity.Overall, the residue swap does not seem to cause any major negative effects on the protein structure.
c.815G>AR272Q
(3D Viewer)
C2Uncertain 26-33437720-G-A148.67e-6-9.559Likely Pathogenic0.286Likely BenignLikely Benign0.321Likely Benign0.73Ambiguous0.10.15Likely Benign0.44Likely Benign1.00Destabilizing-1.81Neutral0.999Probably Damaging0.994Probably Damaging1.88Pathogenic0.03Affected3.3819111.0-28.06255.752.90.00.0-0.20.1XUncertainThe guanidinium group of Arg272, located at the end of an anti-parallel β sheet strand (res. Arg259-Arg272), is stably maintained in an upright and outward position via stacking with the indole ring of the Trp362 side chain in another β strand (res. Thr359-Pro364). In the WT simulations, Arg272 forms hydrogen bonds with the glycine-rich Ω loop residues (res. Val365-Pro398, e.g., Gly380) and creates a salt bridge with the carboxylate group of the Asp304 side chain.In the variant simulations, the carboxamide group of the Gln272 side chain does not stack with the indole ring of Trp362 as stably as the guanidinium group of Arg272 in the WT. Consequently, the Gln272 side chain is freer to interact with the loop residues than Arg272, potentially negatively affecting the dynamic SynGAP-membrane association. Additionally, Arg272 faces the RasGTPase interface, so the residue swap could impact the SynGAP-Ras complex formation and GTPase activation.
c.1405G>AA469T
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.540Likely Pathogenic0.723Likely PathogenicLikely Benign0.527Likely Pathogenic2.26Destabilizing0.11.90Ambiguous2.08Destabilizing0.34Likely Benign-1.46Neutral0.994Probably Damaging0.986Probably Damaging-1.21Pathogenic0.42Tolerated10-2.530.03
c.3181G>TG1061CLikely BenignConflicting 26-33443733-G-T63.73e-6-9.511Likely Pathogenic0.119Likely BenignLikely Benign0.409Likely Benign-1.46Neutral0.938Possibly Damaging0.665Possibly Damaging3.97Benign0.00Affected4.322-3-32.946.09
c.3655T>CY1219HLikely PathogenicCoiled-coilUncertain 1-9.511Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.363Likely Benign-3.62Deleterious1.000Probably Damaging0.999Probably Damaging2.15Pathogenic0.00Affected3.77502-1.9-26.03
c.1702G>TV568L
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.503Likely Pathogenic0.921Likely PathogenicAmbiguous0.651Likely Pathogenic-0.30Likely Benign0.30.57Ambiguous0.14Likely Benign0.56Ambiguous-2.69Deleterious0.511Possibly Damaging0.147Benign-1.23Pathogenic0.04Affected3.373512-0.414.03
c.2015C>TT672M
(3D Viewer)
GAPConflicting 26-33441274-C-T191.18e-5-9.472Likely Pathogenic0.174Likely BenignLikely Benign0.127Likely Benign0.31Likely Benign0.41.52Ambiguous0.92Ambiguous0.41Likely Benign-4.34Deleterious0.993Probably Damaging0.520Possibly Damaging3.39Benign0.00Affected3.4025-1-12.630.09231.9-52.91.10.10.50.0XXPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. Met672 can only form a hydrogen bond with the amino group of the Lys566 side chain via its backbone carbonyl group. Nevertheless, the Lys566-Glu666 salt bridge forms intermittently. This is possible because Asn669 keeps the carboxylate group of Glu666 in the vicinity through hydrogen bonding, and the hydrophobic side chain of Met stays mostly rotated away from the salt bridge. Consequently, no drastic disruption of the hydrogen-bond network that keeps the loop close to the helices occurs in the variant simulations.
c.1402A>GM468V
(3D Viewer)
GAPUncertain 1-9.461Likely Pathogenic0.361AmbiguousLikely Benign0.570Likely Pathogenic2.69Destabilizing0.12.20Destabilizing2.45Destabilizing0.89Ambiguous-1.66Neutral0.998Probably Damaging0.993Probably Damaging-1.21Pathogenic0.08Tolerated3.3731122.3-32.06
c.1322T>CV441A
(3D Viewer)
GAPConflicting 26-33438227-T-C31.86e-6-9.439Likely Pathogenic0.359AmbiguousLikely Benign0.053Likely Benign-0.14Likely Benign0.00.33Likely Benign0.10Likely Benign0.95Ambiguous-2.92Deleterious0.513Possibly Damaging0.214Benign3.44Benign0.93Tolerated3.372900-2.4-28.05195.044.60.00.10.50.0XXUncertainThe iso-propyl side chain of Val441, located on the outer surface of an α helix (res. Asn440-Thr458), does not interact with other residues in the WT simulations. In the variant simulations, the methyl side chain of Ala441 is similarly hydrophobic and does not form any interactions on the outer helix surface. Although the residue swap does not negatively affect the protein structure based on the simulations, it is noteworthy that the residue faces the RasGTPase interface. Thus, the effect of the residue swap on the SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.3376G>TG1126CLikely BenignUncertain 16-33443928-G-T117.35e-6-9.389Likely Pathogenic0.113Likely BenignLikely Benign0.449Likely Benign-1.40Neutral0.005Benign0.005Benign4.74Benign0.02Affected3.775-3-32.946.09
c.3152G>AG1051DBenign 16-33443704-G-A21.24e-6-9.379Likely Pathogenic0.311Likely BenignLikely Benign0.445Likely Benign-0.31Neutral0.761Possibly Damaging0.239Benign-0.74Pathogenic0.39Tolerated3.775-11-3.158.04
c.2443C>TR815CLikely PathogenicSH3-binding motifUncertain 16-33442995-C-T53.10e-6-9.373Likely Pathogenic0.828Likely PathogenicAmbiguous0.174Likely Benign-3.89Deleterious1.000Probably Damaging0.998Probably Damaging2.59Benign0.00Affected4.324-4-37.0-53.05
c.1947G>CM649I
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.361Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.449Likely Benign2.42Destabilizing0.21.96Ambiguous2.19Destabilizing1.01Destabilizing-3.99Deleterious0.672Possibly Damaging0.093Benign3.40Benign0.02Affected3.3827212.6-18.03243.721.50.00.10.00.1XPotentially BenignThe thioether side chain of Met649, located on an α helix (res. Ser641-Glu666), bridges Phe652, Phe648, and Phe639 in an inter-helix hydrophobic cavity in the WT simulations. In the variant simulations, the sec-butyl side chain of Ile649 maintains hydrophobic interactions with nearby residues, with no significant effects on the protein structure.However, methionine is known as a bridging motif for aromatic residues, and these Met-aromatic interactions are lost in the variant. Indeed, in the second variant simulation,the bridging of Phe652, Phe648 and Phe639 is completely lost. In reality, the effect could be more severe on the structure during the protein folding.
c.1154C>GS385W
(3D Viewer)
C2Benign 16-33438059-C-G-9.353Likely Pathogenic0.362AmbiguousLikely Benign0.373Likely Benign0.53Ambiguous0.20.69Ambiguous0.61Ambiguous0.00Likely Benign-0.84Neutral0.986Probably Damaging0.968Probably Damaging4.63Benign0.00Affected4.323-2-3-0.199.14260.4-71.20.51.30.70.4UncertainSer385 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like tryptophan are rarely tolerated. Although no major negative structural effects are observed in the variant simulations, Trp385 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effects on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.10.1016/j.ajhg.2020.11.011
c.1942T>CF648LLikely PathogenicGAPUncertain 1-9.296Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.468Likely Benign2.71Destabilizing0.82.08Destabilizing2.40Destabilizing1.04Destabilizing-5.98Deleterious0.999Probably Damaging0.976Probably Damaging3.45Benign0.08Tolerated201.0-34.02
c.1157G>AG386E
(3D Viewer)
C2Uncertain 16-33438062-G-A-9.286Likely Pathogenic0.686Likely PathogenicLikely Benign0.447Likely Benign3.69Destabilizing2.90.79Ambiguous2.24Destabilizing0.54Ambiguous-0.83Neutral0.860Possibly Damaging0.354Benign3.93Benign0.01Affected4.323-20-3.172.06
c.1213C>TR405C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33438118-C-T63.72e-6-9.206Likely Pathogenic0.713Likely PathogenicLikely Benign0.427Likely Benign0.72Ambiguous0.11.51Ambiguous1.12Ambiguous1.21Destabilizing-7.27Deleterious1.000Probably Damaging1.000Probably Damaging3.61Benign0.02Affected3.3828-4-37.0-53.05221.382.6-0.10.0-0.20.3XXPotentially PathogenicThe guanidinium group of Arg405, located in an anti-parallel β sheet strand of the C2 domain (res. Ala399-Ile411), forms a salt bridge with the carboxylate group of the Glu446 side chain from an opposing α helix (res. Val441-Ser457) in the GAP domain. The positively charged Arg405 side chain also stacks with the aromatic ring of the Phe358 side chain from a loop preceding the β strand (res. Thr359-Thr366), which could assist in maintaining the anti-parallel strand arrangement.In the variant simulations, the thiol-containing side chain of Cys405 is neutral and smaller compared to the arginine side chain. The lack of Arg405-Phe358 stacking affects the loop structure, causing it to assume a β strand form—an effect that could be exacerbated during protein folding. Moreover, the inability of Cys405 to form a salt bridge with Glu446 could affect the tertiary structure assembly, although this is not apparent based on the variant simulations.
c.680G>AG227E
(3D Viewer)
Likely PathogenicPHConflicting 26-33435531-G-A31.86e-6-9.186Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.792Likely Pathogenic2.56Destabilizing0.45.36Destabilizing3.96Destabilizing0.94Ambiguous-6.49Deleterious0.906Possibly Damaging0.360Benign5.72Benign0.01Affected3.43120-2-3.172.06237.7-112.10.10.30.00.3XXUncertainThe introduced residue Glu227 is located in a β hairpin loop connecting two anti-parallel β sheet strands (res. Cys219-Thr224 and Thr228-Ala232). In the variant simulations, the carboxylate group of Glu227 frequently forms a salt bridge with the amino group of the neighboring residue Lys229. Despite this interaction, the integrity of the secondary structure element is not compromised. However, the β hairpins are potential nucleation sites during the initial stages of protein folding. Additionally, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.1966G>CE656Q
(3D Viewer)
GAPUncertain 16-33441225-G-C16.20e-7-9.145Likely Pathogenic0.766Likely PathogenicLikely Benign0.249Likely Benign-0.14Likely Benign0.0-0.81Ambiguous-0.48Likely Benign0.25Likely Benign-2.29Neutral0.980Probably Damaging0.528Possibly Damaging3.46Benign0.02Affected3.3924220.0-0.98224.31.70.00.10.10.0XPotentially BenignThe carboxylate side chain of Glu656, located on an α helix (res. Ser641-Glu666), frequently forms a hydrogen bond with the nearby residue Ser659 on the same α helix. In the variant simulations, the carboxamide side chain of Gln656 alternatively forms a hydrogen bond with either Ser659 or Glu548 on an opposing helix (res. Ala533-Val560).Although the frequent interaction between Gln656 and Glu548 may strengthen or stabilize the tertiary structure assembly, the effect is likely to be marginal.
c.2158G>AD720N
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33441623-G-A53.10e-6-9.135Likely Pathogenic0.654Likely PathogenicLikely Benign0.289Likely Benign0.01Likely Benign0.0-0.20Likely Benign-0.10Likely Benign0.46Likely Benign-3.74Deleterious1.000Probably Damaging0.995Probably Damaging2.18Pathogenic0.01Affected3.509120.0-0.98
c.1214G>AR405H
(3D Viewer)
Likely PathogenicC2Conflicting 26-33438119-G-A42.48e-6-9.081Likely Pathogenic0.706Likely PathogenicLikely Benign0.371Likely Benign2.79Destabilizing0.61.85Ambiguous2.32Destabilizing1.26Destabilizing-4.54Deleterious1.000Probably Damaging0.991Probably Damaging3.65Benign0.01Affected3.3828201.3-19.05214.0102.2-0.10.0-0.70.1XPotentially PathogenicThe guanidinium group of Arg405, located in an anti-parallel β sheet strand of the C2 domain (res. Pro398-Ile411), forms a salt bridge with the carboxylate group of the Glu446 side chain from an opposing α helix (res. Val441-Ser457) in the GAP domain. The positively charged Arg405 side chain also stacks with the aromatic ring of the Phe358 side chain from a loop preceding the β strand (res. Thr359-Thr366), which could assist in maintaining the anti-parallel strand arrangement.In the variant simulations, the imidazole ring of His405 does not stack with the aromatic ring of Phe358 nor form any lasting H-bonds with the loop residues. The imidazole ring of His405 (neutral and epsilon protonated in the simulations) is unable to form a salt bridge with Glu446, which could affect the tertiary structure assembly, although this is not apparent based on the variant simulations.
c.3151G>TG1051CLikely Pathogenic 1-9.050Likely Pathogenic0.122Likely BenignLikely Benign0.497Likely Benign-0.90Neutral0.971Probably Damaging0.750Possibly Damaging-0.74Pathogenic0.10Tolerated3.775-3-32.946.09
c.3154G>AG1052RUncertain 1-9.050Likely Pathogenic0.383AmbiguousLikely Benign0.497Likely Benign-0.41Neutral0.990Probably Damaging0.798Possibly Damaging3.90Benign0.10Tolerated3.775-2-3-4.199.14
c.2458T>AY820NUncertain 1-9.032Likely Pathogenic0.842Likely PathogenicAmbiguous0.143Likely Benign-1.53Neutral0.999Probably Damaging0.977Probably Damaging2.74Benign0.20Tolerated-2-2-2.2-49.07
c.509G>AR170QPathogenic/Likely path. 5-9.021Likely Pathogenic0.798Likely PathogenicAmbiguous0.221Likely Benign-2.31Neutral0.947Possibly Damaging0.342Benign3.91Benign0.00Affected3.744111.0-28.0610.1016/j.ajhg.2020.11.011
c.1606T>GL536V
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.014Likely Pathogenic0.269Likely BenignLikely Benign0.586Likely Pathogenic1.25Ambiguous0.31.22Ambiguous1.24Ambiguous1.20Destabilizing-2.81Deleterious0.998Probably Damaging0.992Probably Damaging-1.34Pathogenic0.09Tolerated3.3734210.4-14.03204.726.40.20.0-0.20.2XPotentially BenignLeu536 is located on an α-helix (res. Ala533-Val560) at the membrane interface. The iso-butyl group of Leu536 interacts with nearby hydrophobic residues in the preceding loop (e.g., Val526, Pro528, Cys531). In the variant simulations, the iso-propyl side chain of Val536 forms similar hydrophobic interactions as Leu536 in the WT, causing no negative structural effects.
c.3632T>AM1211KLikely PathogenicCoiled-coilLikely Benign 1-9.013Likely Pathogenic0.662Likely PathogenicLikely Benign0.595Likely Pathogenic-2.95Deleterious0.987Probably Damaging0.979Probably Damaging5.59Benign0.01Affected3.7750-1-5.8-3.02
c.3731G>AS1244NLikely PathogenicCoiled-coilUncertain 1-9.008Likely Pathogenic0.751Likely PathogenicLikely Benign0.154Likely Benign-1.87Neutral0.997Probably Damaging0.992Probably Damaging2.10Pathogenic0.15Tolerated3.77511-2.727.03
c.1904A>GN635S
(3D Viewer)
GAPConflicting 46-33440956-A-G106.20e-6-9.002Likely Pathogenic0.101Likely BenignLikely Benign0.104Likely Benign0.80Ambiguous0.10.67Ambiguous0.74Ambiguous0.95Ambiguous-4.45Deleterious0.261Benign0.044Benign3.06Benign0.05Affected3.3734112.7-27.03196.030.90.10.0-0.30.2XUncertainIn the WT simulations, the carboxamide side chain of Asn635, located on the outer surface of an α helix (res. Glu617-Asn635), forms hydrogen bonds with Gln631 on the same α helix and with the hydroxyl side chain of Ser590 on an opposing α helix (res. Glu582-Met603).In the variant simulations, the side chain of Ser635 is shorter than asparagine and thus prefers to hydrogen bond with the carbonyl group of Gln631 on the same helix and, to a lesser extent, with Ser590 compared to Asn635 in the WT. Ser635 forms hydrogen bonds with the backbone atoms of the same helix, which may destabilize the helix, although this is not clearly evident in the simulations. The weakening of the hydrogen bond between Ser635 and Ser590 in the variant may also weaken the tertiary structure assembly between the helices.Additionally, Asn635 is at the GTPase interface. However, the implication of the residue swap on the complex formation with the GTPase cannot be investigated using solvent-only simulations.
c.872A>GY291C
(3D Viewer)
Likely PathogenicC2Uncertain 1-8.997Likely Pathogenic0.967Likely PathogenicLikely Pathogenic0.505Likely Pathogenic2.90Destabilizing0.43.51Destabilizing3.21Destabilizing1.35Destabilizing-7.37Deleterious1.000Probably Damaging0.999Probably Damaging1.76Pathogenic0.01Affected3.38230-23.8-60.04205.266.10.10.0-0.40.4XXPotentially PathogenicThe phenol group of the Tyr291 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), packs against hydrophobic residues of the C2 and PH domains (e.g., Leu317, Leu286, Leu284, Pro208, Val209). The phenol ring of Tyr291 also forms favorable Met-aromatic stacking with the methyl group of Met289. In the variant simulation, the thiol group of the Cys291 side chain is not as suitable for the hydrophobic inter-domain space as the phenol ring of Tyr291. Consequently, the structural unity of the PH domain is weakened and ultimately unfolds in the second simulation. Moreover, the residue swap might result in severe detrimental effects on the C2 domain structure and the C2-PH domain tertiary structure assembly during folding.
c.1408A>CM470L
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33438440-A-C16.20e-7-8.993Likely Pathogenic0.406AmbiguousLikely Benign0.678Likely Pathogenic0.73Ambiguous0.10.84Ambiguous0.79Ambiguous1.04Destabilizing-2.72Deleterious0.484Possibly Damaging0.654Possibly Damaging-1.22Pathogenic0.16Tolerated3.3734421.9-18.03225.317.90.00.0-0.80.5XPotentially BenignThe thioether group of Met470, located in the middle of an α helix (res. Ala461–Phe476), interacts with hydrophobic residues in the inter-helix space (e.g., Val473, Leu558) formed by two other α helices (res. Ser604–Arg581, res. Pro562–Arg579). In the WT simulations, Met470 also packs against the positively charged guanidinium groups of Arg575, Arg429, and Arg579, which form salt bridges with the negatively charged carboxylate groups of the Asp474 and Asp467 side chains at the protein surface. In the variant simulations, the iso-butyl side chain of Leu470 packs similarly with the hydrophobic residues as methionine, resulting in no negative effects on the protein structure during the simulation.
c.1354G>AV452I
(3D Viewer)
GAPUncertain 1-8.985Likely Pathogenic0.361AmbiguousLikely Benign0.218Likely Benign-0.08Likely Benign0.10.51Ambiguous0.22Likely Benign0.25Likely Benign-0.99Neutral0.947Possibly Damaging0.851Possibly Damaging3.26Benign0.05Affected430.314.03
c.2888A>GH963RLikely BenignUncertain 16-33443440-A-G84.96e-6-8.952Likely Pathogenic0.169Likely BenignLikely Benign0.081Likely Benign-1.28Neutral0.001Benign0.003Benign4.15Benign0.24Tolerated3.77520-1.319.05
c.3370G>AG1124RConflicting 36-33443922-G-A241.60e-5-8.918Likely Pathogenic0.534AmbiguousLikely Benign0.243Likely Benign-0.58Neutral0.002Benign0.002Benign4.81Benign0.01Affected3.775-3-2-4.199.14
c.502C>TH168YLikely BenignBenign 1-8.914Likely Pathogenic0.264Likely BenignLikely Benign0.065Likely Benign-1.53Neutral0.192Benign0.062Benign4.18Benign0.01Affected4.323021.926.03
c.1136C>GS379W
(3D Viewer)
C2Uncertain 16-33438041-C-G-8.898Likely Pathogenic0.388AmbiguousLikely Benign0.520Likely Pathogenic4.32Destabilizing3.43.56Destabilizing3.94Destabilizing0.16Likely Benign-1.02Neutral0.998Probably Damaging0.844Possibly Damaging3.82Benign0.01Affected4.3211-2-3-0.199.14271.3-75.71.41.00.60.5UncertainSer379 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like tryptophan are rarely tolerated. Although no major negative structural effects are observed in the variant simulations, Trp379 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn
c.3377G>AG1126DUncertain 1-8.888Likely Pathogenic0.432AmbiguousLikely Benign0.376Likely Benign-0.65Neutral0.906Possibly Damaging0.473Possibly Damaging4.82Benign0.02Affected3.7751-1-3.158.04
c.2095G>AV699M
(3D Viewer)
GAPUncertain 26-33441354-G-A84.96e-6-8.869Likely Pathogenic0.484AmbiguousLikely Benign0.276Likely Benign-0.58Ambiguous0.10.29Likely Benign-0.15Likely Benign0.96Ambiguous-2.18Neutral0.994Probably Damaging0.806Possibly Damaging3.37Benign0.03Affected3.471021-2.332.06257.8-47.20.00.00.90.1XPotentially BenignThe isopropyl side chain of Val699, located on an α-helix (res. Leu685-Gln702), packs against hydrophobic residues (e.g., Leu703, Leu696, Leu435, Leu439) in the inter-helix space. In the variant simulations, the thioether side chain of Met699 has similar physicochemical properties to Val699 in the WT, and thus, it is able to maintain similar interactions. Consequently, the mutation causes no apparent changes in the structure.
c.1408A>GM470V
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.856Likely Pathogenic0.478AmbiguousLikely Benign0.770Likely Pathogenic2.73Destabilizing0.11.88Ambiguous2.31Destabilizing1.31Destabilizing-3.58Deleterious0.999Probably Damaging0.993Probably Damaging-1.20Pathogenic0.15Tolerated3.3734122.3-32.06
c.1998G>CE666D
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.820Likely Pathogenic0.704Likely PathogenicLikely Benign0.197Likely Benign0.88Ambiguous0.00.37Likely Benign0.63Ambiguous1.05Destabilizing-2.69Deleterious0.992Probably Damaging0.603Possibly Damaging3.43Benign0.06Tolerated3.3828320.0-14.03237.216.50.00.0-0.30.1XPotentially PathogenicThe carboxylate group of Glu666, located on the α-helix (res. Ser641-Glu666), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), such as Lys566, Thr672, and Asn669, in the WT simulations. In the variant simulations, the shorter side chain of Asp666 cannot maintain these interactions as efficiently as Glu666 in the WT, resulting in a less coordinated hydrogen-bond network.
c.2518A>TS840CLikely PathogenicUncertain 1-8.799Likely Pathogenic0.904Likely PathogenicAmbiguous0.376Likely Benign-3.96Deleterious0.999Probably Damaging0.975Probably Damaging1.50Pathogenic0.00Affected3.7750-13.316.06
c.3640C>TR1214WLikely PathogenicCoiled-coilUncertain 16-33446632-C-T21.24e-6-8.799Likely Pathogenic0.710Likely PathogenicLikely Benign0.143Likely Benign-4.95Deleterious1.000Probably Damaging0.983Probably Damaging2.45Pathogenic0.00Affected3.7752-33.630.03
c.2459A>GY820CLikely PathogenicUncertain 1-8.797Likely Pathogenic0.744Likely PathogenicLikely Benign0.113Likely Benign-3.16Deleterious1.000Probably Damaging0.983Probably Damaging2.68Benign0.06Tolerated3.7750-23.8-60.04
c.2837G>AG946ELikely BenignBenign 36-33443389-G-A138.05e-6-8.793Likely Pathogenic0.257Likely BenignLikely Benign0.341Likely Benign-0.51Neutral0.818Possibly Damaging0.355Benign4.58Benign0.00Affected4.3240-2-3.172.06
c.707C>TA236V
(3D Viewer)
PHBenign/Likely benign 26-33435558-C-T63.72e-6-8.752Likely Pathogenic0.267Likely BenignLikely Benign0.777Likely Pathogenic0.61Ambiguous0.21.08Ambiguous0.85Ambiguous0.64Ambiguous-3.55Deleterious0.981Probably Damaging0.446Benign5.79Benign0.03Affected3.4014002.428.05213.8-44.70.00.0-0.20.2XPotentially BenignThe methyl side chain of Ala236, located on an α helix (residues Ala236-Val250) facing an anti-parallel β sheet strand (residues Ile205-Val209), interacts hydrophobically with nearby residues such as Arg239 and Phe218. In the variant simulations, the isopropyl branched hydrocarbon side chain of Val236 maintains similar hydrophobic interactions as alanine in the WT, with an overall arrangement remarkably similar to Ala236. The residue swap does not affect the protein structure based on the simulations.
c.962G>AR321H
(3D Viewer)
C2Uncertain 16-33437867-G-A84.96e-6-8.751Likely Pathogenic0.136Likely BenignLikely Benign0.323Likely Benign0.48Likely Benign0.1-0.36Likely Benign0.06Likely Benign0.59Ambiguous-1.43Neutral1.000Probably Damaging0.998Probably Damaging1.92Pathogenic0.25Tolerated3.3823201.3-19.05218.586.91.10.00.30.0XPotentially BenignThe guanidinium group of Arg321, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Thr305-Asn315, res. Ala322-Asp330), faces outward without forming any stable interactions in the WT simulations. Similarly, in the variant simulations, the imidazole ring of His321 also points outward without making any stable intra-protein interactions. Thus, the residue swap does not seem to cause adverse effects on the protein structure based on the simulations. However, β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant.
c.1855A>TT619S
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.608Likely Pathogenic0.677Likely PathogenicLikely Benign0.602Likely Pathogenic1.09Ambiguous0.21.35Ambiguous1.22Ambiguous0.85Ambiguous-3.42Deleterious0.999Probably Damaging0.998Probably Damaging-1.30Pathogenic0.05Affected3.373511-0.1-14.03
c.1404G>AM468I
(3D Viewer)
Likely PathogenicGAPUncertain 16-33438436-G-A16.20e-7-8.583Likely Pathogenic0.907Likely PathogenicAmbiguous0.508Likely Pathogenic2.53Destabilizing0.21.89Ambiguous2.21Destabilizing0.37Likely Benign-1.06Neutral0.748Possibly Damaging0.886Possibly Damaging-1.10Pathogenic0.07Tolerated3.3731122.6-18.03
c.2218C>TR740WUncertain 26-33441683-C-T63.72e-6-8.561Likely Pathogenic0.168Likely BenignLikely Benign0.180Likely Benign-3.09Deleterious1.000Probably Damaging0.938Probably Damaging2.52Benign0.01Affected4.3222-33.630.03
c.1556A>CE519A
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-8.557Likely Pathogenic0.904Likely PathogenicAmbiguous0.384Likely Benign-0.05Likely Benign0.00.55Ambiguous0.25Likely Benign0.00Likely Benign-5.23Deleterious0.999Probably Damaging0.998Probably Damaging3.33Benign0.10Tolerated3.37350-15.3-58.04162.483.5-0.10.1-0.20.0XPotentially BenignGlu519 is located at the beginning of an α-α loop between the two α-helices (res. Gly502-Tyr518 and Ala533-Val560). In the WT simulations, the carboxylate side chain of Glu519 does not make any specific interactions. Accordingly, the Ala residue swap does not show any negative structural effects in the variant simulations. However, it should be noted that Glu519 faces the missing part of the N-terminal in the model, and thus its potential role in maintaining the tertiary structure might be de-emphasized in the current model.
c.2444G>TR815LLikely PathogenicSH3-binding motifUncertain 1-8.546Likely Pathogenic0.865Likely PathogenicAmbiguous0.175Likely Benign-3.06Deleterious0.999Probably Damaging0.997Probably Damaging2.63Benign0.03Affected4.324-2-38.3-43.03
c.2195G>CR732TUncertain 1-8.545Likely Pathogenic0.434AmbiguousLikely Benign0.075Likely Benign-1.96Neutral0.999Probably Damaging0.892Possibly Damaging2.59Benign0.12Tolerated3.597-1-13.8-55.08
c.2029A>TS677C
(3D Viewer)
Likely BenignGAPBenign 1-8.496Likely Pathogenic0.076Likely BenignLikely Benign0.153Likely Benign-0.51Ambiguous0.3-0.30Likely Benign-0.41Likely Benign0.15Likely Benign-2.41Neutral0.932Possibly Damaging0.222Benign3.25Benign0.04Affected3.4123-103.316.06
c.3355G>AG1119RBenign 16-33443907-G-A644.23e-5-8.489Likely Pathogenic0.473AmbiguousLikely Benign0.303Likely Benign0.10Neutral0.969Probably Damaging0.462Possibly Damaging4.03Benign0.10Tolerated4.322-3-2-4.199.14
c.2514C>AN838KLikely PathogenicUncertain 2-8.470Likely Pathogenic0.862Likely PathogenicAmbiguous0.097Likely Benign-2.78Deleterious0.997Probably Damaging0.995Probably Damaging2.69Benign0.16Tolerated3.77510-0.414.07
c.3175G>AG1059RUncertain 16-33443727-G-A684.23e-5-8.452Likely Pathogenic0.376AmbiguousLikely Benign0.333Likely Benign-0.55Neutral0.001Benign0.001Benign2.53Benign0.00Affected4.322-3-2-4.199.14
c.1260T>GF420L
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.432Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.146Likely Benign1.76Ambiguous0.01.41Ambiguous1.59Ambiguous1.04Destabilizing-5.39Deleterious0.009Benign0.005Benign4.22Benign0.39Tolerated3.3729201.0-34.02231.113.20.00.0-0.10.0XPotentially BenignIn the WT, the phenyl ring of the Phe420 side chain, located on an α helix (res. Met414-Glu436), packs against hydrophobic residues in the interhelix area of the GAP domain (e.g., Leu689, Leu714, Leu717, Leu718). In the variant simulations, the iso-butyl side chain of Leu420 also packs into the hydrophobic inter-helix niche, but due to its smaller size, the resulting steric interactions are not as favorable as with phenylalanine. In short, the residue swap does not cause severe effects on the protein structure based on the variant simulations.
c.2873A>CH958PLikely BenignBenign 16-33443425-A-C21.24e-6-8.369Likely Pathogenic0.068Likely BenignLikely Benign0.204Likely Benign-0.36Neutral0.925Possibly Damaging0.316Benign4.14Benign0.10Tolerated3.7750-21.6-40.02
c.1635G>AM545I
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.348Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.592Likely Pathogenic0.47Likely Benign0.10.14Likely Benign0.31Likely Benign0.63Ambiguous-3.61Deleterious0.935Possibly Damaging0.941Probably Damaging-1.27Pathogenic0.28Tolerated3.3735122.6-18.03
c.2147G>AR716Q
(3D Viewer)
GAPConflicting 26-33441612-G-A42.48e-6-8.338Likely Pathogenic0.308Likely BenignLikely Benign0.210Likely Benign-0.01Likely Benign0.00.47Likely Benign0.23Likely Benign0.58Ambiguous-3.14Deleterious1.000Probably Damaging0.990Probably Damaging3.35Benign0.02Affected3.509111.0-28.06250.048.90.00.0-0.50.0XUncertainThe guanidinium group of Arg716, located on the outer surface of an α-helix (res. Leu714-Arg726), forms a salt bridge with the carboxylate group of Asp720. In the variant simulations, the carboxamide group of Gln716 also forms a hydrogen bond with the carboxylate group of Asp720, although this bond is weaker than the Arg716 salt bridge in the WT. Overall, no adverse effects on the protein structure are observed in the simulations. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.1222A>GT408AC2Uncertain 1-8.304Likely Pathogenic0.114Likely BenignLikely Benign0.118Likely Benign0.37Likely Benign0.6-0.06Likely Benign0.16Likely Benign0.72Ambiguous-3.07Deleterious0.540Possibly Damaging0.131Benign4.16Benign0.14Tolerated102.5-30.03
c.1286G>AR429Q
(3D Viewer)
Likely BenignGAPUncertain 26-33438191-G-A106.20e-6-8.227Likely Pathogenic0.143Likely BenignLikely Benign0.156Likely Benign0.45Likely Benign0.10.36Likely Benign0.41Likely Benign0.98Ambiguous-1.25Neutral1.000Probably Damaging0.979Probably Damaging3.47Benign0.58Tolerated3.3825111.0-28.06235.859.50.00.0-0.30.4XPotentially PathogenicThe guanidinium group of the Arg429 side chain, located in an α helix (res. Met414-Glu436), either forms a salt bridge with the carboxylate group of an acidic residue (Asp474, Asp467) or an H-bond with the hydroxyl group of Ser471 in an opposing α helix (res. Ala461-Phe476). In the variant simulations, Gln429 cannot form ionic interactions with the acidic residues; however, the carboxamide group can form multiple H-bonds. The H-bonding coordination of the Asn429 side chain varied between the replica simulations. In one simulation, three H-bonds were formed simultaneously with the Asp467 side chain, the backbone carbonyl group of Asn426, and the amide group of Met430 at the end of the same α helix. The residue swap could affect the tertiary structure assembly during folding due to weaker bond formation, but no large-scale negative effects were seen during the simulations.
c.597C>AN199K
(3D Viewer)
PHUncertain 1-8.198Likely Pathogenic0.686Likely PathogenicLikely Benign0.024Likely Benign-0.19Likely Benign0.10.03Likely Benign-0.08Likely Benign0.33Likely Benign-1.48Neutral0.276Benign0.083Benign4.27Benign0.13Tolerated3.47910-0.414.07207.821.5-0.11.50.10.0XUncertainAsn199, located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by a positively charged lysine. On the protein surface, both the carboxamide group of Asn199 and the amino group of Lys199 side chains can form hydrogen bonds with the backbone carbonyl groups of residues (e.g., Ala249) at the end of an α helix (res. Ala236-Lys251). However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.484C>TR162CPathogenic 2-8.157Likely Pathogenic0.787Likely PathogenicAmbiguous0.150Likely Benign-2.05Neutral0.988Probably Damaging0.513Possibly Damaging4.00Benign0.11Tolerated3.744-4-37.0-53.05
c.2522T>CV841AUncertain 16-33443074-T-C31.86e-6-8.152Likely Pathogenic0.901Likely PathogenicAmbiguous0.183Likely Benign-2.13Neutral0.992Probably Damaging0.989Probably Damaging2.57Benign0.02Affected3.77500-2.4-28.05
c.1409T>CM470T
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.104Likely Pathogenic0.976Likely PathogenicLikely Pathogenic0.763Likely Pathogenic3.19Destabilizing0.12.68Destabilizing2.94Destabilizing1.49Destabilizing-5.30Deleterious0.996Probably Damaging0.985Probably Damaging-1.08Pathogenic0.24Tolerated3.3734-1-1-2.6-30.09213.846.50.00.0-0.20.2XXPotentially PathogenicThe thioether group of Met470, located in the middle of an α helix (res. Ala461–Phe476), interacts with hydrophobic residues in the inter-helix space (e.g., Val473, Leu558, Cys576, Trp572) formed by two other α helices (res. Ser604–Arg581, res. Pro562–Arg579). In the WT simulations, the Met470 side chain also packs against the positively charged guanidinium groups of Arg575, Arg429, and Arg579, which form salt bridges with the negatively charged carboxylate groups of the Asp474 and Asp467 side chains at the protein surface. In the variant simulations, the hydroxyl group of the Thr470 side chain forms an H-bond with the backbone carbonyl group of Ser466 in the α helix, potentially lowering its structural integrity. Importantly, the hydroxyl group of Thr470 also forms an H-bond with the guanidinium group of Arg575, which helps it form a more permanent salt bridge with Asp467.
c.2881C>TH961YLikely BenignConflicting 26-33443433-C-T31.86e-6-8.051Likely Pathogenic0.157Likely BenignLikely Benign0.102Likely Benign-1.07Neutral0.716Possibly Damaging0.147Benign4.10Benign0.55Tolerated3.775021.926.03
c.404G>AR135QUncertain 16-33432701-G-A53.84e-6-8.011Likely Pathogenic0.853Likely PathogenicAmbiguous0.087Likely Benign-1.94Neutral0.327Benign0.100Benign3.76Benign0.02Affected3.615111.0-28.06
c.1240A>GM414VGAPUncertain 1-8.003Likely Pathogenic0.541AmbiguousLikely Benign0.261Likely Benign1.81Ambiguous0.41.73Ambiguous1.77Ambiguous0.95Ambiguous-2.95Deleterious0.999Probably Damaging0.987Probably Damaging3.43Benign0.24Tolerated212.3-32.06
c.1025A>CY342S
(3D Viewer)
Likely PathogenicC2Uncertain 2-7.996In-Between0.925Likely PathogenicAmbiguous0.407Likely Benign3.03Destabilizing0.12.87Destabilizing2.95Destabilizing0.93Ambiguous-6.60Deleterious1.000Probably Damaging0.998Probably Damaging1.75Pathogenic0.04Affected3.3725-3-20.5-76.10200.177.80.00.0-0.20.1Potentially PathogenicThe phenol ring of Tyr342, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), faces outward in the C2 domain. In the WT simulations, the phenol ring of Tyr342 contributes to a triple tyrosine stack (Tyr342, Tyr328, and Tyr281) that links together three anti-parallel β sheet strands. Additionally, it shields Gly344 from the solvent, reducing its exposure and providing stability for the β-sandwich. This motif also contributes to a twist formation in the β sheet.In the variant simulations, the Ser342 side chain cannot participate in the stack formation. Instead, the hydroxyl group of the Ser342 side chain forms a hydrogen bond with the imidazole ring of His326 in a neighboring β strand (res. Ala322-Asp330). This disrupts the formation of a hydrogen bond between His326 and the carboxylate group of the Glu283 side chain from another β strand (res. Arg279-Cys285). Although these changes in surface interactions could weaken the characteristic twist that strengthens the β sheet fold, no major structural effects are observed in the variant simulations. The residue swap could also affect the SynGAP-membrane association, as the hydroxyl group of Ser342 could form hydrogen bonds with membrane-facing loop residues. However, this phenomenon cannot be addressed using solvent-only simulations.
c.2443C>GR815GSH3-binding motifUncertain 1-7.983In-Between0.854Likely PathogenicAmbiguous0.146Likely Benign-3.22Deleterious0.999Probably Damaging0.997Probably Damaging2.62Benign0.02Affected4.324-3-24.1-99.14
c.1058T>CL353P
(3D Viewer)
Likely PathogenicC2Uncertain 1-7.913In-Between0.936Likely PathogenicAmbiguous0.464Likely Benign4.63Destabilizing0.110.19Destabilizing7.41Destabilizing2.17Destabilizing-3.70Deleterious0.947Possibly Damaging0.454Possibly Damaging1.29Pathogenic0.02Affected3.3725-3-3-5.4-16.04
c.1169G>AG390E
(3D Viewer)
C2Uncertain 1-7.913In-Between0.646Likely PathogenicLikely Benign0.575Likely Pathogenic2.61Destabilizing0.94.28Destabilizing3.45Destabilizing0.47Likely Benign-0.87Neutral0.276Benign0.045Benign1.32Pathogenic0.05Affected4.3280-2-3.172.06241.5-108.40.60.5-0.10.1UncertainGly390 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. This loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play significant roles in protein functions that require flexibility, and so they are rich in glycine residues, prolines, and to a lesser extent, small hydrophilic residues to ensure maximum flexibility. Thus, the variant’s Glu390 may not be as well tolerated in the Ω loop. Additionally, the carboxylate group of Glu390 occasionally forms H-bonds with other loop residues in the variant simulations. The interaction between the acidic carboxylate side chain and the acidic membrane lipids may further influence the SynGAP-membrane complex. However, since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.2105A>GQ702R
(3D Viewer)
GAPUncertain 1-7.894In-Between0.348AmbiguousLikely Benign0.294Likely Benign-0.31Likely Benign0.10.63Ambiguous0.16Likely Benign0.13Likely Benign-3.14Deleterious0.909Possibly Damaging0.889Possibly Damaging3.43Benign0.02Affected3.471011-1.028.06270.3-52.90.00.00.00.1XPotentially PathogenicThe carboxamide side chain of Gln702 is located at the end and outer surface of an α-helix (res. Leu685-Gln702), where it does not directly form hydrogen bonds with any residues in the WT simulations. In the variant simulations, the positively charged guanidinium group of Arg702 forms a salt bridge with the negatively charged carboxylate group of Glu698 on the same helix and/or hydrogen bonds with the backbone carbonyl group of Ala438 on an opposite α-helix (res. Tyr428-Glu436). Consequently, the residue swap could strengthen the tertiary structure assembly, which could have either positive or negative effects on its function.
c.1973G>AG658D
(3D Viewer)
GAPUncertain 16-33441232-G-A31.86e-6-7.786In-Between0.442AmbiguousLikely Benign0.144Likely Benign-0.40Likely Benign0.1-0.59Ambiguous-0.50Ambiguous0.46Likely Benign-2.64Deleterious0.008Benign0.005Benign3.53Benign0.38Tolerated3.39241-1-3.158.04219.8-84.30.00.00.20.1XPotentially PathogenicGly658, located on the outer surface of an α helix (res. Ser641-Glu666), weakens the helix integrity at that spot, which is necessary for the kink in the middle of the long helix. In the variant simulations, the carboxylic acid side chain of Asp658 is on the surface of the α helix and is not involved in any interactions. However, aspartate is not as effective a breaker of the secondary structure element as glycine, which may lead to misfolding.
c.1121C>AS374Y
(3D Viewer)
C2Uncertain 1-7.774In-Between0.344AmbiguousLikely Benign0.310Likely Benign0.71Ambiguous1.20.66Ambiguous0.69Ambiguous-0.02Likely Benign-1.18Neutral0.875Possibly Damaging0.271Benign5.41Benign0.01Affected4.3213-3-2-0.576.10237.3-76.90.50.40.50.3UncertainSer374 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus, large and relatively hydrophobic residues like tyrosine are rarely tolerated. Additionally, the hydroxyl group of Tyr374 frequently forms various hydrogen bonds with other loop residues in the variant simulations. Although no negative structural effects are observed in the variant simulations, Tyr374 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.896G>AR299H
(3D Viewer)
C2Conflicting 26-33437801-G-A106.20e-6-7.731In-Between0.388AmbiguousLikely Benign0.238Likely Benign3.97Destabilizing1.00.94Ambiguous2.46Destabilizing1.41Destabilizing-3.35Deleterious1.000Probably Damaging0.998Probably Damaging1.69Pathogenic0.02Affected3.3919201.3-19.05211.272.5-0.10.2-0.20.3XPotentially PathogenicThe guanidinium group of Arg299, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), forms hydrogen bonds that stabilize the tight turn. In the WT simulations, the Arg299 side chain hydrogen bonds with the loop backbone carbonyl groups (e.g., Ser302, Thr305, Leu274, Gly303), the hydroxyl group of Ser300, and even forms a salt bridge with the carboxylate group of Asp304.In the variant simulations, the imidazole ring of His299 (epsilon protonated state) hydrogen bonds with the carbonyl group of Asp304 and the hydroxyl group of Ser300. However, it does not form as many or as strong interactions as arginine, which could affect the initial formation of the secondary hairpin loop during folding. β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant.Additionally, His299 prefers to hydrophobically interact with other hydrophobic residues inside the C2 domain core (e.g., Val306, Leu274), which destabilizes the C2 domain. Indeed, the β strand partially unfolds during the second simulation. Moreover, the positively charged Arg299 side chain faces the polar head group region of the inner leaflet membrane and could directly anchor the C2 domain to the membrane. In short, the residue swap could negatively affect both protein folding and the stability of the SynGAP-membrane association.
c.2224C>TR742WLikely BenignUncertain 16-33441689-C-T63.72e-6-7.725In-Between0.133Likely BenignLikely Benign0.079Likely Benign-1.71Neutral0.992Probably Damaging0.684Possibly Damaging2.66Benign0.01Affected4.322-323.630.03
c.667A>TT223S
(3D Viewer)
PHConflicting 26-33435518-A-T31.86e-6-7.714In-Between0.410AmbiguousLikely Benign0.535Likely Pathogenic0.26Likely Benign0.10.50Ambiguous0.38Likely Benign0.62Ambiguous-2.86Deleterious0.421Benign0.058Benign5.80Benign0.02Affected3.411311-0.1-14.03200.717.3-0.20.20.00.0XUncertainThe introduced residue Ser223 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Its hydroxyl group forms hydrogen bonds with nearby residues Thr228 and Lys207 in the variant simulations, similar to the hydroxyl group of Thr223 in the WT simulations. These hydrogen-bonding interactions at the β sheet surface contribute to the stability of the secondary structure element and may prevent it from unfolding. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.1126G>TG376CC2Uncertain 1-7.686In-Between0.125Likely BenignLikely Benign0.560Likely Pathogenic2.56Destabilizing0.50.22Likely Benign1.39Ambiguous0.16Likely Benign-1.15Neutral1.000Probably Damaging1.000Probably Damaging1.32Pathogenic0.01Affected-3-32.946.09
c.694G>AA232T
(3D Viewer)
PHBenign 16-33435545-G-A16.20e-7-7.655In-Between0.874Likely PathogenicAmbiguous0.469Likely Benign0.47Likely Benign0.1-0.04Likely Benign0.22Likely Benign0.61Ambiguous-1.42Neutral0.608Possibly Damaging0.240Benign5.80Benign0.09Tolerated3.401410-2.530.03210.8-42.00.50.10.40.5XUncertainThe hydroxyl group of Thr232, located at the end of an anti-parallel β sheet strand (res. Thr228-Ala232), forms hydrogen bonds with nearby residues Glu217, Cys233, and Cys219 in the variant simulations. These hydrogen-bonding interactions at the β sheet surface contribute to the stability of the secondary structure element and prevent it from unfolding. The new hydrogen bond interactions may be more favorable for structural stability than the steric interactions of the methyl side chain of Ala with the side chains of Gln216 and Cys219 in the WT. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.1045C>TP349S
(3D Viewer)
C2Uncertain 1-7.654In-Between0.217Likely BenignLikely Benign0.277Likely Benign1.92Ambiguous0.12.28Destabilizing2.10Destabilizing0.87Ambiguous-6.13Deleterious1.000Probably Damaging0.996Probably Damaging1.66Pathogenic0.06Tolerated3.37251-10.8-10.04194.9-18.1-0.10.00.20.1XXPotentially PathogenicThe cyclic pyrrolidine side chain of Pro349, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), allows the strand to end and make a tight turn before a short α helical section within a loop connecting to another β strand (res. Thr359-Pro364). In the variant simulations, the hydroxyl group of Ser349 forms a hydrogen bond with the backbone amide group of Ala351 in the short helical section. Conversely, the backbone amide group of Ser349 (absent in proline) does not form any intra-protein hydrogen bonds. However, the β strand end connects to the α helical section in a more stable and consistent manner compared to the WT. Although the residue swap does not cause major adverse effects on the protein structure in the simulations, it is possible that the tight turn at the β strand end could not be created during folding without the presence of proline.
c.2245C>TR749WLikely Benign 16-33441710-C-T31.86e-6-7.647In-Between0.338Likely BenignLikely Benign0.173Likely Benign-2.62Deleterious1.000Probably Damaging0.998Probably Damaging2.59Benign0.00Affected4.3222-33.630.03
c.2143C>TP715S
(3D Viewer)
GAPLikely Pathogenic 16-33441608-C-T16.20e-7-7.635In-Between0.787Likely PathogenicAmbiguous0.277Likely Benign3.54Destabilizing0.00.81Ambiguous2.18Destabilizing0.94Ambiguous-7.17Deleterious1.000Probably Damaging0.998Probably Damaging3.43Benign0.01Affected3.5091-10.8-10.04231.8-14.0-0.10.0-0.80.1XUncertainPro715, along with Gly712 and Pro713, are located in a hinge region of an α-helix making a ~90-degree turn (res. Lys705-Leu725). In the WT simulations, the pyrrolidine side chain of Pro715, lacking the backbone amide groups altogether, forces the tight helix turn to take place while also hydrophobically packing with nearby residues (e.g., Leu700, Leu708, Leu714, and Leu718). Leu715, with a normal amide backbone, could potentially affect protein folding and turn formation, although this was not observed in the variant simulations. Additionally, the hydroxyl group of the Ser715 side chain can form hydrogen bonds with the backbone carbonyl group of Gly712 and disrupt the hydrophobic packing arrangement of the leucine residues from the neighboring α-helices, impacting the GAP domain tertiary assembly.
c.600G>CL200F
(3D Viewer)
PHUncertain 16-33435242-G-C21.24e-6-7.606In-Between0.592Likely PathogenicLikely Benign0.094Likely Benign1.00Ambiguous0.51.45Ambiguous1.23Ambiguous0.43Likely Benign-1.97Neutral0.997Probably Damaging0.916Probably Damaging4.02Benign0.17Tolerated3.46920-1.034.02250.4-15.10.60.20.50.0XUncertainLeu200, a hydrophobic residue located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by another hydrophobic residue, phenylalanine. Both the phenyl group of Phe200 and the branched iso-butyl hydrocarbon sidechain of Leu200 occupy an inward hydrophobic niche (e.g., Leu246, Val222, Phe231) during the simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.2339C>GS780CLikely BenignUncertain 46-33442891-C-G169.94e-6-7.603In-Between0.278Likely BenignLikely Benign0.078Likely Benign-1.41Neutral0.065Benign0.043Benign2.59Benign0.10Tolerated3.646-103.316.06
c.1025A>GY342C
(3D Viewer)
Likely PathogenicC2Benign/Likely benign 26-33437930-A-G211.30e-5-7.596In-Between0.682Likely PathogenicLikely Benign0.404Likely Benign2.48Destabilizing0.12.73Destabilizing2.61Destabilizing0.92Ambiguous-6.67Deleterious1.000Probably Damaging0.999Probably Damaging1.72Pathogenic0.02Affected3.37250-23.8-60.04242.462.80.10.0-0.10.2Potentially PathogenicThe phenol ring of Tyr342, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), faces outward in the C2 domain. This phenol ring contributes to a triple tyrosine stack (Tyr342, Tyr328, and Tyr281) that links together three anti-parallel β sheet strands. Additionally, it shields Gly344 from the solvent, reducing its exposure and providing stability for the β-sandwich. This motif also contributes to a twist formation in the β sheet.In the variant simulations, the Cys342 side chain cannot participate in the stack formation. Instead, its thiol group forms a hydrogen bond with the backbone carbonyl group of Leu327. Although these changes in surface interactions could weaken the characteristic twist that strengthens the β sheet fold, no major structural effects are observed in the variant simulations. The residue swap could also affect the SynGAP-membrane association; however, this phenomenon cannot be addressed using solvent-only simulations. Notably, the thiol group of cysteine is not a particularly strong hydrogen-bonding partner, which could mitigate the negative effects of the residue swap.
c.2047A>GI683V
(3D Viewer)
Likely BenignGAPUncertain 16-33441306-A-G21.24e-6-7.588In-Between0.138Likely BenignLikely Benign0.112Likely Benign0.90Ambiguous0.00.60Ambiguous0.75Ambiguous0.76Ambiguous-0.78Neutral0.538Possibly Damaging0.080Benign3.35Benign0.14Tolerated3.421743-0.3-14.03215.629.10.00.0-0.70.1XPotentially BenignThe sec-butyl side chain of Ile683, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is sterically packed against His453 and Glu688. In the variant simulations, the iso-propyl side chain of Val683 has similar size and physicochemical properties as Ile630 in the WT, and thus, it is able to maintain similar interactions in the inter-helix space. Consequently, no negative structural effects are observed during the simulations due to the residue swap.
c.1742G>AR581Q
(3D Viewer)
Likely PathogenicGAPBenign 16-33440794-G-A84.96e-6-7.584In-Between0.673Likely PathogenicLikely Benign0.481Likely Benign1.31Ambiguous0.1-0.42Likely Benign0.45Likely Benign0.88Ambiguous-2.77Deleterious1.000Probably Damaging0.995Probably Damaging-1.21Pathogenic0.11Tolerated3.3734111.0-28.06239.653.5-0.20.2-0.40.1XPotentially PathogenicArg581 is located on a short α-α loop between two α helices (res. Arg563-Glu578 and res. Glu582-Ser604). In the WT simulations, the guanidinium group of Arg581 forms salt bridges with the carboxylate groups of Asp583 within the same helix, as well as with Glu478 and/or Glu480 on a slightly α-helical loop (res. Glu478-Thr488) preceding another α helix (res. Ala461-Phe476).In the variant simulations, the neutral carboxamide group of the Gln581 side chain cannot form any of these salt bridges. Instead, it packs hydrophobically against Met477 and Ile587 or forms hydrogen bonds sporadically with nearby residues (e.g., Asp583, Arg587). Thus, although no drastic changes are observed in the variant simulations, the residue swap could weaken the tertiary structure assembly.
c.526A>GS176GUncertain 16-33435168-A-G16.20e-7-7.541In-Between0.360AmbiguousLikely Benign0.066Likely Benign-1.08Neutral0.131Benign0.039Benign4.08Benign0.22Tolerated3.546010.4-30.03
c.2485G>AE829KLikely PathogenicPathogenic 1-7.527In-Between0.807Likely PathogenicAmbiguous0.194Likely Benign-2.65Deleterious0.994Probably Damaging0.900Possibly Damaging2.27Pathogenic0.00Affected3.77501-0.4-0.94
c.1193C>TP398L
(3D Viewer)
C2Uncertain 16-33438098-C-T84.96e-6-7.518In-Between0.547AmbiguousLikely Benign0.599Likely Pathogenic1.48Ambiguous0.2-0.54Ambiguous0.47Likely Benign0.62Ambiguous-7.10Deleterious0.961Probably Damaging0.256Benign5.72Benign0.01Affected3.4016-3-35.416.04245.8-68.6-0.10.0-0.30.2XPotentially PathogenicPro398 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. Although the residue swap does not influence the nearby secondary structure elements, proline is often found at the ends of β sheets due to its disfavored status during folding.Additionally, the Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone. Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like leucine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Leu398 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1417G>AV473I
(3D Viewer)
GAPUncertain 16-33438449-G-A16.20e-7-7.481In-Between0.418AmbiguousLikely Benign0.203Likely Benign-0.12Likely Benign0.01.20Ambiguous0.54Ambiguous-0.06Likely Benign-0.91Neutral0.929Possibly Damaging0.917Probably Damaging3.74Benign0.18Tolerated3.3734340.314.03
c.2444G>AR815HSH3-binding motifLikely Benign 26-33442996-G-A241.49e-5-7.474In-Between0.553AmbiguousLikely Benign0.157Likely Benign-1.81Neutral1.000Probably Damaging0.998Probably Damaging2.61Benign0.02Affected4.324201.3-19.0510.1016/j.ajhg.2020.11.011
c.2435C>AP812HSH3-binding motifUncertain 26-33442987-C-A31.86e-6-7.470In-Between0.698Likely PathogenicLikely Benign0.272Likely Benign-2.81Deleterious1.000Probably Damaging0.995Probably Damaging2.68Benign0.00Affected4.3240-2-1.640.02
c.3055C>TR1019CLikely PathogenicConflicting 26-33443607-C-T106.19e-6-7.386In-Between0.646Likely PathogenicLikely Benign0.168Likely Benign-4.00Deleterious0.999Probably Damaging0.880Possibly Damaging2.36Pathogenic0.00Affected3.775-4-37.0-53.0510.1016/j.ajhg.2020.11.011
c.670A>GT224A
(3D Viewer)
PHUncertain 36-33435521-A-G21.24e-6-7.379In-Between0.651Likely PathogenicLikely Benign0.464Likely Benign0.33Likely Benign0.11.05Ambiguous0.69Ambiguous0.91Ambiguous-2.96Deleterious0.243Benign0.079Benign5.57Benign0.57Tolerated3.4113102.5-30.03169.041.4-0.51.1-0.40.0XXUncertainThe introduced residue Ala224 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr224 side chain in the WT model, the methyl side chain of Ala224 cannot form hydrogen bonds with nearby residues Ser204, Ser226, and Gly227. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and unfolds during the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.2864C>TS955FConflicting 46-33443416-C-T955.89e-5-7.374In-Between0.176Likely BenignLikely Benign0.093Likely Benign-1.73Neutral0.977Probably Damaging0.721Possibly Damaging2.32Pathogenic0.00Affected3.775-3-23.660.10
c.2443C>AR815SSH3-binding motifBenign 1-7.324In-Between0.950Likely PathogenicAmbiguous0.138Likely Benign-1.86Neutral0.999Probably Damaging0.997Probably Damaging2.67Benign0.02Affected0-13.7-69.11
c.1118G>AG373E
(3D Viewer)
C2Uncertain 1-7.281In-Between0.569Likely PathogenicLikely Benign0.420Likely Benign4.13Destabilizing3.20.52Ambiguous2.33Destabilizing-0.02Likely Benign-0.69Neutral0.001Benign0.000Benign3.90Benign0.01Affected0-2-3.172.06
c.1888A>GI630V
(3D Viewer)
GAPBenign/Likely benign 46-33440940-A-G593.66e-5-7.264In-Between0.145Likely BenignLikely Benign0.143Likely Benign1.33Ambiguous0.00.94Ambiguous1.14Ambiguous0.64Ambiguous-0.38Neutral0.018Benign0.011Benign-1.37Pathogenic0.35Tolerated3.373443-0.3-14.03235.026.2-0.10.0-0.30.1XPotentially BenignThe sec-butyl side chain of Ile630, located in an α helix (res. Glu617-Asn635), packs with hydrophobic residues (e.g., Phe594, Leu633, Ile626, Ile602) in the hydrophobic inter-helix space between two α helices (res. Glu617-Asn635 and res. Glu582-Met603).In the variant simulations, the iso-propyl side chain of Val630, which shares a similar size and physicochemical properties with Ile630 in the WT, maintains similar interactions in the inter-helix space. Although no negative structural effects are observed during the simulations, the implications of the residue swap on the complex formation with the GTPase, due to its location, cannot be investigated using solvent-only simulations.
c.515G>AR172QUncertain 16-33435157-G-A31.86e-6-7.245In-Between0.465AmbiguousLikely Benign0.135Likely Benign-1.72Neutral0.804Possibly Damaging0.091Benign4.04Benign0.04Affected3.615111.0-28.06
c.1622C>GA541G
(3D Viewer)
GAPUncertain 16-33438865-C-G21.24e-6-7.233In-Between0.341AmbiguousLikely Benign0.421Likely Benign0.67Ambiguous0.00.94Ambiguous0.81Ambiguous0.76Ambiguous-1.48Neutral0.999Probably Damaging0.995Probably Damaging-1.31Pathogenic0.57Tolerated3.373510-2.2-14.03170.123.60.00.00.00.0XPotentially PathogenicAla541 is located on the outer surface of an α-helix (res. Ala533-Val560). The methyl group of Ala541 is on the surface and does not form any interactions. Glycine, known as an “α-helix breaker,” weakens the integrity of the helix. Indeed, in the variant simulations, the hydrogen bond formation between Gly541 and the backbone carbonyl of Ala537 is disrupted.
c.2420A>GY807CSH3-binding motifUncertain 16-33442972-A-G16.20e-7-7.228In-Between0.204Likely BenignLikely Benign0.243Likely Benign-3.89Deleterious0.997Probably Damaging0.934Probably Damaging2.42Pathogenic0.01Affected3.7750-23.8-60.04
c.155C>TS52LUncertain 16-33423564-C-T16.20e-7-7.199In-Between0.688Likely PathogenicLikely Benign0.087Likely Benign-1.41Neutral0.829Possibly Damaging0.706Possibly Damaging4.10Benign0.00Affected4.321-3-24.626.08
c.2206C>TR736CConflicting 36-33441671-C-T84.96e-6-7.113In-Between0.120Likely BenignLikely Benign0.190Likely Benign-2.06Neutral0.999Probably Damaging0.825Possibly Damaging2.48Pathogenic0.00Affected4.073-4-37.0-53.05
c.1436G>AR479Q
(3D Viewer)
Likely BenignGAPUncertain 16-33438468-G-A74.34e-6-7.109In-Between0.259Likely BenignLikely Benign0.191Likely Benign0.54Ambiguous0.10.57Ambiguous0.56Ambiguous0.49Likely Benign-1.16Neutral1.000Probably Damaging0.991Probably Damaging3.42Benign0.31Tolerated3.3932111.0-28.06
c.1480A>GI494V
(3D Viewer)
GAPConflicting 26-33438512-A-G362.23e-5-7.102In-Between0.112Likely BenignLikely Benign0.439Likely Benign1.16Ambiguous0.00.71Ambiguous0.94Ambiguous1.02Destabilizing-0.83Neutral0.278Benign0.179Benign-1.30Pathogenic0.07Tolerated3.373543-0.3-14.03248.629.30.00.0-1.10.5XPotentially BenignThe sec-butyl side chain of Ile494, located in an α-helix (res. Leu489-Glu519), packs against hydrophobic residues (e.g., Phe484, Leu465, Trp572, Ala493, Met468) in an inter-helix space (res. Leu489-Glu519 and res. Ala461-Phe476). In the variant simulations, the hydrophobic iso-propyl side chain of Val494, which is of a similar size and has similar physicochemical properties to Ile494 in the WT, resides similarly in the inter-helix hydrophobic space. Thus, no negative effects on the protein structure are observed.
c.1042G>AV348M
(3D Viewer)
C2Uncertain 1-7.076In-Between0.546AmbiguousLikely Benign0.191Likely Benign-1.19Ambiguous0.10.72Ambiguous-0.24Likely Benign0.76Ambiguous-1.62Neutral0.966Probably Damaging0.564Possibly Damaging1.58Pathogenic0.03Affected3.372521-2.332.06253.8-47.4-0.30.10.20.1XPotentially BenignThe iso-propyl side chain of Val348, located in an anti-parallel β sheet strand (res. Gly341-Pro349), packs against multiple hydrophobic C2 domain residues (e.g., Leu353, Leu323, Leu402). In the variant simulations, the thioether side chain of Met348 can form similar interactions as valine due to its comparable hydrophobic profile. In fact, the thioether group of methionine can even stack favorably with the phenol ring of Tyr363 in the anti-parallel β sheet strand (res. Ala399-Ile411). Overall, the residue swap does not appear to cause negative effects on the protein structure based on the simulations.
c.667A>GT223A
(3D Viewer)
PHUncertain 16-33435518-A-G31.86e-6-7.076In-Between0.316Likely BenignLikely Benign0.574Likely Pathogenic0.30Likely Benign0.10.77Ambiguous0.54Ambiguous0.74Ambiguous-3.36Deleterious0.231Benign0.058Benign5.74Benign0.09Tolerated3.4113102.5-30.03186.444.00.00.00.00.0XXUncertainThe introduced residue Ala223 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr223 side chain in the WT protein, the methyl side chain of Ala223 cannot form hydrogen bonds with nearby residues Thr228 and Lys207. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and partially unfolds in the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.2855G>TG952VLikely BenignUncertain 1-7.074In-Between0.078Likely BenignLikely Benign0.231Likely Benign-0.33Neutral0.000Benign0.000Benign3.20Benign0.02Affected3.775-1-34.642.08
c.1957C>GL653VLikely BenignGAPUncertain 1-7.050In-Between0.301Likely BenignLikely Benign0.146Likely Benign3.28Destabilizing0.32.18Destabilizing2.73Destabilizing1.32Destabilizing-2.25Neutral0.227Benign0.039Benign3.28Benign0.08Tolerated210.4-14.03
c.2521G>AV841MUncertain 16-33443073-G-A31.86e-6-7.000In-Between0.651Likely PathogenicLikely Benign0.119Likely Benign-0.74Neutral0.999Probably Damaging0.998Probably Damaging2.54Benign0.02Affected3.77512-2.332.06
c.1300G>AV434I
(3D Viewer)
Likely BenignGAPUncertain 16-33438205-G-A16.19e-7-6.999Likely Benign0.129Likely BenignLikely Benign0.192Likely Benign-0.04Likely Benign0.00.22Likely Benign0.09Likely Benign0.31Likely Benign-0.82Neutral0.947Possibly Damaging0.851Possibly Damaging3.53Benign0.18Tolerated3.3729430.314.03246.7-27.70.00.00.10.0XPotentially BenignThe iso-propyl side chain of Val434, located at the end of an α helix (res. Met414-Glu436), packs against hydrophobic residues in an interhelix space (e.g., Met430, Ala707, Leu711). In the variant simulations, the sec-butyl group of Ile434 is able to form the same hydrophobic interactions. Accordingly, the residue swap does not negatively affect the protein structure based on the simulations.
c.484C>GR162GLikely BenignUncertain 1-6.985Likely Benign0.664Likely PathogenicLikely Benign0.190Likely Benign-0.73Neutral0.487Possibly Damaging0.272Benign4.09Benign0.78Tolerated3.744-2-34.1-99.14
c.2954G>AS985NLikely BenignUncertain 1-6.979Likely Benign0.845Likely PathogenicAmbiguous0.088Likely Benign-1.68Neutral0.991Probably Damaging0.988Probably Damaging2.65Benign0.00Affected4.32111-2.727.03
c.3179G>TG1060VLikely BenignBenign 16-33443731-G-T16.22e-7-6.966Likely Benign0.103Likely BenignLikely Benign0.369Likely Benign-0.73Neutral0.986Probably Damaging0.728Possibly Damaging2.63Benign0.33Tolerated4.322-1-34.642.08
c.3184G>AG1062RLikely BenignConflicting 26-33443736-G-A74.35e-6-6.933Likely Benign0.353AmbiguousLikely Benign0.403Likely Benign-0.34Neutral0.797Possibly Damaging0.139Benign4.10Benign0.01Affected4.322-3-2-4.199.14
c.3313C>TR1105WUncertain 16-33443865-C-T63.93e-6-6.911Likely Benign0.488AmbiguousLikely Benign0.133Likely Benign-4.34Deleterious0.999Probably Damaging0.696Possibly Damaging2.42Pathogenic0.02Affected3.775-323.630.03
c.2302G>AD768NLikely BenignUncertain 16-33442460-G-A22.57e-6-6.892Likely Benign0.453AmbiguousLikely Benign0.048Likely Benign-0.77Neutral0.106Benign0.009Benign4.07Benign0.96Tolerated3.646120.0-0.98
c.1610C>TA537V
(3D Viewer)
Likely BenignGAPLikely Benign 16-33438853-C-T74.34e-6-6.888Likely Benign0.120Likely BenignLikely Benign0.382Likely Benign0.54Ambiguous0.0-0.05Likely Benign0.25Likely Benign0.41Likely Benign-1.97Neutral0.977Probably Damaging0.469Possibly Damaging-1.26Pathogenic0.24Tolerated3.3735002.428.05220.3-45.10.00.0-0.70.1XPotentially BenignAla537 is located on the outer surface of an α-helix (res. Ala533-Val560). The methyl group of Ala537 is on the surface and does not form any interactions. In the variant simulations, the iso-propyl side chain of Val537 is also on the surface, similar to Ala537 in the WT, causing no negative structural effects.
c.886T>GS296A
(3D Viewer)
Likely BenignC2Uncertain 1-6.847Likely Benign0.247Likely BenignLikely Benign0.209Likely Benign0.50Ambiguous0.3-0.26Likely Benign0.12Likely Benign0.35Likely Benign-1.79Neutral0.992Probably Damaging0.987Probably Damaging1.97Pathogenic0.65Tolerated3.4016112.6-16.00182.526.6-0.20.1-0.50.0XPotentially PathogenicThe hydroxyl group of the Ser296 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), stably hydrogen bonds with the carboxylate group of Asp330 in a neighboring β strand (res. Ala322-Asp332). The backbone carbonyl group of Ser296 also hydrogen bonds with the guanidinium group of Arg279 in another nearby β strand (res. Arg279-Cys285). In the variant simulations, the methyl group of the Ala296 side chain cannot hydrogen bond with Asp330, causing the carboxylate group positioning to fluctuate more than in the WT simulations.Although the residue swap does not seem to affect the anti-parallel β sheet assembly during the simulations, it is possible that the Ser296-Asp330 hydrogen bond plays a crucial role in maintaining the C2 domain fold. Notably, because Ser296 is located near the membrane interface, the potential effect of the residue swap on the SynGAP-membrane association cannot be addressed by solvent-only simulations.
c.3607C>TH1203YLikely BenignCoiled-coilUncertain 16-33446599-C-T21.24e-6-6.834Likely Benign0.149Likely BenignLikely Benign0.233Likely Benign-1.52Neutral0.006Benign0.011Benign5.55Benign0.10Tolerated3.775201.926.03
c.266C>TP89LUncertain 2-6.775Likely Benign0.982Likely PathogenicLikely Pathogenic0.119Likely Benign-3.29Deleterious0.889Possibly Damaging0.058Benign3.73Benign0.00Affected4.321-3-35.416.04
c.3176G>CG1059ALikely BenignUncertain 16-33443728-G-C42.49e-6-6.754Likely Benign0.081Likely BenignLikely Benign0.329Likely Benign-0.17Neutral0.001Benign0.002Benign2.56Benign0.00Affected4.322102.214.03
c.3038C>GS1013CLikely BenignUncertain 16-33443590-C-G42.48e-6-6.745Likely Benign0.110Likely BenignLikely Benign0.058Likely Benign-2.06Neutral0.898Possibly Damaging0.579Possibly Damaging2.64Benign0.05Affected3.7750-13.316.06
c.3607C>GH1203DLikely BenignCoiled-coilUncertain 1-6.729Likely Benign0.525AmbiguousLikely Benign0.403Likely Benign-1.89Neutral0.473Possibly Damaging0.265Benign5.51Benign0.24Tolerated3.7751-1-0.3-22.05
c.2719A>TS907CLikely BenignLikely Benign 1-6.685Likely Benign0.298Likely BenignLikely Benign0.113Likely Benign-2.34Neutral0.999Probably Damaging0.988Probably Damaging2.60Benign0.02Affected3.7750-13.316.06
c.1172G>TG391V
(3D Viewer)
Likely BenignC2Likely Benign 16-33438077-G-T31.86e-6-6.642Likely Benign0.133Likely BenignLikely Benign0.595Likely Pathogenic4.23Destabilizing1.34.81Destabilizing4.52Destabilizing-0.11Likely Benign-0.98Neutral0.994Probably Damaging0.887Possibly Damaging1.32Pathogenic0.10Tolerated3.698-1-34.642.08228.6-69.00.00.8-0.50.3UncertainGly387 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. This loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Val391 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.250C>GR84GUncertain 1-6.627Likely Benign0.989Likely PathogenicLikely Pathogenic0.139Likely Benign-2.64Deleterious0.962Probably Damaging0.726Possibly Damaging3.68Benign0.00Affected4.321-3-24.1-99.14
c.611C>GS204C
(3D Viewer)
Likely BenignPHUncertain 1-6.613Likely Benign0.127Likely BenignLikely Benign0.148Likely Benign0.65Ambiguous0.4-1.13Ambiguous-0.24Likely Benign0.10Likely Benign-0.64Neutral0.978Probably Damaging0.753Possibly Damaging4.13Benign0.05Affected3.44100-13.316.06223.6-13.80.60.30.00.2XUncertainThe hydroxyl-containing Ser204, located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by the thiol-containing cysteine. In the WT simulations, Ser204 simultaneously forms hydrogen bonds with the backbone carbonyl of Asp201 and the hydroxyl group of Thr224, helping to stabilize the two anti-parallel β strands (res. Ile205-Lys207 and Cys219-Thr223) at the end of the β sheet. Since the thiol group of cysteine forms weaker hydrogen bonds than the hydroxyl group of serine, Cys204 does not maintain the hydrogen bond network as stably as Ser204 in the variant simulations. However, because the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.3413C>AS1138YUncertain 16-33444448-C-A31.86e-6-6.610Likely Benign0.449AmbiguousLikely Benign0.391Likely Benign-2.51Deleterious0.997Probably Damaging0.996Probably Damaging5.41Benign0.05Affected4.324-2-3-0.576.10
c.1667A>GN556S
(3D Viewer)
GAPUncertain 16-33438910-A-G31.86e-6-6.576Likely Benign0.197Likely BenignLikely Benign0.449Likely Benign0.52Ambiguous0.10.14Likely Benign0.33Likely Benign0.16Likely Benign-3.60Deleterious1.000Probably Damaging0.989Probably Damaging-1.22Pathogenic0.14Tolerated3.3735112.7-27.03198.831.00.00.0-0.50.2XPotentially BenignAsn556 is located on the outer surface of an α-helix (res. Ala533-Val560). The carboxamide group of Asn556 forms hydrogen bonds with nearby residues such as Lys553 and Cys552. It also forms a hydrogen bond with the backbone carbonyl group of Cys552, which weakens the α-helix integrity. In the variant simulations, the hydroxyl group of Ser556 forms a more stable hydrogen bond with the backbone carbonyl oxygen of the same helix residue, Cys552, compared to Asn556 in the WT. Serine has a slightly lower propensity to reside in an α-helix than asparagine, which may exacerbate the negative effect on the α-helix integrity. However, the residue swap does not cause negative structural effects during the simulations.
c.3374G>CG1125ALikely BenignUncertain 16-33443926-G-C16.68e-7-6.569Likely Benign0.083Likely BenignLikely Benign0.232Likely Benign-0.60Neutral0.999Probably Damaging0.995Probably Damaging4.60Benign0.11Tolerated3.775102.214.03
c.3788T>CI1263TLikely PathogenicCoiled-coilUncertain 16-33446780-T-C21.24e-6-6.564Likely Benign0.962Likely PathogenicLikely Pathogenic0.529Likely Pathogenic-4.15Deleterious0.946Possibly Damaging0.673Possibly Damaging1.81Pathogenic0.00Affected3.7750-1-5.2-12.05
c.391G>CG131RUncertain 1-6.564Likely Benign0.983Likely PathogenicLikely Pathogenic0.099Likely Benign-3.82Deleterious0.983Probably Damaging0.656Possibly Damaging3.92Benign0.00Affected3.615-2-3-4.199.14
c.3377G>TG1126VLikely BenignUncertain 16-33443929-G-T-6.536Likely Benign0.089Likely BenignLikely Benign0.357Likely Benign-1.20Neutral0.009Benign0.008Benign4.76Benign0.03Affected3.775-1-34.642.08
c.2014A>GT672A
(3D Viewer)
Likely BenignGAPBenign 16-33441273-A-G31.86e-6-6.524Likely Benign0.109Likely BenignLikely Benign0.046Likely Benign0.51Ambiguous0.31.15Ambiguous0.83Ambiguous0.65Ambiguous-3.20Deleterious0.006Benign0.002Benign3.44Benign0.12Tolerated3.4025102.5-30.03188.542.5-0.10.30.20.0XPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. In the variant simulations, Ala672 can only form a hydrogen bond with Lys566 via its backbone carbonyl group. Consequently, it cannot maintain the Lys566-Glu666 salt bridge through hydrogen bonding, leading to a significant disruption of the intricate and stable hydrogen-bond network between the loop and the helices.
c.2840G>CG947ALikely BenignLikely Benign 16-33443392-G-C281.73e-5-6.511Likely Benign0.080Likely BenignLikely Benign0.156Likely Benign-0.41Neutral0.224Benign0.131Benign4.97Benign0.10Tolerated4.324102.214.03
c.526A>CS176RLikely BenignUncertain 1-6.492Likely Benign0.987Likely PathogenicLikely Pathogenic0.247Likely Benign0.94Neutral0.718Possibly Damaging0.168Benign4.16Benign0.87Tolerated0-1-3.769.11
c.3820C>TR1274CUncertain 16-33447868-C-T-6.467Likely Benign0.439AmbiguousLikely Benign0.170Likely Benign-5.22Deleterious1.000Probably Damaging0.996Probably Damaging2.46Pathogenic0.00Affected3.775-4-37.0-53.05
c.2684G>AS895NLikely BenignUncertain 1-6.399Likely Benign0.604Likely PathogenicLikely Benign0.118Likely Benign-0.85Neutral0.991Probably Damaging0.988Probably Damaging2.64Benign0.30Tolerated4.32411-2.727.03
c.3170G>AS1057NLikely BenignUncertain 1-6.386Likely Benign0.117Likely BenignLikely Benign0.218Likely Benign-0.41Neutral0.451Benign0.129Benign5.25Benign0.28Tolerated11-2.727.03
c.892C>TP298S
(3D Viewer)
Likely BenignC2Benign 16-33437797-C-T53.10e-6-6.342Likely Benign0.144Likely BenignLikely Benign0.189Likely Benign1.38Ambiguous0.21.41Ambiguous1.40Ambiguous0.58Ambiguous-1.20Neutral0.991Probably Damaging0.898Possibly Damaging2.03Pathogenic0.85Tolerated3.3920-110.8-10.04
c.3253C>TR1085WUncertain 16-33443805-C-T21.26e-6-6.339Likely Benign0.821Likely PathogenicAmbiguous0.202Likely Benign-3.15Deleterious1.000Probably Damaging0.996Probably Damaging2.70Benign0.00Affected3.775-323.630.03
c.895C>TR299C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33437800-C-T31.86e-6-6.326Likely Benign0.572Likely PathogenicLikely Benign0.344Likely Benign1.85Ambiguous0.40.61Ambiguous1.23Ambiguous0.76Ambiguous-3.54Deleterious1.000Probably Damaging0.998Probably Damaging1.65Pathogenic0.06Tolerated3.3919-4-37.0-53.05210.791.30.10.00.00.2XXPotentially PathogenicThe guanidinium group of Arg299, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), forms hydrogen bonds that stabilize the tight turn. In the WT simulations, the Arg299 side chain hydrogen bonds with the loop backbone carbonyl groups (e.g., Ser302, Thr305, Leu274, Gly303), the hydroxyl group of Ser300, and even forms a salt bridge with the carboxylate group of Asp304.In the variant simulations, the thiol group of the Cys299 side chain is unable to form any of these well-coordinated or strong interactions, which could affect the initial formation of the secondary hairpin loop during folding. β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Moreover, the positively charged Arg299 side chain faces the polar head group region of the inner leaflet membrane and could directly anchor the C2 domain to the membrane. In short, the residue swap could negatively affect both protein folding and the stability of the SynGAP-membrane association.
c.1231A>GI411V
(3D Viewer)
Likely BenignGAPLikely Benign 1-6.290Likely Benign0.385AmbiguousLikely Benign0.212Likely Benign0.74Ambiguous0.00.82Ambiguous0.78Ambiguous0.99Ambiguous-0.86Neutral0.935Possibly Damaging0.858Possibly Damaging3.90Benign0.27Tolerated3.382843-0.3-14.03233.328.2-0.20.0-0.20.0XPotentially BenignThe sec-butyl side chain of Ile411, located in the hydrophobic space between an anti-parallel β sheet strand (res. Pro398-Ile411) and an α helix (res. Asp684-Gln702), packs against multiple residues (e.g., Met409, Arg259). In the variant simulations, the side chain of Val411 is able to favorably fill the same hydrophobic niche despite its slightly smaller size. In short, the residue swap has no apparent negative effect on the structure based on the simulations.
c.2945A>GY982CLikely BenignLikely Benign 16-33443497-A-G21.24e-6-6.256Likely Benign0.746Likely PathogenicLikely Benign0.195Likely Benign-1.67Neutral0.997Probably Damaging0.923Probably Damaging3.87Benign0.00Affected4.3210-23.8-60.04
c.958G>CV320L
(3D Viewer)
C2Uncertain 16-33437863-G-C63.72e-6-6.207Likely Benign0.362AmbiguousLikely Benign0.096Likely Benign-0.26Likely Benign0.21.33Ambiguous0.54Ambiguous0.51Ambiguous-1.02Neutral0.900Possibly Damaging0.373Benign1.78Pathogenic0.92Tolerated3.382321-0.414.03245.8-10.20.30.90.10.3XPotentially BenignThe isopropyl side chain of Val310, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Thr305-Asn315, res. Ala322-Asp330), hydrophobically packs with the side chains of nearby residues (e.g., Leu286, Val350, Pro318). The hydrophobic Leu320 side chain mostly forms the same interactions; hence, the residue swap does not seem to negatively affect the protein structure based on the variant simulations.
c.1160G>TG387V
(3D Viewer)
Likely BenignC2Uncertain 16-33438065-G-T221.37e-5-6.199Likely Benign0.153Likely BenignLikely Benign0.390Likely Benign5.13Destabilizing1.86.44Destabilizing5.79Destabilizing-0.33Likely Benign-0.54Neutral0.069Benign0.077Benign1.32Pathogenic0.01Affected4.323-1-34.642.08207.7-68.4-0.70.8-0.50.1UncertainGly387 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. This loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Val387 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.910G>AD304N
(3D Viewer)
C2Uncertain 1-6.194Likely Benign0.391AmbiguousLikely Benign0.345Likely Benign0.30Likely Benign0.1-0.08Likely Benign0.11Likely Benign0.21Likely Benign-4.18Deleterious0.999Probably Damaging0.997Probably Damaging1.81Pathogenic0.03Affected3.3823120.0-0.98
c.2854G>AG952SLikely BenignConflicting 26-33443406-G-A21.24e-6-6.190Likely Benign0.077Likely BenignLikely Benign0.167Likely Benign0.19Neutral0.000Benign0.002Benign3.31Benign0.07Tolerated3.77510-0.430.03
c.2818G>CG940RLikely BenignBenign 16-33443370-G-C53.10e-6-6.169Likely Benign0.480AmbiguousLikely Benign0.060Likely Benign0.02Neutral0.922Possibly Damaging0.543Possibly Damaging2.73Benign0.15Tolerated3.775-3-2-4.199.14
c.3380G>TG1127VLikely BenignUncertain 16-33443932-G-T16.69e-7-6.097Likely Benign0.094Likely BenignLikely Benign0.230Likely Benign-1.01Neutral0.004Benign0.005Benign4.81Benign0.17Tolerated4.324-1-34.642.08
c.1118G>TG373V
(3D Viewer)
Likely BenignC2Uncertain 16-33438023-G-T65.03e-6-6.062Likely Benign0.112Likely BenignLikely Benign0.428Likely Benign5.32Destabilizing3.20.82Ambiguous3.07Destabilizing0.09Likely Benign-0.98Neutral0.007Benign0.001Benign3.90Benign0.00Affected3.5316-1-34.642.08207.6-68.11.91.1-0.60.1UncertainGly373 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Val373 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on the Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.3824G>TR1275LLikely Benign 16-33447872-G-T16.45e-7-6.052Likely Benign0.446AmbiguousLikely Benign0.117Likely Benign-4.04Deleterious0.800Possibly Damaging0.277Benign2.55Benign0.01Affected3.775-3-28.3-43.03
c.2858C>AP953QLikely BenignUncertain 1-6.038Likely Benign0.079Likely BenignLikely Benign0.086Likely Benign-0.78Neutral0.058Benign0.015Benign2.78Benign0.29Tolerated3.7750-1-1.931.01
c.3059G>TR1020LUncertain 1-6.031Likely Benign0.907Likely PathogenicAmbiguous0.216Likely Benign-4.03Deleterious0.990Probably Damaging0.921Probably Damaging2.50Benign0.00Affected3.775-3-28.3-43.03
c.1027G>AV343I
(3D Viewer)
Likely BenignC2Uncertain 26-33437932-G-A16.20e-7-6.020Likely Benign0.117Likely BenignLikely Benign0.020Likely Benign-0.27Likely Benign0.0-0.04Likely Benign-0.16Likely Benign-0.39Likely Benign-0.14Neutral0.159Benign0.084Benign1.98Pathogenic0.27Tolerated3.3725430.314.03240.2-26.9-0.20.2-0.20.2XPotentially BenignThe iso-propyl side chain of Val343, located in an anti-parallel β sheet strand (res. Gly341-Pro349), is packing against multiple hydrophobic residues of the C2 domain (e.g., Leu327, Leu274, Val365). In the variant simulations, the sec-butyl side chain of Ile343 is basically able to form the same interactions as valine due to its similar hydrophobic profile. The residue swap also does not seem to cause negative effects on the protein structure based on the simulations.
c.1154C>TS385L
(3D Viewer)
Likely BenignC2Uncertain 16-33438059-C-T94.60e-5-6.018Likely Benign0.167Likely BenignLikely Benign0.304Likely Benign0.16Likely Benign0.10.08Likely Benign0.12Likely Benign-0.26Likely Benign-0.68Neutral0.829Possibly Damaging0.706Possibly Damaging4.63Benign0.01Affected4.323-3-24.626.08244.6-50.10.00.6-0.10.1UncertainSer385 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like leucine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Leu385 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effects on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1502T>CI501T
(3D Viewer)
Likely BenignGAPUncertain 1-5.996Likely Benign0.252Likely BenignLikely Benign0.362Likely Benign2.40Destabilizing0.11.81Ambiguous2.11Destabilizing1.57Destabilizing-3.48Deleterious1.000Probably Damaging1.000Probably Damaging3.44Benign0.16Tolerated3.37350-1-5.2-12.05214.526.90.00.00.50.0XPotentially PathogenicIle501 is located near a hinge in the middle of an α-helix (res. Leu489-Glu519). The sec-butyl side chain of Ile501 is hydrophobically packed with other residues in the inter-helix space (e.g., Leu500, Tyr497, Phe679) in the WT simulations. In the variant simulations, the hydroxyl group of Thr501 forms a hydrogen bond with the backbone atoms of Tyr497 on the same α-helix, which may weaken the α-helix integrity. Additionally, the polar hydroxyl group of Thr501 is not suitable for the hydrophobic inter-helix space, and thus, the residue swap could affect protein folding. However, Ile501 is followed by Gly502, which facilitates a hinge in the middle of the α-helix, making further weakening caused by Thr501 unlikely to be harmful to the α-helix integrity.
c.1142G>TG381V
(3D Viewer)
Likely BenignC2Uncertain 16-33438047-G-T21.25e-6-5.967Likely Benign0.146Likely BenignLikely Benign0.618Likely Pathogenic7.16Destabilizing1.04.10Destabilizing5.63Destabilizing-0.32Likely Benign-0.95Neutral0.386Benign0.157Benign1.32Pathogenic0.10Tolerated4.329-1-34.642.08214.6-68.80.30.7-0.50.3UncertainGly381 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Val381 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effects on Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.3379G>AG1127RLikely BenignUncertain 16-33443931-G-A21.34e-6-5.949Likely Benign0.629Likely PathogenicLikely Benign0.341Likely Benign-0.87Neutral0.001Benign0.001Benign4.86Benign0.12Tolerated4.324-2-3-4.199.14
c.3379G>CG1127RLikely BenignLikely Pathogenic 16-33443931-G-C161.07e-5-5.949Likely Benign0.629Likely PathogenicLikely Benign0.341Likely Benign-0.87Neutral0.001Benign0.001Benign4.86Benign0.12Tolerated4.324-2-3-4.199.14
c.3380G>CG1127ALikely BenignConflicting 46-33443932-G-C42.68e-6-5.949Likely Benign0.080Likely BenignLikely Benign0.164Likely Benign-0.43Neutral0.001Benign0.002Benign4.83Benign1.00Tolerated4.324102.214.03
c.1345A>GS449G
(3D Viewer)
Likely BenignGAPUncertain 16-33438250-A-G31.86e-6-5.936Likely Benign0.071Likely BenignLikely Benign0.116Likely Benign0.47Likely Benign0.00.55Ambiguous0.51Ambiguous0.85Ambiguous-2.32Neutral0.948Possibly Damaging0.124Benign3.35Benign0.13Tolerated3.3732010.4-30.03
c.2111G>AS704N
(3D Viewer)
Likely BenignGAPBenign/Likely benign 36-33441370-G-A271.67e-5-5.917Likely Benign0.421AmbiguousLikely Benign0.058Likely Benign0.48Likely Benign0.1-0.12Likely Benign0.18Likely Benign0.54Ambiguous-0.49Neutral0.771Possibly Damaging0.275Benign3.39Benign0.08Tolerated3.471011-2.727.03233.2-29.1-0.10.0-0.10.1XPotentially BenignSer704 is located at the end and outer surface of an α-helix (res. Thr704-Gly712), which is connected via a tight turn or loop to another α-helix (res. Asp684-Gln702). The hydroxyl side chain of Ser704 occasionally forms a hydrogen bond with the amide group of Ala707. However, in the variant simulations, the carboxamide side chain of Asn704 achieves more lasting and numerous hydrogen-bonding interactions with the residues at the helix end, such as Glu706, Ala707, and Leu708. Consequently, the residue swap could strengthen the α-helix secondary structure integrity at the helix end, which could have either positive or negative effects on its function.
c.3395C>AS1132YLikely BenignLikely Benign 1-5.894Likely Benign0.392AmbiguousLikely Benign0.401Likely Benign-1.76Neutral0.500Possibly Damaging0.208Benign5.40Benign0.09Tolerated4.324-3-2-0.576.10
c.2353C>TR785CLikely PathogenicSH3-binding motifUncertain 16-33442905-C-T291.80e-5-5.887Likely Benign0.662Likely PathogenicLikely Benign0.126Likely Benign-5.06Deleterious0.144Benign0.046Benign2.22Pathogenic0.00Affected3.646-4-37.0-53.05
c.2635_2636delinsAAA879KLikely BenignLikely Benign 1-5.877Likely Benign0.757Likely PathogenicLikely Benign-0.71Neutral0.969Probably Damaging0.593Possibly Damaging2.69Benign0.21Tolerated3.775-1-1-5.757.10
c.263T>CV88ALikely BenignUncertain 1-5.860Likely Benign0.993Likely PathogenicLikely Pathogenic0.050Likely Benign-1.22Neutral0.053Benign0.008Benign3.75Benign0.00Affected4.32100-2.4-28.05
c.2619C>GS873RUncertain 16-33443171-C-G16.20e-7-5.856Likely Benign0.976Likely PathogenicLikely Pathogenic0.192Likely Benign-2.74Deleterious0.997Probably Damaging0.995Probably Damaging2.67Benign0.06Tolerated3.7750-1-3.769.11
c.2627C>TS876LUncertain 2-5.856Likely Benign0.489AmbiguousLikely Benign0.249Likely Benign-3.56Deleterious0.998Probably Damaging0.992Probably Damaging2.57Benign0.05Affected3.775-2-34.626.08
c.163C>AQ55KLikely BenignUncertain 26-33423572-C-A241.49e-5-5.840Likely Benign0.612Likely PathogenicLikely Benign0.085Likely Benign-1.21Neutral0.140Benign0.184Benign3.91Benign0.00Affected4.32111-0.40.04
c.3457C>TR1153WLikely PathogenicUncertain 26-33444492-C-T21.24e-6-5.812Likely Benign0.994Likely PathogenicLikely Pathogenic0.317Likely Benign-5.88Deleterious1.000Probably Damaging0.998Probably Damaging1.46Pathogenic0.00Affected3.7752-33.630.03
c.2113A>CK705Q
(3D Viewer)
Likely BenignGAPUncertain 16-33441372-A-C16.20e-7-5.787Likely Benign0.436AmbiguousLikely Benign0.142Likely Benign-0.10Likely Benign0.00.33Likely Benign0.12Likely Benign-0.02Likely Benign-0.24Neutral0.997Probably Damaging0.969Probably Damaging3.42Benign0.78Tolerated3.4710110.4-0.04
c.2668C>TR890CBenign 16-33443220-C-T95.58e-6-5.786Likely Benign0.402AmbiguousLikely Benign0.200Likely Benign-3.38Deleterious1.000Probably Damaging0.971Probably Damaging3.94Benign0.04Affected4.324-4-37.0-53.05
c.265C>GP89ALikely BenignUncertain 2-5.778Likely Benign0.920Likely PathogenicAmbiguous0.095Likely Benign-2.47Neutral0.225Benign0.020Benign3.77Benign0.00Affected4.3211-13.4-26.04
c.3902C>AP1301HLikely BenignConflicting 26-33451776-C-A53.10e-6-5.756Likely Benign0.104Likely BenignLikely Benign0.232Likely Benign-1.13Neutral0.642Possibly Damaging0.378Benign2.79Benign0.04Affected3.7750-2-1.640.02
c.1730C>GA577G
(3D Viewer)
Likely BenignGAPBenign/Likely benign 26-33440782-C-G16.20e-7-5.717Likely Benign0.268Likely BenignLikely Benign0.443Likely Benign0.83Ambiguous0.01.02Ambiguous0.93Ambiguous0.86Ambiguous-1.84Neutral0.997Probably Damaging0.990Probably Damaging-1.31Pathogenic0.31Tolerated3.373410-2.2-14.03158.723.60.00.00.00.0XPotentially BenignAla577 is located near the end and outer surface of an α-helix (res. Arg563-Glu578), where its methyl group does not form any particular interactions in the WT simulations. The introduced residue, glycine, is known as an “α-helix breaker.” However, the residue swap caused only minor helix shortening in one of the replica simulations for the variant system. Regardless, the residue swap seems to be well tolerated based on the variant simulations.
c.3405G>CK1135NLikely BenignUncertain 1-5.715Likely Benign0.960Likely PathogenicLikely Pathogenic0.166Likely Benign-0.97Neutral0.411Benign0.321Benign5.43Benign0.07Tolerated4.322100.4-14.07
c.28C>TR10WLikely BenignUncertain 16-33420292-C-T21.30e-6-5.707Likely Benign0.503AmbiguousLikely Benign0.236Likely Benign-0.31Neutral0.964Probably Damaging0.190Benign4.10Benign0.00Affected4.3212-33.630.03
c.1832T>CM611T
(3D Viewer)
Likely BenignGAPUncertain 16-33440884-T-C16.19e-7-5.696Likely Benign0.101Likely BenignLikely Benign0.240Likely Benign1.98Ambiguous0.20.94Ambiguous1.46Ambiguous0.87Ambiguous-2.40Neutral0.034Benign0.038Benign-1.19Pathogenic0.29Tolerated3.3735-1-1-2.6-30.09
c.2845G>AG949SLikely BenignBenign/Likely benign 46-33443397-G-A1227.56e-5-5.693Likely Benign0.072Likely BenignLikely Benign0.321Likely Benign0.30Neutral0.611Possibly Damaging0.102Benign2.23Pathogenic0.00Affected4.32410-0.430.0310.1016/j.ajhg.2020.11.011
c.2822C>TP941LLikely BenignUncertain 2-5.692Likely Benign0.066Likely BenignLikely Benign0.054Likely Benign-0.44Neutral0.144Benign0.039Benign2.76Benign0.01Affected-3-35.416.04
c.2434C>TP812SLikely BenignSH3-binding motifUncertain 16-33442986-C-T16.20e-7-5.689Likely Benign0.456AmbiguousLikely Benign0.162Likely Benign-0.62Neutral0.999Probably Damaging0.966Probably Damaging2.89Benign0.95Tolerated4.3241-10.8-10.04
c.3906G>CL1302FUncertain 1-5.674Likely Benign0.148Likely BenignLikely Benign0.211Likely Benign-2.70Deleterious0.960Probably Damaging0.657Possibly Damaging1.53Pathogenic0.00Affected20-1.034.02
c.453C>AD151ELikely BenignUncertain 1-5.662Likely Benign0.886Likely PathogenicAmbiguous0.142Likely Benign-2.02Neutral0.984Probably Damaging0.967Probably Damaging3.99Benign0.11Tolerated3.615320.014.03
c.3653A>TE1218VLikely PathogenicCoiled-coilUncertain 2-5.647Likely Benign0.936Likely PathogenicAmbiguous0.418Likely Benign-5.68Deleterious1.000Probably Damaging0.998Probably Damaging2.21Pathogenic0.00Affected3.775-2-27.7-29.98
c.1136C>TS379L
(3D Viewer)
Likely BenignC2Benign 16-33438041-C-T84.05e-5-5.641Likely Benign0.173Likely BenignLikely Benign0.469Likely Benign0.39Likely Benign0.23.38Destabilizing1.89Ambiguous-0.52Ambiguous-0.85Neutral0.015Benign0.002Benign3.83Benign0.04Affected4.3211-3-24.626.08251.9-48.10.61.10.00.5UncertainSer379 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like leucine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Leu379 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.2393C>TP798LLikely BenignSH3-binding motifUncertain 26-33442945-C-T63.72e-6-5.640Likely Benign0.074Likely BenignLikely Benign0.042Likely Benign-0.86Neutral0.981Probably Damaging0.631Possibly Damaging4.21Benign0.00Affected4.321-3-35.416.04
c.2948G>AS983NLikely Benign 16-33443500-G-A63.72e-6-5.604Likely Benign0.909Likely PathogenicAmbiguous0.136Likely Benign-1.78Neutral0.991Probably Damaging0.988Probably Damaging2.04Pathogenic0.00Affected4.32111-2.727.03
c.3962C>AP1321QLikely BenignBenign 16-33451836-C-A16.58e-7-5.594Likely Benign0.079Likely BenignLikely Benign0.055Likely Benign-0.74Neutral0.659Possibly Damaging0.034Benign4.24Benign0.09Tolerated3.7750-1-1.931.01
c.2713C>TR905CConflicting 26-33443265-C-T159.31e-6-5.578Likely Benign0.723Likely PathogenicLikely Benign0.194Likely Benign-3.14Deleterious1.000Probably Damaging0.980Probably Damaging2.57Benign0.01Affected3.775-4-37.0-53.05
c.1040C>AT347N
(3D Viewer)
Likely BenignC2Uncertain 16-33437945-C-A95.58e-6-5.545Likely Benign0.165Likely BenignLikely Benign0.059Likely Benign0.41Likely Benign0.10.46Likely Benign0.44Likely Benign-0.06Likely Benign1.96Neutral0.001Benign0.001Benign1.67Pathogenic0.60Tolerated3.372500-2.813.00
c.3977C>TP1326LLikely BenignUncertain 1-5.541Likely Benign0.115Likely BenignLikely Benign0.117Likely Benign-1.06Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.775-3-35.416.04
c.401G>AS134NLikely BenignUncertain 1-5.534Likely Benign0.813Likely PathogenicAmbiguous0.075Likely Benign-1.62Neutral0.001Benign0.002Benign3.90Benign0.00Affected3.61511-2.727.03

Found 742 rows. Page 2/4 |