SynGap Missense Server

Table of SynGAP1 Isoform α2 (UniProt Q96PV0-1) Missense Variants.

c.dna Variant SGM Consensus Domain ClinVar gnomAD ESM1b AlphaMissense REVEL FoldX Rosetta Foldetta PremPS PROVEAN PolyPhen-2 HumDiv PolyPhen-2 HumVar FATHMM SIFT PAM Physical SASA Normalized B-factor backbone Normalized B-factor sidechain SynGAP Structural Annotation DOI
Clinical Status Review Subm. ID Allele count Allele freq. LLR score Prediction Pathogenicity Class Optimized Score Prediction Average ΔΔG Prediction StdDev ΔΔG Prediction ΔΔG Prediction ΔΔG Prediction Score Prediction pph2_prob Prediction pph2_prob Prediction Nervous System Score Prediction Prediction Status Conservation Sequences PAM250 PAM120 Hydropathy Δ MW Δ Average Δ Δ StdDev Δ StdDev Secondary Tertiary bonds Inside out GAP-Ras interface At membrane No effect MD Alert Verdict Description
c.1417G>AV473I
(3D Viewer)
GAPUncertain 16-33438449-G-A16.20e-7-7.481In-Between0.418AmbiguousLikely Benign0.203Likely Benign-0.12Likely Benign0.01.20Ambiguous0.54Ambiguous-0.06Likely Benign-0.91Neutral0.929Possibly Damaging0.917Probably Damaging3.74Benign0.18Tolerated3.3734340.314.03
c.3023A>GD1008GUncertain 16-33443575-A-G16.20e-7-3.213Likely Benign0.742Likely PathogenicLikely Benign0.203Likely Benign-2.84Deleterious0.999Probably Damaging0.997Probably Damaging2.65Benign0.01Affected3.775-113.1-58.04
c.313T>CS105PLikely BenignUncertain 1-3.631Likely Benign0.166Likely BenignLikely Benign0.204Likely Benign0.03Neutral0.808Possibly Damaging0.212Benign4.00Benign0.00Affected4.321-11-0.810.04
c.2873A>CH958PLikely BenignBenign 16-33443425-A-C21.24e-6-8.369Likely Pathogenic0.068Likely BenignLikely Benign0.204Likely Benign-0.36Neutral0.925Possibly Damaging0.316Benign4.14Benign0.10Tolerated3.7750-21.6-40.02
c.3059G>CR1020PLikely PathogenicUncertain 1-3.491Likely Benign0.902Likely PathogenicAmbiguous0.205Likely Benign-3.50Deleterious0.999Probably Damaging0.977Probably Damaging2.46Pathogenic0.00Affected0-22.9-59.07
c.1221G>TQ407H
(3D Viewer)
Likely PathogenicC2Uncertain 1-10.526Likely Pathogenic0.830Likely PathogenicAmbiguous0.206Likely Benign0.59Ambiguous0.00.61Ambiguous0.60Ambiguous1.10Destabilizing-4.51Deleterious0.982Probably Damaging0.947Probably Damaging3.88Benign0.01Affected3.3828030.39.01
c.2729G>CG910ALikely BenignUncertain 16-33443281-G-C16.20e-7-3.587Likely Benign0.361AmbiguousLikely Benign0.209Likely Benign-1.43Neutral0.999Probably Damaging0.999Probably Damaging2.78Benign0.10Tolerated3.775102.214.03
c.886T>GS296A
(3D Viewer)
Likely BenignC2Uncertain 1-6.847Likely Benign0.247Likely BenignLikely Benign0.209Likely Benign0.50Ambiguous0.3-0.26Likely Benign0.12Likely Benign0.35Likely Benign-1.79Neutral0.992Probably Damaging0.987Probably Damaging1.97Pathogenic0.65Tolerated3.4016112.6-16.00182.526.6-0.20.1-0.50.0XPotentially PathogenicThe hydroxyl group of the Ser296 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), stably hydrogen bonds with the carboxylate group of Asp330 in a neighboring β strand (res. Ala322-Asp332). The backbone carbonyl group of Ser296 also hydrogen bonds with the guanidinium group of Arg279 in another nearby β strand (res. Arg279-Cys285). In the variant simulations, the methyl group of the Ala296 side chain cannot hydrogen bond with Asp330, causing the carboxylate group positioning to fluctuate more than in the WT simulations.Although the residue swap does not seem to affect the anti-parallel β sheet assembly during the simulations, it is possible that the Ser296-Asp330 hydrogen bond plays a crucial role in maintaining the C2 domain fold. Notably, because Ser296 is located near the membrane interface, the potential effect of the residue swap on the SynGAP-membrane association cannot be addressed by solvent-only simulations.
c.3404A>CK1135TLikely BenignConflicting 26-33443956-A-C16.75e-7-4.778Likely Benign0.779Likely PathogenicLikely Benign0.210Likely Benign-0.90Neutral0.411Benign0.321Benign5.46Benign0.10Tolerated4.3220-13.2-27.07
c.2147G>AR716Q
(3D Viewer)
GAPConflicting 26-33441612-G-A42.48e-6-8.338Likely Pathogenic0.308Likely BenignLikely Benign0.210Likely Benign-0.01Likely Benign0.00.47Likely Benign0.23Likely Benign0.58Ambiguous-3.14Deleterious1.000Probably Damaging0.990Probably Damaging3.35Benign0.02Affected3.509111.0-28.06250.048.90.00.0-0.50.0XUncertainThe guanidinium group of Arg716, located on the outer surface of an α-helix (res. Leu714-Arg726), forms a salt bridge with the carboxylate group of Asp720. In the variant simulations, the carboxamide group of Gln716 also forms a hydrogen bond with the carboxylate group of Asp720, although this bond is weaker than the Arg716 salt bridge in the WT. Overall, no adverse effects on the protein structure are observed in the simulations. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.3906G>CL1302FUncertain 1-5.674Likely Benign0.148Likely BenignLikely Benign0.211Likely Benign-2.70Deleterious0.960Probably Damaging0.657Possibly Damaging1.53Pathogenic0.00Affected20-1.034.02
c.2928T>GF976LLikely BenignUncertain 1-2.432Likely Benign0.825Likely PathogenicAmbiguous0.212Likely Benign-0.87Neutral0.264Benign0.102Benign4.20Benign0.53Tolerated4.322201.0-34.02
c.1231A>GI411V
(3D Viewer)
Likely BenignGAPLikely Benign 1-6.290Likely Benign0.385AmbiguousLikely Benign0.212Likely Benign0.74Ambiguous0.00.82Ambiguous0.78Ambiguous0.99Ambiguous-0.86Neutral0.935Possibly Damaging0.858Possibly Damaging3.90Benign0.27Tolerated3.382843-0.3-14.03233.328.2-0.20.0-0.20.0XPotentially BenignThe sec-butyl side chain of Ile411, located in the hydrophobic space between an anti-parallel β sheet strand (res. Pro398-Ile411) and an α helix (res. Asp684-Gln702), packs against multiple residues (e.g., Met409, Arg259). In the variant simulations, the side chain of Val411 is able to favorably fill the same hydrophobic niche despite its slightly smaller size. In short, the residue swap has no apparent negative effect on the structure based on the simulations.
c.1970G>TW657L
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.411Likely Pathogenic0.960Likely PathogenicLikely Pathogenic0.213Likely Benign0.14Likely Benign0.10.73Ambiguous0.44Likely Benign0.87Ambiguous-10.86Deleterious0.277Benign0.078Benign3.52Benign0.14Tolerated3.3924-2-24.7-73.05
c.2071A>CT691P
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-13.801Likely Pathogenic0.905Likely PathogenicAmbiguous0.214Likely Benign5.04Destabilizing0.46.09Destabilizing5.57Destabilizing1.27Destabilizing-3.43Deleterious1.000Probably Damaging0.952Probably Damaging3.43Benign0.06Tolerated3.43140-1-0.9-3.99188.933.00.10.0-0.60.0XXPotentially PathogenicThe hydroxyl side chain of Thr691, located in an α-helix (res. Leu696-Leu685), can form hydrogen bonds with the backbone carbonyl and the side chain guanidinium group of Arg687. This interaction facilitates the simultaneous formation of salt bridges between Arg687 and Glu688 on the same α-helix. Additionally, Thr691 occasionally interacts with the thioether side chain of Met409 in an anti-parallel β-sheet of the C2 domain (res. Ile411-Ala399), although this interaction is not consistently maintained throughout the WT simulations. In the variant simulations, the pyrrolidine side chain of Pro691 lacks hydrogen bond donors, making a similar setup impossible. Moreover, proline lacks a free amide group necessary for hydrogen bonding with the carbonyl group of Arg687, introducing a slight bend in the α-helix and compromising its integrity.
c.3484C>TP1162SLikely BenignUncertain 1-2.118Likely Benign0.913Likely PathogenicAmbiguous0.215Likely Benign-1.93Neutral1.000Probably Damaging0.999Probably Damaging2.73Benign0.55Tolerated3.8831-10.8-10.04
c.3059G>TR1020LUncertain 1-6.031Likely Benign0.907Likely PathogenicAmbiguous0.216Likely Benign-4.03Deleterious0.990Probably Damaging0.921Probably Damaging2.50Benign0.00Affected3.775-3-28.3-43.03
c.1913A>GK638R
(3D Viewer)
Likely BenignGAPUncertain 1-2.700Likely Benign0.110Likely BenignLikely Benign0.216Likely Benign0.09Likely Benign0.1-0.04Likely Benign0.03Likely Benign0.53Ambiguous-2.55Deleterious0.649Possibly Damaging0.240Benign3.41Benign0.13Tolerated3.373123-0.628.01
c.3170G>AS1057NLikely BenignUncertain 1-6.386Likely Benign0.117Likely BenignLikely Benign0.218Likely Benign-0.41Neutral0.451Benign0.129Benign5.25Benign0.28Tolerated11-2.727.03
c.1354G>AV452I
(3D Viewer)
GAPUncertain 1-8.985Likely Pathogenic0.361AmbiguousLikely Benign0.218Likely Benign-0.08Likely Benign0.10.51Ambiguous0.22Likely Benign0.25Likely Benign-0.99Neutral0.947Possibly Damaging0.851Possibly Damaging3.26Benign0.05Affected430.314.03
c.29G>CR10PLikely BenignUncertain 26-33420293-G-C21.30e-6-3.772Likely Benign0.162Likely BenignLikely Benign0.220Likely Benign-0.05Neutral0.233Benign0.026Benign4.13Benign0.00Affected4.3210-22.9-59.07
c.509G>AR170QPathogenic/Likely path. 6-9.021Likely Pathogenic0.798Likely PathogenicAmbiguous0.221Likely Benign-2.31Neutral0.947Possibly Damaging0.342Benign3.91Benign0.00Affected3.744111.0-28.0610.1016/j.ajhg.2020.11.011
c.1792C>GL598V
(3D Viewer)
Likely PathogenicGAPUncertain 1-10.002Likely Pathogenic0.578Likely PathogenicLikely Benign0.221Likely Benign1.89Ambiguous0.11.58Ambiguous1.74Ambiguous1.01Destabilizing-2.92Deleterious0.944Possibly Damaging0.786Possibly Damaging3.21Benign0.02Affected3.3735210.4-14.03218.429.60.00.00.80.0XPotentially BenignThe iso-butyl side chain of Leu598, located on an α helix (res. Glu582-Met603), packs hydrophobically with other hydrophobic residues in the inter-helix space (e.g., Ile602, Phe594, Ile510).In the variant simulations, Val598, which has similar size and physicochemical properties to leucine, resides in the inter-helix hydrophobic space in a similar manner to Leu598 in the WT. This causes no negative effects on the protein structure.
c.2359C>TP787SSH3-binding motifUncertain 16-33442911-C-T31.86e-6-4.203Likely Benign0.564AmbiguousLikely Benign0.221Likely Benign-3.81Deleterious1.000Probably Damaging0.999Probably Damaging2.48Pathogenic0.02Affected3.646-110.8-10.04
c.866T>CM289TLikely BenignC2Uncertain1-4.668Likely Benign0.238Likely BenignLikely Benign0.222Likely Benign0.73Ambiguous0.10.17Likely Benign0.45Likely Benign-0.01Likely Benign-0.47Neutral0.801Possibly Damaging0.315Benign1.83Pathogenic0.57Tolerated-1-1-2.6-30.09
c.2830G>AG944SLikely BenignBenign 16-33443382-G-A138.05e-6-5.303Likely Benign0.082Likely BenignLikely Benign0.223Likely Benign-0.75Neutral0.007Benign0.004Benign3.77Benign0.00Affected4.32410-0.430.03
c.3254G>AR1085QLikely BenignUncertain 16-33443806-G-A53.16e-6-3.843Likely Benign0.589Likely PathogenicLikely Benign0.224Likely Benign-1.43Neutral0.998Probably Damaging0.988Probably Damaging2.73Benign0.02Affected3.775111.0-28.06
c.1131G>AM377I
(3D Viewer)
Likely BenignC2Uncertain 16-33438036-G-A16.23e-7-2.895Likely Benign0.212Likely BenignLikely Benign0.227Likely Benign0.76Ambiguous0.30.54Ambiguous0.65Ambiguous0.24Likely Benign-0.41Neutral0.000Benign0.001Benign5.46Benign0.26Tolerated4.3212122.6-18.03
c.3G>AM1ILikely BenignConflicting 3-5.397Likely Benign0.227Likely Benign-0.17Neutral0.001Benign0.000Benign4.25Benign0.00Affected4.321212.6-18.03
c.2935T>CF979LLikely BenignUncertain 1-2.341Likely Benign0.870Likely PathogenicAmbiguous0.228Likely Benign-1.00Neutral0.625Possibly Damaging0.430Benign4.22Benign0.73Tolerated4.322201.0-34.02
c.1447A>GI483V
(3D Viewer)
GAPConflicting 2-10.121Likely Pathogenic0.523AmbiguousLikely Benign0.228Likely Benign1.00Ambiguous0.00.27Likely Benign0.64Ambiguous1.02Destabilizing-0.86Neutral0.914Possibly Damaging0.921Probably Damaging3.23Benign0.03Affected3.373234-0.3-14.03
c.514C>TR172WLikely PathogenicUncertain 26-33435156-C-T95.58e-6-10.258Likely Pathogenic0.878Likely PathogenicAmbiguous0.228Likely Benign-3.61Deleterious0.997Probably Damaging0.803Possibly Damaging3.95Benign0.00Affected3.6152-33.630.03
c.3380G>TG1127VLikely BenignUncertain 16-33443932-G-T16.69e-7-6.097Likely Benign0.094Likely BenignLikely Benign0.230Likely Benign-1.01Neutral0.004Benign0.005Benign4.81Benign0.17Tolerated4.324-1-34.642.08
c.2855G>TG952VLikely BenignUncertain 1-7.074In-Between0.078Likely BenignLikely Benign0.231Likely Benign-0.33Neutral0.000Benign0.000Benign3.20Benign0.02Affected3.775-1-34.642.08
c.3374G>CG1125ALikely BenignUncertain 16-33443926-G-C16.68e-7-6.569Likely Benign0.083Likely BenignLikely Benign0.232Likely Benign-0.60Neutral0.999Probably Damaging0.995Probably Damaging4.60Benign0.11Tolerated3.775102.214.03
c.3902C>AP1301HLikely BenignConflicting 26-33451776-C-A53.10e-6-5.756Likely Benign0.104Likely BenignLikely Benign0.232Likely Benign-1.13Neutral0.642Possibly Damaging0.378Benign2.79Benign0.04Affected3.7750-2-1.640.02
c.3607C>TH1203YLikely BenignCoiled-coilUncertain 16-33446599-C-T21.24e-6-6.834Likely Benign0.149Likely BenignLikely Benign0.233Likely Benign-1.52Neutral0.006Benign0.011Benign5.55Benign0.10Tolerated3.775201.926.03
c.2302G>TD768YLikely PathogenicUncertain 16-33442460-G-T-9.866Likely Pathogenic0.824Likely PathogenicAmbiguous0.234Likely Benign-2.86Deleterious0.989Probably Damaging0.806Possibly Damaging4.01Benign0.07Tolerated3.646-4-32.248.09
c.2960A>GD987GLikely PathogenicUncertain 1-4.782Likely Benign0.849Likely PathogenicAmbiguous0.234Likely Benign-2.79Deleterious0.943Possibly Damaging0.808Possibly Damaging2.45Pathogenic0.07Tolerated4.3221-13.1-58.04
c.28C>TR10WLikely BenignUncertain 16-33420292-C-T21.30e-6-5.707Likely Benign0.503AmbiguousLikely Benign0.236Likely Benign-0.31Neutral0.964Probably Damaging0.190Benign4.10Benign0.00Affected4.3212-33.630.03
c.406C>TR136WLikely PathogenicUncertain 2-10.453Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.237Likely Benign-4.71Deleterious0.965Probably Damaging0.416Benign3.45Benign0.00Affected3.6152-33.630.03
c.1511A>GK504R
(3D Viewer)
Likely BenignGAPUncertain16-33438543-A-G21.24e-6-4.365Likely Benign0.088Likely BenignLikely Benign0.238Likely Benign0.13Likely Benign0.10.51Ambiguous0.32Likely Benign0.94Ambiguous-2.16Neutral0.002Benign0.015Benign-1.41Pathogenic0.11Tolerated3.373523-0.628.01
c.896G>AR299H
(3D Viewer)
C2Conflicting 26-33437801-G-A106.20e-6-7.731In-Between0.388AmbiguousLikely Benign0.238Likely Benign3.97Destabilizing1.00.94Ambiguous2.46Destabilizing1.41Destabilizing-3.35Deleterious1.000Probably Damaging0.998Probably Damaging1.69Pathogenic0.02Affected3.3919201.3-19.05211.272.5-0.10.2-0.20.3XPotentially PathogenicThe guanidinium group of Arg299, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), forms hydrogen bonds that stabilize the tight turn. In the WT simulations, the Arg299 side chain hydrogen bonds with the loop backbone carbonyl groups (e.g., Ser302, Thr305, Leu274, Gly303), the hydroxyl group of Ser300, and even forms a salt bridge with the carboxylate group of Asp304.In the variant simulations, the imidazole ring of His299 (epsilon protonated state) hydrogen bonds with the carbonyl group of Asp304 and the hydroxyl group of Ser300. However, it does not form as many or as strong interactions as arginine, which could affect the initial formation of the secondary hairpin loop during folding. β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant.Additionally, His299 prefers to hydrophobically interact with other hydrophobic residues inside the C2 domain core (e.g., Val306, Leu274), which destabilizes the C2 domain. Indeed, the β strand partially unfolds during the second simulation. Moreover, the positively charged Arg299 side chain faces the polar head group region of the inner leaflet membrane and could directly anchor the C2 domain to the membrane. In short, the residue swap could negatively affect both protein folding and the stability of the SynGAP-membrane association.
c.1832T>CM611T
(3D Viewer)
Likely BenignGAPUncertain 16-33440884-T-C16.19e-7-5.696Likely Benign0.101Likely BenignLikely Benign0.240Likely Benign1.98Ambiguous0.20.94Ambiguous1.46Ambiguous0.87Ambiguous-2.40Neutral0.034Benign0.038Benign-1.19Pathogenic0.29Tolerated3.3735-1-1-2.6-30.09
c.1370G>AS457NLikely PathogenicGAPUncertain 1-10.221Likely Pathogenic0.949Likely PathogenicAmbiguous0.241Likely Benign0.19Likely Benign0.0-0.22Likely Benign-0.02Likely Benign0.67Ambiguous-2.76Deleterious0.940Possibly Damaging0.843Possibly Damaging3.28Benign0.06Tolerated11-2.727.03
c.508C>TR170WLikely PathogenicUncertain 2-11.660Likely Pathogenic0.978Likely PathogenicLikely Pathogenic0.241Likely Benign-4.28Deleterious0.999Probably Damaging0.849Possibly Damaging3.84Benign0.00Affected3.7442-33.630.03
c.3370G>AG1124RConflicting 36-33443922-G-A241.60e-5-8.918Likely Pathogenic0.534AmbiguousLikely Benign0.243Likely Benign-0.58Neutral0.002Benign0.002Benign4.81Benign0.01Affected3.775-3-2-4.199.14
c.2420A>GY807CSH3-binding motifUncertain 16-33442972-A-G16.20e-7-7.228In-Between0.204Likely BenignLikely Benign0.243Likely Benign-3.89Deleterious0.997Probably Damaging0.934Probably Damaging2.42Pathogenic0.01Affected3.7750-23.8-60.04
c.526A>CS176RLikely BenignUncertain 1-6.492Likely Benign0.987Likely PathogenicLikely Pathogenic0.247Likely Benign0.94Neutral0.718Possibly Damaging0.168Benign4.16Benign0.87Tolerated0-1-3.769.11
c.1966G>CE656Q
(3D Viewer)
GAPUncertain 16-33441225-G-C16.20e-7-9.145Likely Pathogenic0.766Likely PathogenicLikely Benign0.249Likely Benign-0.14Likely Benign0.0-0.81Ambiguous-0.48Likely Benign0.25Likely Benign-2.29Neutral0.980Probably Damaging0.528Possibly Damaging3.46Benign0.02Affected3.3924220.0-0.98224.31.70.00.10.10.0XPotentially BenignThe carboxylate side chain of Glu656, located on an α helix (res. Ser641-Glu666), frequently forms a hydrogen bond with the nearby residue Ser659 on the same α helix. In the variant simulations, the carboxamide side chain of Gln656 alternatively forms a hydrogen bond with either Ser659 or Glu548 on an opposing helix (res. Ala533-Val560).Although the frequent interaction between Gln656 and Glu548 may strengthen or stabilize the tertiary structure assembly, the effect is likely to be marginal.
c.2627C>TS876LUncertain 2-5.856Likely Benign0.489AmbiguousLikely Benign0.249Likely Benign-3.56Deleterious0.998Probably Damaging0.992Probably Damaging2.57Benign0.05Affected3.775-2-34.626.08
c.2474C>TS825LLikely PathogenicUncertain 16-33443026-C-T16.20e-7-4.987Likely Benign0.910Likely PathogenicAmbiguous0.249Likely Benign-4.30Deleterious0.999Probably Damaging0.994Probably Damaging1.94Pathogenic0.01Affected3.775-2-34.626.08
c.3995C>TT1332MLikely Benign 16-33451869-C-T201.86e-5-4.107Likely Benign0.948Likely PathogenicAmbiguous0.252Likely Benign-3.63Deleterious1.000Probably Damaging0.991Probably Damaging2.95Benign0.00Affected3.775-1-12.630.09
c.1663G>AV555I
(3D Viewer)
Likely BenignGAPUncertain 1-4.544Likely Benign0.084Likely BenignLikely Benign0.253Likely Benign-0.82Ambiguous0.0-0.41Likely Benign-0.62Ambiguous-0.55Ambiguous0.45Neutral0.002Benign0.002Benign-1.26Pathogenic1.00Tolerated430.314.03
c.470G>AR157HUncertain 16-33432767-G-A16.20e-7-10.235Likely Pathogenic0.604Likely PathogenicLikely Benign0.254Likely Benign-2.23Neutral0.999Probably Damaging0.987Probably Damaging3.80Benign0.00Affected3.744201.3-19.05
c.1441C>TH481Y
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33438473-C-T169.91e-6-10.910Likely Pathogenic0.565Likely PathogenicLikely Benign0.256Likely Benign-0.53Ambiguous0.1-0.46Likely Benign-0.50Ambiguous0.20Likely Benign-3.32Deleterious0.988Probably Damaging0.979Probably Damaging3.40Benign0.59Tolerated3.3733021.926.03256.5-44.40.00.00.20.2XXUncertainThe imidazole ring of the His481 side chain is located in a short helical structure (res. Glu480-Leu482) within an α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. In the WT simulations, His481 alternately stacks against Arg485, Arg587, and Glu480 without a definite role. In the variant simulations, Tyr481 also alternately stacks with nearby arginine residues, including Arg485, Arg587, and Arg479. The interaction between Tyr481 and Arg479 affects the α-α loop, causing it to fold into a distorted helical structure, an effect that might be more pronounced during protein folding. Finally, the potential effect of the residue swap on SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.2359C>AP787TLikely PathogenicSH3-binding motifLikely Benign 16-33442911-C-A171.05e-5-4.813Likely Benign0.603Likely PathogenicLikely Benign0.258Likely Benign-4.40Deleterious1.000Probably Damaging0.999Probably Damaging2.46Pathogenic0.01Affected3.6460-10.93.99
c.1240A>GM414VGAPUncertain 1-8.003Likely Pathogenic0.541AmbiguousLikely Benign0.261Likely Benign1.81Ambiguous0.41.73Ambiguous1.77Ambiguous0.95Ambiguous-2.95Deleterious0.999Probably Damaging0.987Probably Damaging3.43Benign0.24Tolerated212.3-32.06
c.1771G>AA591T
(3D Viewer)
Likely PathogenicGAPConflicting 36-33440823-G-A181.12e-5-9.572Likely Pathogenic0.704Likely PathogenicLikely Benign0.270Likely Benign1.61Ambiguous0.21.00Ambiguous1.31Ambiguous1.19Destabilizing-3.40Deleterious0.955Possibly Damaging0.209Benign3.48Benign0.01Affected3.373510-2.530.03202.9-43.40.20.00.70.1XPotentially BenignThe methyl group of the Ala591 side chain, located in the middle of an α helix (res. Glu582-Met603), packs against hydrophobic residues (e.g., Ile483, Phe484) of an opposing partially helical loop (res. Phe476-Asn487).In the variant simulations, the hydroxyl group of Thr591 can form hydrogen bonds with the backbone carbonyl of Ile843 in the opposing loop or the backbone carbonyl group of Arg587. These interactions could either reinforce the tertiary assembly or weaken the α helix unity. Additionally, the Thr591 side chain can hydrogen bond with the guanidinium group of the Arg587 side chain, potentially strengthening the α helix unity.Overall, the residue swap does not seem to cause any major negative effects on the protein structure.
c.3635C>TS1212FLikely PathogenicCoiled-coilConflicting 2-14.445Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.271Likely Benign-4.52Deleterious0.999Probably Damaging0.998Probably Damaging2.03Pathogenic0.00Affected3.775-3-23.660.10
c.4006G>AE1336KLikely BenignBenign 26-33451880-G-A64.20e-6-4.697Likely Benign0.977Likely PathogenicLikely Pathogenic0.272Likely Benign-2.44Neutral0.748Possibly Damaging0.079Benign3.23Benign0.00Affected3.77501-0.4-0.94
c.1195G>AA399T
(3D Viewer)
Likely BenignC2Benign 1-5.236Likely Benign0.114Likely BenignLikely Benign0.272Likely Benign1.24Ambiguous0.10.91Ambiguous1.08Ambiguous0.49Likely Benign-0.40Neutral0.131Benign0.039Benign5.41Benign0.69Tolerated3.382610-2.530.03211.4-41.40.00.00.60.4XPotentially PathogenicThe methyl group of Ala399, located in an anti-parallel β sheet strand (res. Ala399-Ile411), is swapped for a hydroxyl-containing threonine. In the variant simulations, the hydroxyl group of Thr399 can form H-bonds with the backbone atoms of the residues in the membrane-facing loops (e.g., Gly382) in the C2 domain. Consequently, the ability of the Thr399 side chain to form H-bonds with the membrane-facing loops could adversely affect the dynamics and stability of the SynGAP-membrane association. However, since the effects on the dynamics of the membrane-facing loops can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.2435C>AP812HSH3-binding motifUncertain 26-33442987-C-A31.86e-6-7.470In-Between0.698Likely PathogenicLikely Benign0.272Likely Benign-2.81Deleterious1.000Probably Damaging0.995Probably Damaging2.68Benign0.00Affected4.3240-2-1.640.02
c.2414T>CL805PSH3-binding motifUncertain 1-4.661Likely Benign0.444AmbiguousLikely Benign0.272Likely Benign-3.40Deleterious0.975Probably Damaging0.767Possibly Damaging2.36Pathogenic0.00Affected3.775-3-3-5.4-16.04
c.1393C>GL465V
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.893Likely Pathogenic0.838Likely PathogenicAmbiguous0.276Likely Benign2.46Destabilizing0.12.66Destabilizing2.56Destabilizing1.21Destabilizing-2.98Deleterious0.996Probably Damaging0.992Probably Damaging2.44Pathogenic0.10Tolerated3.3734210.4-14.03204.330.90.00.0-0.40.6XPotentially BenignThe iso-butyl side chain of Leu465, located in the middle of an α helix (res. Ala461–Phe476), packs with hydrophobic residues (e.g., Phe464, Met468, Tyr497, Ile494) in an inter-helix space formed with two other α helices (res. Ala461–Phe476 and res. Thr488-Gly502). In the variant simulations, the iso-propyl side chain of Val465 is equally sized and similarly hydrophobic as the original side chain of Leu465. Hence, the mutation does not exert any negative effects on the protein structure based on the variant simulations.
c.2095G>AV699M
(3D Viewer)
GAPUncertain 26-33441354-G-A84.96e-6-8.869Likely Pathogenic0.484AmbiguousLikely Benign0.276Likely Benign-0.58Ambiguous0.10.29Likely Benign-0.15Likely Benign0.96Ambiguous-2.18Neutral0.994Probably Damaging0.806Possibly Damaging3.37Benign0.03Affected3.471021-2.332.06257.8-47.20.00.00.90.1XPotentially BenignThe isopropyl side chain of Val699, located on an α-helix (res. Leu685-Gln702), packs against hydrophobic residues (e.g., Leu703, Leu696, Leu435, Leu439) in the inter-helix space. In the variant simulations, the thioether side chain of Met699 has similar physicochemical properties to Val699 in the WT, and thus, it is able to maintain similar interactions. Consequently, the mutation causes no apparent changes in the structure.
c.1045C>TP349S
(3D Viewer)
C2Uncertain 1-7.654In-Between0.217Likely BenignLikely Benign0.277Likely Benign1.92Ambiguous0.12.28Destabilizing2.10Destabilizing0.87Ambiguous-6.13Deleterious1.000Probably Damaging0.996Probably Damaging1.66Pathogenic0.06Tolerated3.37251-10.8-10.04194.9-18.1-0.10.00.20.1XXPotentially PathogenicThe cyclic pyrrolidine side chain of Pro349, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), allows the strand to end and make a tight turn before a short α helical section within a loop connecting to another β strand (res. Thr359-Pro364). In the variant simulations, the hydroxyl group of Ser349 forms a hydrogen bond with the backbone amide group of Ala351 in the short helical section. Conversely, the backbone amide group of Ser349 (absent in proline) does not form any intra-protein hydrogen bonds. However, the β strand end connects to the α helical section in a more stable and consistent manner compared to the WT. Although the residue swap does not cause major adverse effects on the protein structure in the simulations, it is possible that the tight turn at the β strand end could not be created during folding without the presence of proline.
c.407G>CR136PLikely PathogenicUncertain 1-11.952Likely Pathogenic0.981Likely PathogenicLikely Pathogenic0.277Likely Benign-3.72Deleterious0.910Possibly Damaging0.578Possibly Damaging3.47Benign0.00Affected3.6150-22.9-59.07
c.1436G>CR479P
(3D Viewer)
Likely PathogenicGAPUncertain 1-11.795Likely Pathogenic0.938Likely PathogenicAmbiguous0.277Likely Benign2.86Destabilizing0.23.88Destabilizing3.37Destabilizing0.81Ambiguous-3.52Deleterious1.000Probably Damaging1.000Probably Damaging3.41Benign0.18Tolerated0-22.9-59.07
c.1003C>TR335C
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437908-C-T16.20e-7-14.354Likely Pathogenic0.938Likely PathogenicAmbiguous0.277Likely Benign0.53Ambiguous0.10.85Ambiguous0.69Ambiguous0.46Likely Benign-5.69Deleterious1.000Probably Damaging0.998Probably Damaging1.67Pathogenic0.01Affected3.3822-3-47.0-53.05
c.2143C>TP715S
(3D Viewer)
GAPLikely Pathogenic 16-33441608-C-T16.20e-7-7.635In-Between0.787Likely PathogenicAmbiguous0.277Likely Benign3.54Destabilizing0.00.81Ambiguous2.18Destabilizing0.94Ambiguous-7.17Deleterious1.000Probably Damaging0.998Probably Damaging3.43Benign0.01Affected3.5091-10.8-10.04231.8-14.0-0.10.0-0.80.1XUncertainPro715, along with Gly712 and Pro713, are located in a hinge region of an α-helix making a ~90-degree turn (res. Lys705-Leu725). In the WT simulations, the pyrrolidine side chain of Pro715, lacking the backbone amide groups altogether, forces the tight helix turn to take place while also hydrophobically packing with nearby residues (e.g., Leu700, Leu708, Leu714, and Leu718). Leu715, with a normal amide backbone, could potentially affect protein folding and turn formation, although this was not observed in the variant simulations. Additionally, the hydroxyl group of the Ser715 side chain can form hydrogen bonds with the backbone carbonyl group of Gly712 and disrupt the hydrophobic packing arrangement of the leucine residues from the neighboring α-helices, impacting the GAP domain tertiary assembly.
c.3161G>AG1054DUncertain 1-10.385Likely Pathogenic0.351AmbiguousLikely Benign0.279Likely Benign-0.26Neutral0.818Possibly Damaging0.266Benign4.07Benign0.37Tolerated3.7751-1-3.158.04
c.1285C>TR429W
(3D Viewer)
GAPConflicting 56-33438190-C-T654.03e-5-10.666Likely Pathogenic0.500AmbiguousLikely Benign0.282Likely Benign0.31Likely Benign0.1-0.13Likely Benign0.09Likely Benign0.52Ambiguous-3.19Deleterious1.000Probably Damaging0.990Probably Damaging3.41Benign0.03Affected3.38252-33.630.03252.345.50.00.00.20.1XPotentially PathogenicThe guanidinium group of Arg429, located in an α helix (res. Met414-Glu436), either forms a salt bridge with the carboxylate group of an acidic residue (Asp474, Asp467) or a H-bond with the hydroxyl group of Ser471 in an opposing α helix (res. Ala461-Phe476). In the variant simulations, the indole ring of the Trp429 side chain cannot form ionic interactions with the acidic residues. Although it forms a H-bond with Ser471, the bonding is not as strong as that of arginine. The residue swap could affect the tertiary structure assembly during folding; however, no large-scale negative effects were seen during the simulations.
c.1108G>AG370S
(3D Viewer)
Likely BenignC2Uncertain 16-33438013-G-A159.31e-6-3.533Likely Benign0.081Likely BenignLikely Benign0.282Likely Benign2.83Destabilizing2.01.05Ambiguous1.94Ambiguous-0.02Likely Benign0.47Neutral0.000Benign0.000Benign1.33Pathogenic0.77Tolerated3.421910-0.430.03196.6-49.60.92.2-0.10.4UncertainGly370 is located in the Gly-rich Ω loop (res. Pro364- Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because, the Ω loop is assumed to be directly interacting with the membrane, it is only seen to move arbitrarily throughout the WT solvent simulations. The Ω loop is potentially playing a crucial loop in the SynGAP-membrane complex association, stability and dynamics, regardless, this aspect cannot be addressed through the solvent simulations only. The Ω-loops are known to have a major role in protein functions that requires flexibility and thus, they are rich in glycines, prolines and to a lesser extent, hydrophilic residues to ensure maximum flexibility. Thus, Ser370 in the variant is potentially tolerated in the Ω loop. However, since the effect on the Gly-rich Ω loop dynamics can only be well-studied through the SynGAP-membrane complex, no definite conclusions can be withdrawn.
c.3181G>AG1061SLikely BenignUncertain 1-4.891Likely Benign0.079Likely BenignLikely Benign0.283Likely Benign-0.68Neutral0.004Benign0.004Benign4.00Benign0.00Affected10-0.430.03
c.2158G>AD720N
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33441623-G-A53.10e-6-9.135Likely Pathogenic0.654Likely PathogenicLikely Benign0.289Likely Benign0.01Likely Benign0.0-0.20Likely Benign-0.10Likely Benign0.46Likely Benign-3.74Deleterious1.000Probably Damaging0.995Probably Damaging2.18Pathogenic0.01Affected3.509120.0-0.98
c.3920C>TP1307LLikely BenignBenign 16-33451794-C-T116.82e-6-4.044Likely Benign0.144Likely BenignLikely Benign0.292Likely Benign-1.49Neutral0.779Possibly Damaging0.220Benign2.82Benign0.04Affected3.775-3-35.416.04
c.2105A>GQ702R
(3D Viewer)
GAPUncertain 1-7.894In-Between0.348AmbiguousLikely Benign0.294Likely Benign-0.31Likely Benign0.10.63Ambiguous0.16Likely Benign0.13Likely Benign-3.14Deleterious0.909Possibly Damaging0.889Possibly Damaging3.43Benign0.02Affected3.471011-1.028.06270.3-52.90.00.00.00.1XPotentially PathogenicThe carboxamide side chain of Gln702 is located at the end and outer surface of an α-helix (res. Leu685-Gln702), where it does not directly form hydrogen bonds with any residues in the WT simulations. In the variant simulations, the positively charged guanidinium group of Arg702 forms a salt bridge with the negatively charged carboxylate group of Glu698 on the same helix and/or hydrogen bonds with the backbone carbonyl group of Ala438 on an opposite α-helix (res. Tyr428-Glu436). Consequently, the residue swap could strengthen the tertiary structure assembly, which could have either positive or negative effects on its function.
c.467T>GF156CLikely PathogenicUncertain 1-13.658Likely Pathogenic0.988Likely PathogenicLikely Pathogenic0.297Likely Benign-3.54Deleterious0.999Probably Damaging0.990Probably Damaging3.92Benign0.00Affected-4-2-0.3-44.04
c.3633G>AM1211ILikely BenignCoiled-coilUncertain 16-33446625-G-A31.86e-6-1.537Likely Benign0.764Likely PathogenicLikely Benign0.298Likely Benign-0.42Neutral0.969Probably Damaging0.968Probably Damaging5.40Benign1.00Tolerated3.775122.6-18.03
c.3125A>GQ1042RLikely BenignUncertain 26-33443677-A-G21.24e-6-2.928Likely Benign0.413AmbiguousLikely Benign0.300Likely Benign-1.39Neutral0.586Possibly Damaging0.120Benign5.48Benign0.12Tolerated3.77511-1.028.06
c.3394T>CS1132PLikely BenignConflicting 36-33443946-T-C16.74e-7-1.423Likely Benign0.144Likely BenignLikely Benign0.301Likely Benign0.38Neutral0.003Benign0.006Benign5.40Benign0.28Tolerated4.3241-1-0.810.04
c.3355G>AG1119RBenign 16-33443907-G-A644.23e-5-8.489Likely Pathogenic0.473AmbiguousLikely Benign0.303Likely Benign0.10Neutral0.969Probably Damaging0.462Possibly Damaging4.03Benign0.10Tolerated4.322-3-2-4.199.14
c.1154C>TS385L
(3D Viewer)
Likely BenignC2Uncertain 26-33438059-C-T94.60e-5-6.018Likely Benign0.167Likely BenignLikely Benign0.304Likely Benign0.16Likely Benign0.10.08Likely Benign0.12Likely Benign-0.26Likely Benign-0.68Neutral0.829Possibly Damaging0.706Possibly Damaging4.63Benign0.01Affected4.323-3-24.626.08244.6-50.10.00.6-0.10.1UncertainSer385 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like leucine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Leu385 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effects on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.971G>AR324Q
(3D Viewer)
Likely BenignC2Uncertain 36-33437876-G-A31.86e-6-5.001Likely Benign0.173Likely BenignLikely Benign0.307Likely Benign0.56Ambiguous0.10.63Ambiguous0.60Ambiguous1.02Destabilizing-1.17Neutral0.999Probably Damaging0.994Probably Damaging1.92Pathogenic0.41Tolerated3.3922111.0-28.06
c.3434A>GN1145SLikely BenignUncertain 16-33444469-A-G21.24e-6-0.989Likely Benign0.126Likely BenignLikely Benign0.308Likely Benign-1.15Neutral0.997Probably Damaging0.989Probably Damaging5.55Benign0.89Tolerated4.324112.7-27.03
c.1121C>AS374Y
(3D Viewer)
C2Uncertain 1-7.774In-Between0.344AmbiguousLikely Benign0.310Likely Benign0.71Ambiguous1.20.66Ambiguous0.69Ambiguous-0.02Likely Benign-1.18Neutral0.875Possibly Damaging0.271Benign5.41Benign0.01Affected4.3213-3-2-0.576.10237.3-76.90.50.40.50.3UncertainSer374 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus, large and relatively hydrophobic residues like tyrosine are rarely tolerated. Additionally, the hydroxyl group of Tyr374 frequently forms various hydrogen bonds with other loop residues in the variant simulations. Although no negative structural effects are observed in the variant simulations, Tyr374 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1066C>TR356C
(3D Viewer)
Likely PathogenicC2Likely Benign 16-33437971-C-T53.10e-6-11.827Likely Pathogenic0.774Likely PathogenicLikely Benign0.312Likely Benign0.76Ambiguous0.01.19Ambiguous0.98Ambiguous0.84Ambiguous-7.12Deleterious1.000Probably Damaging0.990Probably Damaging1.67Pathogenic0.00Affected3.3922-4-37.0-53.05212.391.0-0.10.3-0.30.1XPotentially PathogenicArg356 is located in a loop that includes a short helical section and connects two anti-parallel β sheet strands (res. Gly341-Pro349, res. Thr359-Pro364). In the WT simulations, the guanidinium group of Arg356 alternately forms salt bridges with the carboxylate groups of the GAP domain residues, Glu446 and Glu698. Arg356 also forms hydrogen bonds with the hydroxyl group of the GAP domain residue Thr691 and interacts with Met409 at the C2-GAP interface.In the variant simulations, the Cys356 mutation fails to maintain any of the Arg356 interactions and only occasionally forms weak hydrogen bonds with nearby C2 domain residues (e.g., Gln407). Although no negative structural effects are observed during the simulations, Arg356 is located at the C2 and GAP domain interface, making the residue swap potentially detrimental to the tertiary structure assembly.
c.1067G>AR356H
(3D Viewer)
Likely PathogenicC2Likely Benign 16-33437972-G-A95.66e-6-11.453Likely Pathogenic0.614Likely PathogenicLikely Benign0.314Likely Benign0.59Ambiguous0.1-0.27Likely Benign0.16Likely Benign1.17Destabilizing-4.43Deleterious0.999Probably Damaging0.987Probably Damaging1.70Pathogenic0.01Affected3.3922021.3-19.05
c.1150G>AG384S
(3D Viewer)
Likely BenignC2Uncertain 16-33438055-G-A16.22e-7-5.243Likely Benign0.090Likely BenignLikely Benign0.315Likely Benign1.92Ambiguous0.21.66Ambiguous1.79Ambiguous0.19Likely Benign-0.67Neutral0.980Probably Damaging0.968Probably Damaging1.33Pathogenic0.04Affected4.32210-0.430.03202.4-49.80.51.0-0.20.0UncertainGly384 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and so they are rich in glycines, prolines, and, to a lesser extent, small hydrophilic residues to ensure maximum flexibility. Thus, the variant’s Ser384 is potentially tolerated in the Ω loop, although the hydroxyl group of Ser384 forms various hydrogen bonds with several other loop residues in the variant simulations. However, since the effects on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.3773A>GQ1258RLikely PathogenicCoiled-coilUncertain 1-10.971Likely Pathogenic0.931Likely PathogenicAmbiguous0.316Likely Benign-3.19Deleterious0.994Probably Damaging0.988Probably Damaging2.00Pathogenic0.00Affected11-1.028.06
c.3457C>TR1153WLikely PathogenicUncertain 26-33444492-C-T21.24e-6-5.812Likely Benign0.994Likely PathogenicLikely Pathogenic0.317Likely Benign-5.88Deleterious1.000Probably Damaging0.998Probably Damaging1.46Pathogenic0.00Affected3.7752-33.630.03
c.3923G>AR1308HUncertain 16-33451797-G-A31.86e-6-3.586Likely Benign0.201Likely BenignLikely Benign0.319Likely Benign-3.12Deleterious0.998Probably Damaging0.991Probably Damaging2.33Pathogenic0.00Affected3.775201.3-19.05
c.815G>AR272Q
(3D Viewer)
C2Uncertain 26-33437720-G-A148.67e-6-9.559Likely Pathogenic0.286Likely BenignLikely Benign0.321Likely Benign0.73Ambiguous0.10.15Likely Benign0.44Likely Benign1.00Destabilizing-1.81Neutral0.999Probably Damaging0.994Probably Damaging1.88Pathogenic0.03Affected3.3819111.0-28.06255.752.90.00.0-0.20.1XUncertainThe guanidinium group of Arg272, located at the end of an anti-parallel β sheet strand (res. Arg259-Arg272), is stably maintained in an upright and outward position via stacking with the indole ring of the Trp362 side chain in another β strand (res. Thr359-Pro364). In the WT simulations, Arg272 forms hydrogen bonds with the glycine-rich Ω loop residues (res. Val365-Pro398, e.g., Gly380) and creates a salt bridge with the carboxylate group of the Asp304 side chain.In the variant simulations, the carboxamide group of the Gln272 side chain does not stack with the indole ring of Trp362 as stably as the guanidinium group of Arg272 in the WT. Consequently, the Gln272 side chain is freer to interact with the loop residues than Arg272, potentially negatively affecting the dynamic SynGAP-membrane association. Additionally, Arg272 faces the RasGTPase interface, so the residue swap could impact the SynGAP-Ras complex formation and GTPase activation.
c.862G>AD288N
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437767-G-A21.24e-6-10.535Likely Pathogenic0.521AmbiguousLikely Benign0.321Likely Benign-0.39Likely Benign0.10.01Likely Benign-0.19Likely Benign-0.03Likely Benign-3.73Deleterious0.999Probably Damaging0.997Probably Damaging1.78Pathogenic0.05Affected3.3823120.0-0.98
c.2845G>AG949SLikely BenignBenign/Likely benign 46-33443397-G-A1227.56e-5-5.693Likely Benign0.072Likely BenignLikely Benign0.321Likely Benign0.30Neutral0.611Possibly Damaging0.102Benign2.23Pathogenic0.00Affected4.32410-0.430.0310.1016/j.ajhg.2020.11.011
c.1851G>TE617D
(3D Viewer)
Likely BenignGAPUncertain 1-1.349Likely Benign0.241Likely BenignLikely Benign0.322Likely Benign0.12Likely Benign0.10.80Ambiguous0.46Likely Benign0.07Likely Benign-0.01Neutral0.994Probably Damaging0.979Probably Damaging-1.35Pathogenic0.88Tolerated3.3735230.0-14.03
c.962G>AR321H
(3D Viewer)
C2Uncertain 16-33437867-G-A84.96e-6-8.751Likely Pathogenic0.136Likely BenignLikely Benign0.323Likely Benign0.48Likely Benign0.1-0.36Likely Benign0.06Likely Benign0.59Ambiguous-1.43Neutral1.000Probably Damaging0.998Probably Damaging1.92Pathogenic0.25Tolerated3.3823201.3-19.05218.586.91.10.00.30.0XPotentially BenignThe guanidinium group of Arg321, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Thr305-Asn315, res. Ala322-Asp330), faces outward without forming any stable interactions in the WT simulations. Similarly, in the variant simulations, the imidazole ring of His321 also points outward without making any stable intra-protein interactions. Thus, the residue swap does not seem to cause adverse effects on the protein structure based on the simulations. However, β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant.
c.1198G>CV400L
(3D Viewer)
Likely BenignC2Benign 16-33438103-G-C221.36e-5-1.000Likely Benign0.137Likely BenignLikely Benign0.325Likely Benign-0.71Ambiguous0.20.39Likely Benign-0.16Likely Benign-0.29Likely Benign-0.60Neutral0.001Benign0.001Benign5.33Benign0.64Tolerated3.382721-0.414.03251.0-30.10.00.00.70.1XPotentially BenignThe iso-propyl side chain of Val400, located in an anti-parallel β sheet strand (res. Ala399-Ile411), hydrophobically packs against hydrophobic residues within the anti-parallel β sheet of the C2 domain (e.g., Ile268, Ala404, Leu325, Leu402). Val400 is swapped for another hydrophobic residue, leucine, whose branched hydrocarbon side chain is of a comparable size and thus packs favorably within the C2 domain. In short, the residue swap has no apparent negative effect on the structure based on the variant simulations.10.1016/j.ajhg.2020.11.011
c.3176G>CG1059ALikely BenignUncertain 16-33443728-G-C42.49e-6-6.754Likely Benign0.081Likely BenignLikely Benign0.329Likely Benign-0.17Neutral0.001Benign0.002Benign2.56Benign0.00Affected4.322102.214.03
c.3175G>AG1059RUncertain 16-33443727-G-A684.23e-5-8.452Likely Pathogenic0.376AmbiguousLikely Benign0.333Likely Benign-0.55Neutral0.001Benign0.001Benign2.53Benign0.00Affected4.322-3-2-4.199.14
c.451G>CD151HLikely PathogenicUncertain 16-33432748-G-C21.26e-6-11.747Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.335Likely Benign-3.90Deleterious0.999Probably Damaging0.995Probably Damaging3.86Benign0.00Affected3.615-110.322.05
c.3379G>CG1127RLikely BenignConflicting 26-33443931-G-C161.07e-5-5.949Likely Benign0.629Likely PathogenicLikely Benign0.341Likely Benign-0.87Neutral0.001Benign0.001Benign4.86Benign0.12Tolerated4.324-2-3-4.199.14
c.3379G>AG1127RLikely BenignUncertain 16-33443931-G-A21.34e-6-5.949Likely Benign0.629Likely PathogenicLikely Benign0.341Likely Benign-0.87Neutral0.001Benign0.001Benign4.86Benign0.12Tolerated4.324-2-3-4.199.14
c.2837G>AG946ELikely BenignBenign 36-33443389-G-A138.05e-6-8.793Likely Pathogenic0.257Likely BenignLikely Benign0.341Likely Benign-0.51Neutral0.818Possibly Damaging0.355Benign4.58Benign0.00Affected4.3240-2-3.172.06
c.1586T>CI529T
(3D Viewer)
Likely BenignGAPUncertain 1-0.539Likely Benign0.336Likely BenignLikely Benign0.343Likely Benign0.22Likely Benign0.20.16Likely Benign0.19Likely Benign0.17Likely Benign0.24Neutral0.872Possibly Damaging0.820Possibly Damaging-1.23Pathogenic0.55Tolerated3.37350-1-5.2-12.05207.229.80.20.00.20.1XPotentially BenignIle529 is located on an α-α loop between the two α-helices (res. Gly502-Tyr518 and Ala533-Val560). In the WT simulations, the sec-butyl side chain of Ile529 faces the membrane interface and shows no specific interactions. In the variant simulations, the hydroxyl group of Thr529 forms a hydrogen bond with the carboxylate side chain of Asp527, but no negative structural changes are observed. However, due to its location near the SynGAP-membrane interface, the effect of the residue swap cannot be fully addressed using the SynGAP solvent-only simulations.
c.2835T>AH945QLikely BenignConflicting 26-33443387-T-A31.86e-6-5.248Likely Benign0.091Likely BenignLikely Benign0.343Likely Benign-0.36Neutral0.995Probably Damaging0.939Probably Damaging5.03Benign0.06Tolerated4.32430-0.3-9.01
c.3572G>AR1191QLikely BenignCoiled-coilUncertain 26-33444607-G-A95.58e-6-1.069Likely Benign0.943Likely PathogenicAmbiguous0.343Likely Benign-1.41Neutral0.998Probably Damaging0.992Probably Damaging2.68Benign0.08Tolerated3.824111.0-28.06
c.895C>TR299C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33437800-C-T31.86e-6-6.326Likely Benign0.572Likely PathogenicLikely Benign0.344Likely Benign1.85Ambiguous0.40.61Ambiguous1.23Ambiguous0.76Ambiguous-3.54Deleterious1.000Probably Damaging0.998Probably Damaging1.65Pathogenic0.06Tolerated3.3919-4-37.0-53.05210.791.30.10.00.00.2XXPotentially PathogenicThe guanidinium group of Arg299, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), forms hydrogen bonds that stabilize the tight turn. In the WT simulations, the Arg299 side chain hydrogen bonds with the loop backbone carbonyl groups (e.g., Ser302, Thr305, Leu274, Gly303), the hydroxyl group of Ser300, and even forms a salt bridge with the carboxylate group of Asp304.In the variant simulations, the thiol group of the Cys299 side chain is unable to form any of these well-coordinated or strong interactions, which could affect the initial formation of the secondary hairpin loop during folding. β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Moreover, the positively charged Arg299 side chain faces the polar head group region of the inner leaflet membrane and could directly anchor the C2 domain to the membrane. In short, the residue swap could negatively affect both protein folding and the stability of the SynGAP-membrane association.
c.3121C>TP1041SLikely BenignConflicting 26-33443673-C-T16.20e-7-4.246Likely Benign0.121Likely BenignLikely Benign0.344Likely Benign-2.72Deleterious0.664Possibly Damaging0.283Benign5.48Benign0.11Tolerated3.7751-10.8-10.04
c.910G>AD304N
(3D Viewer)
C2Uncertain 1-6.194Likely Benign0.391AmbiguousLikely Benign0.345Likely Benign0.30Likely Benign0.1-0.08Likely Benign0.11Likely Benign0.21Likely Benign-4.18Deleterious0.999Probably Damaging0.997Probably Damaging1.81Pathogenic0.03Affected3.3823120.0-0.98
c.3508A>GS1170GLikely BenignCoiled-coilUncertain 1-4.288Likely Benign0.221Likely BenignLikely Benign0.349Likely Benign-0.81Neutral0.241Benign0.229Benign5.31Benign0.54Tolerated4.324100.4-30.03
c.2086C>GL696V
(3D Viewer)
Likely PathogenicGAPUncertain 1-11.909Likely Pathogenic0.745Likely PathogenicLikely Benign0.351Likely Benign2.35Destabilizing0.11.85Ambiguous2.10Destabilizing1.46Destabilizing-2.79Deleterious0.992Probably Damaging0.970Probably Damaging3.16Benign0.00Affected3.4613120.4-14.03
c.3922C>TR1308CConflicting 26-33451796-C-T42.48e-6-4.994Likely Benign0.421AmbiguousLikely Benign0.352Likely Benign-4.89Deleterious0.999Probably Damaging0.993Probably Damaging2.31Pathogenic0.00Affected3.775-4-37.0-53.05
c.3377G>TG1126VLikely BenignUncertain 16-33443929-G-T-6.536Likely Benign0.089Likely BenignLikely Benign0.357Likely Benign-1.20Neutral0.009Benign0.008Benign4.76Benign0.03Affected3.775-1-34.642.08
c.3567G>CE1189DLikely BenignCoiled-coilLikely Benign 16-33444602-G-C31.86e-6-3.582Likely Benign0.461AmbiguousLikely Benign0.359Likely Benign-1.42Neutral0.992Probably Damaging0.989Probably Damaging5.30Benign0.25Tolerated3.824320.0-14.03
c.3368G>AG1123DUncertain 16-33443920-G-A21.33e-6-10.321Likely Pathogenic0.405AmbiguousLikely Benign0.360Likely Benign-0.78Neutral0.500Possibly Damaging0.157Benign4.34Benign0.19Tolerated3.7751-1-3.158.04
c.1502T>CI501T
(3D Viewer)
Likely BenignGAPUncertain 1-5.996Likely Benign0.252Likely BenignLikely Benign0.362Likely Benign2.40Destabilizing0.11.81Ambiguous2.11Destabilizing1.57Destabilizing-3.48Deleterious1.000Probably Damaging1.000Probably Damaging3.44Benign0.16Tolerated3.37350-1-5.2-12.05214.526.90.00.00.50.0XPotentially PathogenicIle501 is located near a hinge in the middle of an α-helix (res. Leu489-Glu519). The sec-butyl side chain of Ile501 is hydrophobically packed with other residues in the inter-helix space (e.g., Leu500, Tyr497, Phe679) in the WT simulations. In the variant simulations, the hydroxyl group of Thr501 forms a hydrogen bond with the backbone atoms of Tyr497 on the same α-helix, which may weaken the α-helix integrity. Additionally, the polar hydroxyl group of Thr501 is not suitable for the hydrophobic inter-helix space, and thus, the residue swap could affect protein folding. However, Ile501 is followed by Gly502, which facilitates a hinge in the middle of the α-helix, making further weakening caused by Thr501 unlikely to be harmful to the α-helix integrity.
c.4003G>AG1335SLikely PathogenicConflicting 26-33451877-G-A32.37e-6-4.495Likely Benign0.986Likely PathogenicLikely Pathogenic0.362Likely Benign-3.79Deleterious1.000Probably Damaging0.997Probably Damaging2.04Pathogenic0.00Affected3.77510-0.430.03
c.3655T>CY1219HLikely PathogenicCoiled-coilUncertain 1-9.511Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.363Likely Benign-3.62Deleterious1.000Probably Damaging0.999Probably Damaging2.15Pathogenic0.00Affected3.77502-1.9-26.03
c.3502A>GI1168VLikely BenignUncertain 1-3.263Likely Benign0.524AmbiguousLikely Benign0.363Likely Benign-0.14Neutral0.876Possibly Damaging0.643Possibly Damaging5.47Benign0.84Tolerated3.88343-0.3-14.03
c.3179G>TG1060VLikely BenignBenign 16-33443731-G-T16.22e-7-6.966Likely Benign0.103Likely BenignLikely Benign0.369Likely Benign-0.73Neutral0.986Probably Damaging0.728Possibly Damaging2.63Benign0.33Tolerated4.322-1-34.642.08
c.1214G>AR405H
(3D Viewer)
Likely PathogenicC2Conflicting 26-33438119-G-A42.48e-6-9.081Likely Pathogenic0.706Likely PathogenicLikely Benign0.371Likely Benign2.79Destabilizing0.61.85Ambiguous2.32Destabilizing1.26Destabilizing-4.54Deleterious1.000Probably Damaging0.991Probably Damaging3.65Benign0.01Affected3.3828201.3-19.05214.0102.2-0.10.0-0.70.1XPotentially PathogenicThe guanidinium group of Arg405, located in an anti-parallel β sheet strand of the C2 domain (res. Pro398-Ile411), forms a salt bridge with the carboxylate group of the Glu446 side chain from an opposing α helix (res. Val441-Ser457) in the GAP domain. The positively charged Arg405 side chain also stacks with the aromatic ring of the Phe358 side chain from a loop preceding the β strand (res. Thr359-Thr366), which could assist in maintaining the anti-parallel strand arrangement.In the variant simulations, the imidazole ring of His405 does not stack with the aromatic ring of Phe358 nor form any lasting H-bonds with the loop residues. The imidazole ring of His405 (neutral and epsilon protonated in the simulations) is unable to form a salt bridge with Glu446, which could affect the tertiary structure assembly, although this is not apparent based on the variant simulations.
c.1154C>GS385W
(3D Viewer)
C2Benign 16-33438059-C-G-9.353Likely Pathogenic0.362AmbiguousLikely Benign0.373Likely Benign0.53Ambiguous0.20.69Ambiguous0.61Ambiguous0.00Likely Benign-0.84Neutral0.986Probably Damaging0.968Probably Damaging4.63Benign0.00Affected4.323-2-3-0.199.14260.4-71.20.51.30.70.4UncertainSer385 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like tryptophan are rarely tolerated. Although no major negative structural effects are observed in the variant simulations, Trp385 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effects on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.10.1016/j.ajhg.2020.11.011
c.3377G>AG1126DUncertain 1-8.888Likely Pathogenic0.432AmbiguousLikely Benign0.376Likely Benign-0.65Neutral0.906Possibly Damaging0.473Possibly Damaging4.82Benign0.02Affected3.7751-1-3.158.04
c.2518A>TS840CLikely PathogenicUncertain 1-8.799Likely Pathogenic0.904Likely PathogenicAmbiguous0.376Likely Benign-3.96Deleterious0.999Probably Damaging0.975Probably Damaging1.50Pathogenic0.00Affected3.7750-13.316.06
c.3178G>AG1060SLikely BenignUncertain 16-33443730-G-A-4.759Likely Benign0.082Likely BenignLikely Benign0.376Likely Benign-0.08Neutral0.271Benign0.054Benign2.69Benign0.49Tolerated4.32210-0.430.03
c.1768A>GS590G
(3D Viewer)
Likely PathogenicGAPConflicting 26-33440820-A-G148.67e-6-14.277Likely Pathogenic0.574Likely PathogenicLikely Benign0.379Likely Benign0.67Ambiguous0.11.28Ambiguous0.98Ambiguous0.71Ambiguous-3.92Deleterious1.000Probably Damaging0.922Probably Damaging3.42Benign0.06Tolerated3.3735100.4-30.03186.749.40.00.00.10.0XPotentially PathogenicIn the WT simulations, the hydroxyl group of Ser590, located on an α helix (res. Glu582-Met603), forms hydrogen bonds with the backbone carbonyl of Ala634 and/or the carboxamide group of the Asn635 side chain at the end of the opposing α helix (res. Thr619-Ala634).The residue swap could weaken the integrity of the α helix, as glycine is known as an “α helix breaker.” However, no discernible difference was observed between the WT and variant simulations in this regard. Importantly, Gly590 cannot form hydrogen bonds with the opposing helix in the same way that serine can, which could weaken the tertiary structure assembly between the two helices.
c.2050G>AD684N
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.155Likely Pathogenic0.985Likely PathogenicLikely Pathogenic0.382Likely Benign1.47Ambiguous0.81.76Ambiguous1.62Ambiguous0.37Likely Benign-4.99Deleterious0.999Probably Damaging0.746Possibly Damaging3.39Benign0.01Affected210.0-0.98
c.1610C>TA537V
(3D Viewer)
Likely BenignGAPLikely Benign 16-33438853-C-T74.34e-6-6.888Likely Benign0.120Likely BenignLikely Benign0.382Likely Benign0.54Ambiguous0.0-0.05Likely Benign0.25Likely Benign0.41Likely Benign-1.97Neutral0.977Probably Damaging0.469Possibly Damaging-1.26Pathogenic0.24Tolerated3.3735002.428.05220.3-45.10.00.0-0.70.1XPotentially BenignAla537 is located on the outer surface of an α-helix (res. Ala533-Val560). The methyl group of Ala537 is on the surface and does not form any interactions. In the variant simulations, the iso-propyl side chain of Val537 is also on the surface, similar to Ala537 in the WT, causing no negative structural effects.
c.1556A>CE519A
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-8.557Likely Pathogenic0.904Likely PathogenicAmbiguous0.384Likely Benign-0.05Likely Benign0.00.55Ambiguous0.25Likely Benign0.00Likely Benign-5.23Deleterious0.999Probably Damaging0.998Probably Damaging3.33Benign0.10Tolerated3.37350-15.3-58.04162.483.5-0.10.1-0.20.0XPotentially BenignGlu519 is located at the beginning of an α-α loop between the two α-helices (res. Gly502-Tyr518 and Ala533-Val560). In the WT simulations, the carboxylate side chain of Glu519 does not make any specific interactions. Accordingly, the Ala residue swap does not show any negative structural effects in the variant simulations. However, it should be noted that Glu519 faces the missing part of the N-terminal in the model, and thus its potential role in maintaining the tertiary structure might be de-emphasized in the current model.
c.1153T>CS385P
(3D Viewer)
Likely BenignC2Uncertain 16-33438058-T-C-5.431Likely Benign0.123Likely BenignLikely Benign0.385Likely Benign0.91Ambiguous0.6-0.90Ambiguous0.01Likely Benign0.19Likely Benign-0.26Neutral0.676Possibly Damaging0.693Possibly Damaging4.63Benign0.04Affected4.3231-1-0.810.04210.318.51.80.90.30.0UncertainSer385 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and so they are rich in glycine residues, prolines, and, to a lesser extent, small hydrophilic residues to ensure maximum flexibility. Thus, the variant’s Pro385 is potentially tolerated in the Ω loop. However, since the effects on Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1160G>TG387V
(3D Viewer)
Likely BenignC2Uncertain 16-33438065-G-T221.37e-5-6.199Likely Benign0.153Likely BenignLikely Benign0.390Likely Benign5.13Destabilizing1.86.44Destabilizing5.79Destabilizing-0.33Likely Benign-0.54Neutral0.069Benign0.077Benign1.32Pathogenic0.01Affected4.323-1-34.642.08207.7-68.4-0.70.8-0.50.1UncertainGly387 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. This loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Val387 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.3413C>AS1138YUncertain 16-33444448-C-A31.86e-6-6.610Likely Benign0.449AmbiguousLikely Benign0.391Likely Benign-2.51Deleterious0.997Probably Damaging0.996Probably Damaging5.41Benign0.05Affected4.324-2-3-0.576.10
c.2060G>AR687Q
(3D Viewer)
Likely PathogenicGAPLikely Benign 1-10.002Likely Pathogenic0.575Likely PathogenicLikely Benign0.401Likely Benign0.92Ambiguous0.1-0.37Likely Benign0.28Likely Benign1.55Destabilizing-3.37Deleterious1.000Probably Damaging0.844Possibly Damaging3.91Benign0.03Affected3.4217111.0-28.06
c.3395C>AS1132YLikely BenignLikely Benign 1-5.894Likely Benign0.392AmbiguousLikely Benign0.401Likely Benign-1.76Neutral0.500Possibly Damaging0.208Benign5.40Benign0.09Tolerated4.324-3-2-0.576.10
c.2089T>CW697R
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33441348-T-C16.20e-7-10.020Likely Pathogenic0.941Likely PathogenicAmbiguous0.401Likely Benign1.14Ambiguous0.11.18Ambiguous1.16Ambiguous1.25Destabilizing-9.50Deleterious1.000Probably Damaging0.994Probably Damaging3.45Benign0.02Affected3.46132-3-3.6-30.03254.4-41.20.00.0-0.70.0XPotentially BenignThe indole ring of Trp697, located on the outer surface of an α-helix (res. Leu685-Val699), is not involved in any long-lasting interactions in the WT simulations. In the variant simulations, the positively charged guanidinium side chain of Arg697 occasionally forms hydrogen bonds with nearby residues, such as Ser722 and Asn719. However, similar to Trp697 in the WT, Arg697 does not form any long-lasting interactions and thus does not induce any negative structural effects in the simulations.
c.3607C>GH1203DLikely BenignCoiled-coilUncertain 1-6.729Likely Benign0.525AmbiguousLikely Benign0.403Likely Benign-1.89Neutral0.473Possibly Damaging0.265Benign5.51Benign0.24Tolerated3.7751-1-0.3-22.05
c.3184G>AG1062RLikely BenignConflicting 26-33443736-G-A74.35e-6-6.933Likely Benign0.353AmbiguousLikely Benign0.403Likely Benign-0.34Neutral0.797Possibly Damaging0.139Benign4.10Benign0.01Affected4.322-3-2-4.199.14
c.3806T>AV1269ELikely PathogenicCoiled-coilUncertain 1-11.418Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.403Likely Benign-5.05Deleterious0.999Probably Damaging0.995Probably Damaging2.09Pathogenic0.00Affected3.775-2-2-7.729.98
c.1025A>GY342C
(3D Viewer)
Likely PathogenicC2Benign/Likely benign 26-33437930-A-G211.30e-5-7.596In-Between0.682Likely PathogenicLikely Benign0.404Likely Benign2.48Destabilizing0.12.73Destabilizing2.61Destabilizing0.92Ambiguous-6.67Deleterious1.000Probably Damaging0.999Probably Damaging1.72Pathogenic0.02Affected3.37250-23.8-60.04242.462.80.10.0-0.10.2Potentially PathogenicThe phenol ring of Tyr342, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), faces outward in the C2 domain. This phenol ring contributes to a triple tyrosine stack (Tyr342, Tyr328, and Tyr281) that links together three anti-parallel β sheet strands. Additionally, it shields Gly344 from the solvent, reducing its exposure and providing stability for the β-sandwich. This motif also contributes to a twist formation in the β sheet.In the variant simulations, the Cys342 side chain cannot participate in the stack formation. Instead, its thiol group forms a hydrogen bond with the backbone carbonyl group of Leu327. Although these changes in surface interactions could weaken the characteristic twist that strengthens the β sheet fold, no major structural effects are observed in the variant simulations. The residue swap could also affect the SynGAP-membrane association; however, this phenomenon cannot be addressed using solvent-only simulations. Notably, the thiol group of cysteine is not a particularly strong hydrogen-bonding partner, which could mitigate the negative effects of the residue swap.
c.1771G>CA591P
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.479Likely Pathogenic0.991Likely PathogenicLikely Pathogenic0.404Likely Benign3.78Destabilizing0.37.29Destabilizing5.54Destabilizing1.45Destabilizing-4.41Deleterious0.995Probably Damaging0.853Possibly Damaging3.35Benign0.01Affected3.37351-1-3.426.04191.5-10.10.20.10.40.1XPotentially PathogenicThe methyl group of the Ala591 side chain, located in the middle of an α helix (res. Glu582-Met603), packs against hydrophobic residues (e.g., Ile483, Phe484) of an opposing partially helical loop (res. Phe476-Asn487).In the variant simulations, Pro591 lacks a free backbone amide group and, therefore, cannot form a hydrogen bond with the backbone carbonyl of Arg587 as Ala591 does in the WT. This notably weakens the α helix integrity and compromises the continuity of the helix. In reality, the effect on the structure during protein folding could be more severe.
c.1025A>CY342S
(3D Viewer)
Likely PathogenicC2Uncertain 2-7.996In-Between0.925Likely PathogenicAmbiguous0.407Likely Benign3.03Destabilizing0.12.87Destabilizing2.95Destabilizing0.93Ambiguous-6.60Deleterious1.000Probably Damaging0.998Probably Damaging1.75Pathogenic0.04Affected3.3725-3-20.5-76.10200.177.80.00.0-0.20.1Potentially PathogenicThe phenol ring of Tyr342, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), faces outward in the C2 domain. In the WT simulations, the phenol ring of Tyr342 contributes to a triple tyrosine stack (Tyr342, Tyr328, and Tyr281) that links together three anti-parallel β sheet strands. Additionally, it shields Gly344 from the solvent, reducing its exposure and providing stability for the β-sandwich. This motif also contributes to a twist formation in the β sheet.In the variant simulations, the Ser342 side chain cannot participate in the stack formation. Instead, the hydroxyl group of the Ser342 side chain forms a hydrogen bond with the imidazole ring of His326 in a neighboring β strand (res. Ala322-Asp330). This disrupts the formation of a hydrogen bond between His326 and the carboxylate group of the Glu283 side chain from another β strand (res. Arg279-Cys285). Although these changes in surface interactions could weaken the characteristic twist that strengthens the β sheet fold, no major structural effects are observed in the variant simulations. The residue swap could also affect the SynGAP-membrane association, as the hydroxyl group of Ser342 could form hydrogen bonds with membrane-facing loop residues. However, this phenomenon cannot be addressed using solvent-only simulations.
c.3181G>TG1061CLikely BenignConflicting 26-33443733-G-T63.73e-6-9.511Likely Pathogenic0.119Likely BenignLikely Benign0.409Likely Benign-1.46Neutral0.938Possibly Damaging0.665Possibly Damaging3.97Benign0.00Affected4.322-3-32.946.09
c.3631A>GM1211VLikely BenignCoiled-coilBenign 16-33446623-A-G31.86e-6-2.101Likely Benign0.258Likely BenignLikely Benign0.412Likely Benign-0.29Neutral0.932Possibly Damaging0.949Probably Damaging5.43Benign0.72Tolerated3.775122.3-32.06
c.1531G>CG511R
(3D Viewer)
Likely PathogenicGAPPathogenic 1-11.327Likely Pathogenic0.991Likely PathogenicLikely Pathogenic0.415Likely Benign1.94Ambiguous0.31.32Ambiguous1.63Ambiguous0.94Ambiguous-7.72Deleterious1.000Probably Damaging1.000Probably Damaging3.26Benign0.06Tolerated3.3735-3-2-4.199.14279.4-159.90.00.00.70.1XXPotentially PathogenicGly511 is located in an α-helix (res. Gly502-Tyr518), facing hydrophobic residues in an inter-helix space (e.g., Leu610, Ile514) in the WT simulations. In contrast, in the variant simulations, the bulkier and positively charged guanidinium side chain of Arg511 forms a salt bridge with the carboxylate group of Glu217 or hydrogen bonds with the backbone carbonyl group of Leu610. Although the residue swap introduces a third positively charged residue in close vicinity (Arg511, Lys507, Arg515), the protein structure seems to remain stable in the variant simulations. Importantly, according to ClinVar, the residue swap alters the last nucleotide of an exon and is predicted to destroy the splice donor site, resulting in aberrant splicing and pathogenic status.10.1016/j.ajhg.2020.11.011
c.1531G>AG511R
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-11.327Likely Pathogenic0.991Likely PathogenicLikely Pathogenic0.416Likely Benign1.94Ambiguous0.31.32Ambiguous1.63Ambiguous0.94Ambiguous-7.72Deleterious1.000Probably Damaging1.000Probably Damaging3.26Benign0.06Tolerated3.3735-3-2-4.199.14279.4-159.90.00.00.70.1XXPotentially PathogenicGly511 is located in an α-helix (res. Gly502-Tyr518), facing hydrophobic residues in an inter-helix space (e.g., Leu610, Ile514) in the WT simulations. In contrast, in the variant simulations, the bulkier and positively charged guanidinium side chain of Arg511 forms a salt bridge with the carboxylate group of Glu217 or hydrogen bonds with the backbone carbonyl group of Leu610. Although the residue swap introduces a third positively charged residue in close vicinity (Arg511, Lys507, Arg515), the protein structure seems to remain stable in the variant simulations. Importantly, according to ClinVar, the residue swap alters the last nucleotide of an exon and is predicted to destroy the splice donor site, resulting in aberrant splicing and pathogenic status.10.1016/j.ajhg.2020.11.011
c.3653A>TE1218VLikely PathogenicCoiled-coilUncertain 2-5.647Likely Benign0.936Likely PathogenicAmbiguous0.418Likely Benign-5.68Deleterious1.000Probably Damaging0.998Probably Damaging2.21Pathogenic0.00Affected3.775-2-27.7-29.98
c.3410A>CH1137PLikely BenignBenign 16-33444445-A-C127.44e-6-2.098Likely Benign0.054Likely BenignLikely Benign0.419Likely Benign-1.93Neutral0.925Possibly Damaging0.703Possibly Damaging5.29Benign0.00Affected4.324-201.6-40.02
c.1118G>AG373E
(3D Viewer)
C2Uncertain 1-7.281In-Between0.569Likely PathogenicLikely Benign0.420Likely Benign4.13Destabilizing3.20.52Ambiguous2.33Destabilizing-0.02Likely Benign-0.69Neutral0.001Benign0.000Benign3.90Benign0.01Affected0-2-3.172.06
c.1622C>GA541G
(3D Viewer)
GAPUncertain 16-33438865-C-G21.24e-6-7.233In-Between0.341AmbiguousLikely Benign0.421Likely Benign0.67Ambiguous0.00.94Ambiguous0.81Ambiguous0.76Ambiguous-1.48Neutral0.999Probably Damaging0.995Probably Damaging-1.31Pathogenic0.57Tolerated3.373510-2.2-14.03170.123.60.00.00.00.0XPotentially PathogenicAla541 is located on the outer surface of an α-helix (res. Ala533-Val560). The methyl group of Ala541 is on the surface and does not form any interactions. Glycine, known as an “α-helix breaker,” weakens the integrity of the helix. Indeed, in the variant simulations, the hydrogen bond formation between Gly541 and the backbone carbonyl of Ala537 is disrupted.
c.3686A>CQ1229PLikely PathogenicCoiled-coilUncertain 1-10.397Likely Pathogenic0.980Likely PathogenicLikely Pathogenic0.422Likely Benign-3.69Deleterious0.998Probably Damaging0.995Probably Damaging1.75Pathogenic0.12Tolerated3.7750-11.9-31.01
c.1729G>AA577T
(3D Viewer)
Likely BenignGAPBenign 16-33440781-G-A63.72e-6-5.311Likely Benign0.322Likely BenignLikely Benign0.427Likely Benign0.86Ambiguous0.10.54Ambiguous0.70Ambiguous0.54Ambiguous-1.47Neutral0.999Probably Damaging0.987Probably Damaging-1.31Pathogenic0.47Tolerated3.373410-2.530.03191.9-43.40.00.00.70.1XPotentially BenignAla577 is located near the end and outer surface of an α-helix (res. Arg563-Glu578), where its methyl group does not form any particular interactions in the WT simulations. In the variant simulations, the hydroxyl group of the Thr577 side chain hydrogen bonds with the backbone atoms of Arg573 and Lys574 within the same helix, which has the potential to weaken the stability of the secondary structure element. Regardless, the residue swap seems to be well tolerated based on the variant simulations.
c.1213C>TR405C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33438118-C-T63.72e-6-9.206Likely Pathogenic0.713Likely PathogenicLikely Benign0.427Likely Benign0.72Ambiguous0.11.51Ambiguous1.12Ambiguous1.21Destabilizing-7.27Deleterious1.000Probably Damaging1.000Probably Damaging3.61Benign0.02Affected3.3828-4-37.0-53.05221.382.6-0.10.0-0.20.3XXPotentially PathogenicThe guanidinium group of Arg405, located in an anti-parallel β sheet strand of the C2 domain (res. Ala399-Ile411), forms a salt bridge with the carboxylate group of the Glu446 side chain from an opposing α helix (res. Val441-Ser457) in the GAP domain. The positively charged Arg405 side chain also stacks with the aromatic ring of the Phe358 side chain from a loop preceding the β strand (res. Thr359-Thr366), which could assist in maintaining the anti-parallel strand arrangement.In the variant simulations, the thiol-containing side chain of Cys405 is neutral and smaller compared to the arginine side chain. The lack of Arg405-Phe358 stacking affects the loop structure, causing it to assume a β strand form—an effect that could be exacerbated during protein folding. Moreover, the inability of Cys405 to form a salt bridge with Glu446 could affect the tertiary structure assembly, although this is not apparent based on the variant simulations.
c.1118G>TG373V
(3D Viewer)
Likely BenignC2Uncertain 16-33438023-G-T65.03e-6-6.062Likely Benign0.112Likely BenignLikely Benign0.428Likely Benign5.32Destabilizing3.20.82Ambiguous3.07Destabilizing0.09Likely Benign-0.98Neutral0.007Benign0.001Benign3.90Benign0.00Affected3.5316-1-34.642.08207.6-68.11.91.1-0.60.1UncertainGly373 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Val373 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on the Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.2068T>CS690P
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.568Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.431Likely Benign4.84Destabilizing0.34.40Destabilizing4.62Destabilizing1.42Destabilizing-4.77Deleterious0.998Probably Damaging0.790Possibly Damaging3.44Benign0.01Affected3.42171-1-0.810.04207.515.10.10.0-0.10.2XXPotentially PathogenicThe hydroxyl side chain of Ser690, located in an α-helix (res. Leu696-Leu685), forms a hydrogen bond with the backbone carbonyl group of Ser410 in an anti-parallel β-sheet of the C2 domain (res. Ile411-Ala399). In the variant simulations, the pyrrolidine side chain of Pro690 cannot form hydrogen bonds with the C2 domain residue, resulting in the loss of this inter-domain connection. Additionally, prolines lack a free amide group necessary for hydrogen bonding with the carbonyl group of Gly686, introducing a slight bend in the α-helix and compromising its integrity.
c.3386T>CL1129PLikely BenignUncertain 2-2.991Likely Benign0.154Likely BenignLikely Benign0.432Likely Benign0.27Neutral0.971Probably Damaging0.773Possibly Damaging5.44Benign0.00Affected4.324-3-3-5.4-16.04
c.1456G>AE486K
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.545Likely Pathogenic0.988Likely PathogenicLikely Pathogenic0.435Likely Benign0.06Likely Benign0.10.37Likely Benign0.22Likely Benign0.41Likely Benign-3.58Deleterious1.000Probably Damaging0.988Probably Damaging3.40Benign0.12Tolerated3.373501-0.4-0.94206.852.1-0.30.10.20.0XXUncertainGlu486 is located in an α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. It is adjacent to the arginine finger (Arg485) and is expected to closely interact with Ras. The residue swap could affect complex formation with the GTPase and its activation. In the WT simulations, the carboxylate group of Glu486 forms salt bridges with Arg485 and Arg475 on the preceding α-helix (res. Ala461-Phe476). In the variant simulations, Lys486 does not form any specific interactions. Although the amino group of the Lys486 side chain cannot form these salt bridges, no negative effects on the protein structure are observed. Nevertheless, the potential role of Glu486 in SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations, and no definite conclusions can be drawn.
c.878G>AR293HLikely PathogenicC2Uncertain 1-13.009Likely Pathogenic0.973Likely PathogenicLikely Pathogenic0.438Likely Benign4.45Destabilizing2.32.12Destabilizing3.29Destabilizing0.32Likely Benign-4.60Deleterious1.000Probably Damaging0.998Probably Damaging1.45Pathogenic0.04Affected201.3-19.05
c.1480A>GI494V
(3D Viewer)
GAPConflicting 26-33438512-A-G362.23e-5-7.102In-Between0.112Likely BenignLikely Benign0.439Likely Benign1.16Ambiguous0.00.71Ambiguous0.94Ambiguous1.02Destabilizing-0.83Neutral0.278Benign0.179Benign-1.30Pathogenic0.07Tolerated3.373543-0.3-14.03248.629.30.00.0-1.10.5XPotentially BenignThe sec-butyl side chain of Ile494, located in an α-helix (res. Leu489-Glu519), packs against hydrophobic residues (e.g., Phe484, Leu465, Trp572, Ala493, Met468) in an inter-helix space (res. Leu489-Glu519 and res. Ala461-Phe476). In the variant simulations, the hydrophobic iso-propyl side chain of Val494, which is of a similar size and has similar physicochemical properties to Ile494 in the WT, resides similarly in the inter-helix hydrophobic space. Thus, no negative effects on the protein structure are observed.
c.3520G>AE1174KLikely BenignCoiled-coilUncertain 16-33444555-G-A21.24e-6-4.345Likely Benign0.898Likely PathogenicAmbiguous0.442Likely Benign-1.59Neutral0.962Probably Damaging0.367Benign5.52Benign0.03Affected4.32201-0.4-0.94
c.1730C>GA577G
(3D Viewer)
Likely BenignGAPBenign/Likely benign 26-33440782-C-G16.20e-7-5.717Likely Benign0.268Likely BenignLikely Benign0.443Likely Benign0.83Ambiguous0.01.02Ambiguous0.93Ambiguous0.86Ambiguous-1.84Neutral0.997Probably Damaging0.990Probably Damaging-1.31Pathogenic0.31Tolerated3.373410-2.2-14.03158.723.60.00.00.00.0XPotentially BenignAla577 is located near the end and outer surface of an α-helix (res. Arg563-Glu578), where its methyl group does not form any particular interactions in the WT simulations. The introduced residue, glycine, is known as an “α-helix breaker.” However, the residue swap caused only minor helix shortening in one of the replica simulations for the variant system. Regardless, the residue swap seems to be well tolerated based on the variant simulations.
c.3152G>AG1051DBenign 16-33443704-G-A21.24e-6-9.379Likely Pathogenic0.311Likely BenignLikely Benign0.445Likely Benign-0.31Neutral0.761Possibly Damaging0.239Benign-0.74Pathogenic0.39Tolerated3.775-11-3.158.04
c.1157G>AG386E
(3D Viewer)
C2Uncertain 16-33438062-G-A-9.286Likely Pathogenic0.686Likely PathogenicLikely Benign0.447Likely Benign3.69Destabilizing2.90.79Ambiguous2.24Destabilizing0.54Ambiguous-0.83Neutral0.860Possibly Damaging0.354Benign3.93Benign0.01Affected4.323-20-3.172.06
c.3376G>TG1126CLikely BenignUncertain 16-33443928-G-T117.35e-6-9.389Likely Pathogenic0.113Likely BenignLikely Benign0.449Likely Benign-1.40Neutral0.005Benign0.005Benign4.74Benign0.02Affected3.775-3-32.946.09
c.1667A>GN556S
(3D Viewer)
GAPUncertain 16-33438910-A-G31.86e-6-6.576Likely Benign0.197Likely BenignLikely Benign0.449Likely Benign0.52Ambiguous0.10.14Likely Benign0.33Likely Benign0.16Likely Benign-3.60Deleterious1.000Probably Damaging0.989Probably Damaging-1.22Pathogenic0.14Tolerated3.3735112.7-27.03198.831.00.00.0-0.50.2XPotentially BenignAsn556 is located on the outer surface of an α-helix (res. Ala533-Val560). The carboxamide group of Asn556 forms hydrogen bonds with nearby residues such as Lys553 and Cys552. It also forms a hydrogen bond with the backbone carbonyl group of Cys552, which weakens the α-helix integrity. In the variant simulations, the hydroxyl group of Ser556 forms a more stable hydrogen bond with the backbone carbonyl oxygen of the same helix residue, Cys552, compared to Asn556 in the WT. Serine has a slightly lower propensity to reside in an α-helix than asparagine, which may exacerbate the negative effect on the α-helix integrity. However, the residue swap does not cause negative structural effects during the simulations.
c.1947G>CM649I
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.361Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.449Likely Benign2.42Destabilizing0.21.96Ambiguous2.19Destabilizing1.01Destabilizing-3.99Deleterious0.672Possibly Damaging0.093Benign3.40Benign0.02Affected3.3827212.6-18.03243.721.50.00.10.00.1XPotentially BenignThe thioether side chain of Met649, located on an α helix (res. Ser641-Glu666), bridges Phe652, Phe648, and Phe639 in an inter-helix hydrophobic cavity in the WT simulations. In the variant simulations, the sec-butyl side chain of Ile649 maintains hydrophobic interactions with nearby residues, with no significant effects on the protein structure.However, methionine is known as a bridging motif for aromatic residues, and these Met-aromatic interactions are lost in the variant. Indeed, in the second variant simulation,the bridging of Phe652, Phe648 and Phe639 is completely lost. In reality, the effect could be more severe on the structure during the protein folding.
c.844T>AC282S
(3D Viewer)
Likely PathogenicC2Uncertain 1-11.846Likely Pathogenic0.958Likely PathogenicLikely Pathogenic0.460Likely Benign1.55Ambiguous0.11.23Ambiguous1.39Ambiguous1.62Destabilizing-9.19Deleterious0.997Probably Damaging0.994Probably Damaging1.64Pathogenic0.03Affected3.39180-1-3.3-16.06233.214.8-0.10.0-0.20.3XPotentially BenignThe thiol-containing side chain of Cys282, located at the beginning of an anti-parallel β sheet strand (res. Arg279-Leu286), packs against multiple hydrophobic residues (e.g., Ile268, Leu284, Trp308, Leu327). In the variant simulations, the hydroxyl-containing side chain of Ser282 is more hydrophilic and, hence, not as favorable as Cys282 for this hydrophobic niche. Due to this polarity difference, the residue swap could potentially weaken the hydrophobic packing of the C2 domain during the folding process.Moreover, because the C2 domain interacts with the membrane, there could also be a negative effect on the stability of the SynGAP-membrane association. However, no large-scale structural changes were observed during the variant simulations. The hydroxyl group of Ser282 forms a hydrogen bond with the backbone carbonyl group of His326 in another β strand (res. Ala322-Arg329), which competes directly with the backbone amide group of Glu283 within the secondary structure element.
c.1971G>CW657CLikely PathogenicGAPUncertain 1-12.035Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.463Likely Benign2.74Destabilizing0.31.69Ambiguous2.22Destabilizing1.30Destabilizing-11.06Deleterious1.000Probably Damaging0.982Probably Damaging3.43Benign0.03Affected-8-23.4-83.07
c.1058T>CL353P
(3D Viewer)
Likely PathogenicC2Uncertain 1-7.913In-Between0.936Likely PathogenicAmbiguous0.464Likely Benign4.63Destabilizing0.110.19Destabilizing7.41Destabilizing2.17Destabilizing-3.70Deleterious0.947Possibly Damaging0.454Possibly Damaging1.29Pathogenic0.02Affected3.3725-3-3-5.4-16.04
c.1516C>TL506F
(3D Viewer)
Likely PathogenicGAPUncertain 1-11.262Likely Pathogenic0.883Likely PathogenicAmbiguous0.464Likely Benign4.92Destabilizing0.85.76Destabilizing5.34Destabilizing0.91Ambiguous-3.98Deleterious0.999Probably Damaging0.997Probably Damaging1.62Pathogenic0.01Affected3.373502-1.034.02
c.670A>GT224A
(3D Viewer)
PHUncertain 36-33435521-A-G21.24e-6-7.379In-Between0.651Likely PathogenicLikely Benign0.464Likely Benign0.33Likely Benign0.11.05Ambiguous0.69Ambiguous0.91Ambiguous-2.96Deleterious0.243Benign0.079Benign5.57Benign0.57Tolerated3.4113102.5-30.03169.041.4-0.51.1-0.40.0XXUncertainThe introduced residue Ala224 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr224 side chain in the WT model, the methyl side chain of Ala224 cannot form hydrogen bonds with nearby residues Ser204, Ser226, and Gly227. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and unfolds during the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.2162T>GI721S
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.032Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.466Likely Benign3.91Destabilizing0.13.96Destabilizing3.94Destabilizing2.28Destabilizing-5.26Deleterious1.000Probably Damaging1.000Probably Damaging2.21Pathogenic0.00Affected3.509-1-2-5.3-26.08203.349.3-0.10.0-1.10.0XUncertainThe sec-butyl side chain of Ile721, located on an α-helix (res. Leu714-Arg726), engages in hydrophobic packing with other residues in the hydrophobic inter-helix space, such as Phe420, Tyr417, His693, and Leu717. In the variant simulations, the hydroxyl side chain of Ser721 forms hydrogen bonds with nearby residues, such as Leu717 and His693. Although no major structural changes are observed during the variant simulations, the hydrophilic residue Ser721 could disrupt the hydrophobic packing during folding. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.844T>CC282R
(3D Viewer)
Likely PathogenicC2Pathogenic 2-16.378Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.466Likely Benign3.13Destabilizing0.61.58Ambiguous2.36Destabilizing1.70Destabilizing-11.03Deleterious0.999Probably Damaging0.998Probably Damaging1.63Pathogenic0.00Affected3.3918-4-3-7.053.05297.4-98.2-0.10.10.50.0XXXPotentially PathogenicThe thiol-containing side chain of Cys282, located at the beginning of an anti-parallel β sheet strand (res. Arg279-Leu286), is packed against multiple hydrophobic residues (e.g., Ile268, Leu284, Trp308, Leu327). In the variant simulations, the bulky side chain of Arg282 with its positively charged guanidinium group is not suitable for this hydrophobic niche. Consequently, the hydrophobic residues must either make room to accommodate Arg282 or it must escape the hydrophobic C2 domain core.As a result, new hydrogen bonds are formed with the backbone carbonyl groups of the surrounding β sheet residues Ala399, Leu325, and His326, which decreases the unity of the secondary structure elements. Notably, it is likely that the residue swap causes major problems during the C2 domain folding that are not visible in the variant simulations. In fact, even increased lability in the C2 domain could adversely affect the establishment of a stable SynGAP-membrane association.
c.1942T>CF648LLikely PathogenicGAPUncertain 1-9.296Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.468Likely Benign2.71Destabilizing0.82.08Destabilizing2.40Destabilizing1.04Destabilizing-5.98Deleterious0.999Probably Damaging0.976Probably Damaging3.45Benign0.08Tolerated201.0-34.02
c.1367A>CQ456P
(3D Viewer)
Likely PathogenicGAPUncertain 1-15.250Likely Pathogenic0.993Likely PathogenicLikely Pathogenic0.469Likely Benign3.68Destabilizing0.28.43Destabilizing6.06Destabilizing0.82Ambiguous-5.66Deleterious1.000Probably Damaging0.999Probably Damaging3.34Benign0.07Tolerated3.3734-101.9-31.01
c.1256A>GE419G
(3D Viewer)
Likely PathogenicGAPUncertain 1-10.589Likely Pathogenic0.956Likely PathogenicLikely Pathogenic0.469Likely Benign1.41Ambiguous0.01.94Ambiguous1.68Ambiguous0.83Ambiguous-6.42Deleterious1.000Probably Damaging0.997Probably Damaging3.31Benign0.02Affected3.37290-23.1-72.06165.3110.80.00.0-0.10.0XPotentially PathogenicThe carboxylate group of Glu419, located on an α helix (res. Met414-Glu436), forms a salt bridge with the side chain of either Arg716 or Lys418 from an opposing helix (res. Pro713-Arg726). The backbone amide group of Glu419 does not form H-bonds, resulting in a slight bend in the α helix. Thus, although glycine is known as an “α helix breaker,” the residue swap does not disrupt the continuity or integrity of the α helix. However, because Gly419 cannot form a salt bridge with the guanidinium group of the Arg716 side chain, the C2-GAP domain tertiary structure could be compromised during folding.
c.694G>AA232T
(3D Viewer)
PHBenign 16-33435545-G-A16.20e-7-7.655In-Between0.874Likely PathogenicAmbiguous0.469Likely Benign0.47Likely Benign0.1-0.04Likely Benign0.22Likely Benign0.61Ambiguous-1.42Neutral0.608Possibly Damaging0.240Benign5.80Benign0.09Tolerated3.401410-2.530.03210.8-42.00.50.10.40.5XUncertainThe hydroxyl group of Thr232, located at the end of an anti-parallel β sheet strand (res. Thr228-Ala232), forms hydrogen bonds with nearby residues Glu217, Cys233, and Cys219 in the variant simulations. These hydrogen-bonding interactions at the β sheet surface contribute to the stability of the secondary structure element and prevent it from unfolding. The new hydrogen bond interactions may be more favorable for structural stability than the steric interactions of the methyl side chain of Ala with the side chains of Gln216 and Cys219 in the WT. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.1147G>TG383W
(3D Viewer)
C2Uncertain 16-33438052-G-T16.22e-7-10.161Likely Pathogenic0.439AmbiguousLikely Benign0.469Likely Benign5.81Destabilizing3.64.44Destabilizing5.13Destabilizing0.08Likely Benign-1.01Neutral0.959Probably Damaging0.704Possibly Damaging4.09Benign0.00Affected4.327-2-7-0.5129.16
c.1136C>TS379L
(3D Viewer)
Likely BenignC2Benign 16-33438041-C-T84.05e-5-5.641Likely Benign0.173Likely BenignLikely Benign0.469Likely Benign0.39Likely Benign0.23.38Destabilizing1.89Ambiguous-0.52Ambiguous-0.85Neutral0.015Benign0.002Benign3.83Benign0.04Affected4.3211-3-24.626.08251.9-48.10.61.10.00.5UncertainSer379 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like leucine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Leu379 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.3487C>GH1163DUncertain 1-2.107Likely Benign0.949Likely PathogenicAmbiguous0.476Likely Benign-2.60Deleterious0.991Probably Damaging0.991Probably Damaging5.44Benign0.31Tolerated3.8831-1-0.3-22.05
c.1752C>GI584M
(3D Viewer)
Likely PathogenicGAPUncertain 26-33440804-C-G16.20e-7-10.119Likely Pathogenic0.419AmbiguousLikely Benign0.478Likely Benign0.11Likely Benign0.10.46Likely Benign0.29Likely Benign1.16Destabilizing-2.62Deleterious0.983Probably Damaging0.925Probably Damaging-1.25Pathogenic0.12Tolerated3.373421-2.618.03247.5-20.3-0.10.3-0.10.1XPotentially BenignA hydrophobic residue, Ile584, located in an α helix (res. Glu582-Met603), is swapped for another hydrophobic residue, Met584. The sec-butyl hydrocarbon side chain of Ile584 packs hydrophobically with residues in an inter-helix hydrophobic space (e.g., Leu588, Met477, Val473, and Ile483).In the variant simulations, the thioether hydrophobic side chain of Met584 maintains similar interactions as Ile584 in the WT, as it is roughly the same size and fits well within the hydrophobic space. Thus, the residue swap does not appear to cause any negative effects on the protein structure.
c.1873C>GL625VLikely PathogenicGAPUncertain 1-11.319Likely Pathogenic0.833Likely PathogenicAmbiguous0.480Likely Benign1.80Ambiguous0.71.69Ambiguous1.75Ambiguous1.42Destabilizing-2.96Deleterious0.998Probably Damaging0.992Probably Damaging3.07Benign0.01Affected210.4-14.03
c.1742G>AR581Q
(3D Viewer)
Likely PathogenicGAPBenign 16-33440794-G-A84.96e-6-7.584In-Between0.673Likely PathogenicLikely Benign0.481Likely Benign1.31Ambiguous0.1-0.42Likely Benign0.45Likely Benign0.88Ambiguous-2.77Deleterious1.000Probably Damaging0.995Probably Damaging-1.21Pathogenic0.11Tolerated3.3734111.0-28.06239.653.5-0.20.2-0.40.1XPotentially PathogenicArg581 is located on a short α-α loop between two α helices (res. Arg563-Glu578 and res. Glu582-Ser604). In the WT simulations, the guanidinium group of Arg581 forms salt bridges with the carboxylate groups of Asp583 within the same helix, as well as with Glu478 and/or Glu480 on a slightly α-helical loop (res. Glu478-Thr488) preceding another α helix (res. Ala461-Phe476).In the variant simulations, the neutral carboxamide group of the Gln581 side chain cannot form any of these salt bridges. Instead, it packs hydrophobically against Met477 and Ile587 or forms hydrogen bonds sporadically with nearby residues (e.g., Asp583, Arg587). Thus, although no drastic changes are observed in the variant simulations, the residue swap could weaken the tertiary structure assembly.
c.970C>TR324W
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437875-C-T21.24e-6-12.906Likely Pathogenic0.694Likely PathogenicLikely Benign0.481Likely Benign1.49Ambiguous0.30.56Ambiguous1.03Ambiguous0.66Ambiguous-3.12Deleterious1.000Probably Damaging0.998Probably Damaging1.82Pathogenic0.16Tolerated3.39222-33.630.03256.639.10.00.10.30.2XPotentially PathogenicThe guanidinium group of Arg324, located at the end of an anti-parallel β sheet strand (res. Ala322-Asp330), faces outward and frequently forms a salt bridge with the carboxylate group of the Asp288 side chain, which is part of a β strand end (res. Met289-Pro298). In the variant simulations, the indole ring of the Trp324 side chain cannot maintain a similar interaction with the negatively charged carboxylate side chain of Asp288, potentially compromising the folding of the anti-parallel β sheet assembly. However, the residue swap does not appear to negatively impact the protein structure or its integrity based on the simulations.
c.1082A>CQ361P
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-13.280Likely Pathogenic0.956Likely PathogenicLikely Pathogenic0.482Likely Benign3.12Destabilizing0.03.45Destabilizing3.29Destabilizing0.38Likely Benign-3.03Deleterious0.996Probably Damaging0.979Probably Damaging1.63Pathogenic0.05Affected3.3725-101.9-31.01
c.1925A>CK642T
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-12.823Likely Pathogenic0.948Likely PathogenicAmbiguous0.484Likely Benign0.53Ambiguous0.10.30Likely Benign0.42Likely Benign0.28Likely Benign-5.88Deleterious0.872Possibly Damaging0.839Possibly Damaging2.86Benign0.00Affected3.37310-13.2-27.07213.5-8.7-0.30.40.30.2XUncertainThe amino side chain of Lys642, located on the surface of an α helix (res. Ser641-Glu666), is not involved in any interactions in the WT simulations. In the variant simulations, the shorter side chain of Thr642 forms hydrogen bonds with Glu643 and Thr640 on the same α helix.Regardless, Lys642 is positioned directly at the GAP-Ras interface, and in the SynGAP-Ras WT simulations, its amino side chain forms salt bridges with the carboxylate groups of Ras residues Asp33 and Asp38. The shorter Thr642 is more likely to prefer hydrogen bonding with Glu643 and Thr640 on the same α helix, even in the Ras complex. Thus, the effect of the residue swap on the complex formation with the GTPase cannot be explored using solvent-only simulations.
c.860A>CD287A
(3D Viewer)
Likely PathogenicC2Uncertain 1-14.686Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.484Likely Benign0.30Likely Benign0.1-0.04Likely Benign0.13Likely Benign0.40Likely Benign-7.35Deleterious1.000Probably Damaging0.998Probably Damaging1.58Pathogenic0.01Affected3.3823-205.3-44.01
c.835C>TR279W
(3D Viewer)
Likely PathogenicC2Uncertain 1-11.417Likely Pathogenic0.942Likely PathogenicAmbiguous0.485Likely Benign2.00Destabilizing0.81.47Ambiguous1.74Ambiguous0.80Ambiguous-6.29Deleterious1.000Probably Damaging0.998Probably Damaging1.88Pathogenic0.00Affected3.39182-33.630.03270.038.30.10.00.30.0UncertainThe guanidinium group of Arg279, located at the beginning of an anti-parallel β sheet strand (res. Arg279-Leu286), can form hydrogen bond with the backbone carbonyl groups of nearby loop residues (e.g., Ser296, Ser331, and As332) and form salt bridges with the carboxylate groups of Asp330 and Asp332. In the WT simulations, Arg279 sporadically forms a salt bridge even with the carboxylate group of Glu613, loosely connecting the C2 domain and GAP domain. Meanwhile, the indole ring of the Trp279 side chain is unable to hydrogen bond with the loop residues in the variant simulations. The lack of hydrogen bond or salt bridge formation with the loop residues could be significant, as Arg279 and the loops face the polar head group region of the membrane. Thus, although Trp279 could interact with the membrane surface as a “lipid anchor,” any changes to the wider loop dynamics could still adversely affect the formation of a stable SynGAP-membrane association. However, no definite conclusions on the effect of the residue swap on the SynGAP-membrane association can be drawn from solvent-only simulations.
c.745G>AA249T
(3D Viewer)
Likely BenignPHUncertain 1-3.564Likely Benign0.805Likely PathogenicAmbiguous0.487Likely Benign1.50Ambiguous0.61.39Ambiguous1.45Ambiguous0.30Likely Benign-0.96Neutral0.990Probably Damaging0.815Possibly Damaging5.65Benign0.40Tolerated3.391510-2.530.03214.5-43.30.00.00.50.2XPotentially BenignThe methyl group of Ala249, located on the surface of an α helix (res. Ala236-Val250) facing an anti-parallel β sheet strand (res. Ile205-Val209), packs against nearby hydrophobic residues such as Leu200, Leu246, and Val250. In the variant simulations, the hydroxyl group of Thr249, which is not suitable for hydrophobic packing, forms a stable hydrogen bond with the backbone carbonyl of Asn245 in the same helix. Although this interaction could theoretically weaken the structural integrity of the α helix, this destabilizing effect is not observed in the variant simulations.
c.961C>TR321C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33437866-C-T95.58e-6-10.025Likely Pathogenic0.387AmbiguousLikely Benign0.495Likely Benign0.57Ambiguous0.10.56Ambiguous0.57Ambiguous0.18Likely Benign-4.59Deleterious1.000Probably Damaging0.998Probably Damaging1.89Pathogenic0.01Affected3.3823-3-47.0-53.05
c.1552T>CY518H
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.797Likely Pathogenic0.943Likely PathogenicAmbiguous0.496Likely Benign2.39Destabilizing0.40.82Ambiguous1.61Ambiguous1.31Destabilizing-4.74Deleterious1.000Probably Damaging1.000Probably Damaging3.40Benign0.08Tolerated02-1.9-26.03
c.3151G>TG1051CLikely Pathogenic 1-9.050Likely Pathogenic0.122Likely BenignLikely Benign0.497Likely Benign-0.90Neutral0.971Probably Damaging0.750Possibly Damaging-0.74Pathogenic0.10Tolerated3.775-3-32.946.09
c.3154G>AG1052RUncertain 1-9.050Likely Pathogenic0.383AmbiguousLikely Benign0.497Likely Benign-0.41Neutral0.990Probably Damaging0.798Possibly Damaging3.90Benign0.10Tolerated3.775-2-3-4.199.14
c.878G>CR293P
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-16.275Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.497Likely Benign3.62Destabilizing0.49.06Destabilizing6.34Destabilizing0.47Likely Benign-6.43Deleterious1.000Probably Damaging0.999Probably Damaging1.45Pathogenic0.01Affected3.38230-22.9-59.07202.3132.00.10.00.10.1XXXPotentially PathogenicThe guanidinium group of the Arg293 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), packs against the phenol ring of the Tyr281 side chain or forms a salt bridge with the carboxylate group of Glu283 on the outer side of the C2 domain. In the WT simulations, the positively charged side chain of arginine remains outside the hydrophobic C2 domain, resulting in a twist in the β strand. The backbone amide bond of Arg293 potentially maintains this twist by forming a hydrogen bond with the carbonyl group of His210 or the hydroxyl group of Ser211 in the anti-parallel β sheet.Although this twist is also maintained in the variant simulations, replacing the positively charged residue with proline, which lacks the backbone amide group altogether, causes the β strand to unfold. Because Arg293 is positioned at the C2 and PH domain interface, the residue swap could significantly impact the tertiary structure assembly. Notably, Arg293 is located at the SynGAP-Ras interface, and its role in complex formation cannot be fully understood through solvent-only simulations.
c.3142G>CG1048RLikely BenignUncertain 1-4.305Likely Benign0.435AmbiguousLikely Benign0.503Likely Pathogenic-0.54Neutral0.919Possibly Damaging0.728Possibly Damaging2.54Benign0.10Tolerated3.775-2-3-4.199.14
c.872A>GY291C
(3D Viewer)
Likely PathogenicC2Uncertain 1-8.997Likely Pathogenic0.967Likely PathogenicLikely Pathogenic0.505Likely Pathogenic2.90Destabilizing0.43.51Destabilizing3.21Destabilizing1.35Destabilizing-7.37Deleterious1.000Probably Damaging0.999Probably Damaging1.76Pathogenic0.01Affected3.38230-23.8-60.04205.266.10.10.0-0.40.4XXPotentially PathogenicThe phenol group of the Tyr291 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), packs against hydrophobic residues of the C2 and PH domains (e.g., Leu317, Leu286, Leu284, Pro208, Val209). The phenol ring of Tyr291 also forms favorable Met-aromatic stacking with the methyl group of Met289. In the variant simulation, the thiol group of the Cys291 side chain is not as suitable for the hydrophobic inter-domain space as the phenol ring of Tyr291. Consequently, the structural unity of the PH domain is weakened and ultimately unfolds in the second simulation. Moreover, the residue swap might result in severe detrimental effects on the C2 domain structure and the C2-PH domain tertiary structure assembly during folding.
c.1404G>AM468I
(3D Viewer)
Likely PathogenicGAPUncertain 16-33438436-G-A16.20e-7-8.583Likely Pathogenic0.907Likely PathogenicAmbiguous0.508Likely Pathogenic2.53Destabilizing0.21.89Ambiguous2.21Destabilizing0.37Likely Benign-1.06Neutral0.748Possibly Damaging0.886Possibly Damaging-1.10Pathogenic0.07Tolerated3.3731122.6-18.03
c.1474A>GK492E
(3D Viewer)
Likely PathogenicGAPConflicting 2-16.175Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.510Likely Pathogenic1.53Ambiguous0.11.90Ambiguous1.72Ambiguous1.42Destabilizing-3.98Deleterious1.000Probably Damaging0.998Probably Damaging2.99Benign0.01Affected3.3735100.40.94
c.1354G>TV452F
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.769Likely Pathogenic0.975Likely PathogenicLikely Pathogenic0.511Likely Pathogenic9.21Destabilizing0.10.37Likely Benign4.79Destabilizing0.61Ambiguous-4.94Deleterious0.999Probably Damaging0.993Probably Damaging3.29Benign0.00Affected3.3734-1-1-1.448.04249.4-35.70.00.00.40.1XPotentially PathogenicThe iso-propyl side chain of Val452, located in the middle of an α helix (res. Val441-Ser457), packs against hydrophobic residues in the inter-helix space at the intersection of three α helices (e.g., Leu500, His453, Leu465). In the variant simulations, the larger side chain of Phe452 cannot pack against the opposing α helix (res. Leu489-Glu519) as efficiently as valine. Due to space restrictions, the phenol ring adjusts to make room by rotating slightly sideways in the inter-helix space. Besides this small and local shift, no large-scale effects on the protein structure are seen based on the simulations. However, the size difference between the swapped residues could affect the protein folding process.

Found 757 rows. Show 200 rows per page. Page 3/4 |