SynGap Missense Server

Table of SynGAP1 Isoform α2 (UniProt Q96PV0-1) Missense Variants.

c.dna Variant SGM Consensus Domain ClinVar gnomAD ESM1b AlphaMissense REVEL FoldX Rosetta Foldetta PremPS PROVEAN PolyPhen-2 HumDiv PolyPhen-2 HumVar FATHMM SIFT PAM Physical SASA Normalized B-factor backbone Normalized B-factor sidechain SynGAP Structural Annotation DOI
Clinical Status Review Subm. ID Allele count Allele freq. LLR score Prediction Pathogenicity Class Optimized Score Prediction Average ΔΔG Prediction StdDev ΔΔG Prediction ΔΔG Prediction ΔΔG Prediction Score Prediction pph2_prob Prediction pph2_prob Prediction Nervous System Score Prediction Prediction Status Conservation Sequences PAM250 PAM120 Hydropathy Δ MW Δ Average Δ Δ StdDev Δ StdDev Secondary Tertiary bonds Inside out GAP-Ras interface At membrane No effect MD Alert Verdict Description
c.2362T>AS788TLikely BenignSH3-binding motifUncertain 26-33442914-T-A42.49e-6-4.288Likely Benign0.288Likely BenignLikely Benign0.092Likely Benign-2.25Neutral0.979Probably Damaging0.982Probably Damaging1.55Pathogenic0.02Affected3.646110.114.03
c.3262A>GS1088GLikely BenignUncertain 1-5.034Likely Benign0.285Likely BenignLikely Benign0.163Likely Benign-1.83Neutral0.979Probably Damaging0.973Probably Damaging2.63Benign0.03Affected3.775010.4-30.03
c.3862A>GK1288EUncertain 16-33447910-A-G53.22e-6-2.751Likely Benign0.407AmbiguousLikely Benign0.185Likely Benign-3.27Deleterious0.979Probably Damaging0.973Probably Damaging2.13Pathogenic0.00Affected3.775100.40.94
c.1150G>AG384S
(3D Viewer)
Likely BenignC2Uncertain 16-33438055-G-A16.22e-7-5.243Likely Benign0.090Likely BenignLikely Benign0.315Likely Benign1.92Ambiguous0.21.66Ambiguous1.79Ambiguous0.19Likely Benign-0.67Neutral0.980Probably Damaging0.968Probably Damaging1.33Pathogenic0.04Affected4.32210-0.430.03202.4-49.80.51.0-0.20.0UncertainGly384 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and so they are rich in glycines, prolines, and, to a lesser extent, small hydrophilic residues to ensure maximum flexibility. Thus, the variant’s Ser384 is potentially tolerated in the Ω loop, although the hydroxyl group of Ser384 forms various hydrogen bonds with several other loop residues in the variant simulations. However, since the effects on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1966G>CE656Q
(3D Viewer)
GAPUncertain 16-33441225-G-C16.20e-7-9.145Likely Pathogenic0.766Likely PathogenicLikely Benign0.249Likely Benign-0.14Likely Benign0.0-0.81Ambiguous-0.48Likely Benign0.25Likely Benign-2.29Neutral0.980Probably Damaging0.528Possibly Damaging3.46Benign0.02Affected3.3924220.0-0.98224.31.70.00.10.10.0XPotentially BenignThe carboxylate side chain of Glu656, located on an α helix (res. Ser641-Glu666), frequently forms a hydrogen bond with the nearby residue Ser659 on the same α helix. In the variant simulations, the carboxamide side chain of Gln656 alternatively forms a hydrogen bond with either Ser659 or Glu548 on an opposing helix (res. Ala533-Val560).Although the frequent interaction between Gln656 and Glu548 may strengthen or stabilize the tertiary structure assembly, the effect is likely to be marginal.
c.2752G>AA918TLikely BenignUncertain 16-33443304-G-A16.20e-7-4.139Likely Benign0.083Likely BenignLikely Benign0.065Likely Benign-1.09Neutral0.980Probably Damaging0.721Possibly Damaging2.64Benign0.03Affected4.32401-2.530.03
c.2753C>TA918VLikely BenignUncertain 36-33443305-C-T21.24e-6-3.684Likely Benign0.112Likely BenignLikely Benign0.119Likely Benign-1.61Neutral0.980Probably Damaging0.782Possibly Damaging2.61Benign0.03Affected4.324002.428.05
c.3026A>CE1009ALikely PathogenicUncertain 1-3.118Likely Benign0.679Likely PathogenicLikely Benign0.109Likely Benign-3.06Deleterious0.980Probably Damaging0.630Possibly Damaging2.39Pathogenic0.01Affected3.7750-15.3-58.04
c.3958C>TP1320SLikely BenignUncertain 16-33451832-C-T21.28e-6-4.928Likely Benign0.073Likely BenignLikely Benign0.097Likely Benign-0.69Neutral0.980Probably Damaging0.968Probably Damaging4.25Benign0.00Affected3.7751-10.8-10.04
c.3979C>TP1327SLikely BenignUncertain 16-33451853-C-T-4.744Likely Benign0.131Likely BenignLikely Benign0.092Likely Benign0.28Neutral0.980Probably Damaging0.857Possibly Damaging4.25Benign0.71Tolerated3.7751-10.8-10.04
c.2393C>TP798LLikely BenignSH3-binding motifUncertain 26-33442945-C-T63.72e-6-5.640Likely Benign0.074Likely BenignLikely Benign0.042Likely Benign-0.86Neutral0.981Probably Damaging0.631Possibly Damaging4.21Benign0.00Affected4.321-3-35.416.04
c.707C>TA236V
(3D Viewer)
PHBenign/Likely benign 26-33435558-C-T63.72e-6-8.752Likely Pathogenic0.267Likely BenignLikely Benign0.777Likely Pathogenic0.61Ambiguous0.21.08Ambiguous0.85Ambiguous0.64Ambiguous-3.55Deleterious0.981Probably Damaging0.446Benign5.79Benign0.03Affected3.4014002.428.05213.8-44.70.00.0-0.20.2XPotentially BenignThe methyl side chain of Ala236, located on an α helix (residues Ala236-Val250) facing an anti-parallel β sheet strand (residues Ile205-Val209), interacts hydrophobically with nearby residues such as Arg239 and Phe218. In the variant simulations, the isopropyl branched hydrocarbon side chain of Val236 maintains similar hydrophobic interactions as alanine in the WT, with an overall arrangement remarkably similar to Ala236. The residue swap does not affect the protein structure based on the simulations.
c.1221G>TQ407H
(3D Viewer)
Likely PathogenicC2Uncertain 1-10.526Likely Pathogenic0.830Likely PathogenicAmbiguous0.206Likely Benign0.59Ambiguous0.00.61Ambiguous0.60Ambiguous1.10Destabilizing-4.51Deleterious0.982Probably Damaging0.947Probably Damaging3.88Benign0.01Affected3.3828030.39.01
c.113C>TP38LLikely BenignConflicting 46-33423522-C-T84.96e-6-2.469Likely Benign0.197Likely BenignLikely Benign0.141Likely Benign-2.56Deleterious0.983Probably Damaging0.931Probably Damaging4.02Benign0.00Affected4.321-3-35.416.04
c.1752C>GI584M
(3D Viewer)
Likely PathogenicGAPUncertain 26-33440804-C-G16.20e-7-10.119Likely Pathogenic0.419AmbiguousLikely Benign0.478Likely Benign0.11Likely Benign0.10.46Likely Benign0.29Likely Benign1.16Destabilizing-2.62Deleterious0.983Probably Damaging0.925Probably Damaging-1.25Pathogenic0.12Tolerated3.373421-2.618.03247.5-20.3-0.10.3-0.10.1XPotentially BenignA hydrophobic residue, Ile584, located in an α helix (res. Glu582-Met603), is swapped for another hydrophobic residue, Met584. The sec-butyl hydrocarbon side chain of Ile584 packs hydrophobically with residues in an inter-helix hydrophobic space (e.g., Leu588, Met477, Val473, and Ile483).In the variant simulations, the thioether hydrophobic side chain of Met584 maintains similar interactions as Ile584 in the WT, as it is roughly the same size and fits well within the hydrophobic space. Thus, the residue swap does not appear to cause any negative effects on the protein structure.
c.391G>CG131RUncertain 1-6.564Likely Benign0.983Likely PathogenicLikely Pathogenic0.099Likely Benign-3.82Deleterious0.983Probably Damaging0.656Possibly Damaging3.92Benign0.00Affected3.615-2-3-4.199.14
c.2971G>AG991RLikely BenignConflicting 36-33443523-G-A84.96e-6-3.934Likely Benign0.411AmbiguousLikely Benign0.102Likely Benign-1.20Neutral0.984Probably Damaging0.772Possibly Damaging4.11Benign0.01Affected4.322-3-2-4.199.14
c.453C>AD151ELikely BenignUncertain 1-5.662Likely Benign0.886Likely PathogenicAmbiguous0.142Likely Benign-2.02Neutral0.984Probably Damaging0.967Probably Damaging3.99Benign0.11Tolerated3.615320.014.03
c.2294G>AS765NLikely BenignUncertain 1-5.098Likely Benign0.378AmbiguousLikely Benign0.094Likely Benign-0.94Neutral0.985Probably Damaging0.950Probably Damaging4.11Benign0.06Tolerated3.64611-2.727.03
c.1819C>GL607V
(3D Viewer)
Likely PathogenicGAPUncertain 26-33440871-C-G21.24e-6-11.190Likely Pathogenic0.637Likely PathogenicLikely Benign0.715Likely Pathogenic1.04Ambiguous0.21.36Ambiguous1.20Ambiguous0.90Ambiguous-2.99Deleterious0.985Probably Damaging0.992Probably Damaging-1.50Pathogenic0.01Affected3.3735210.4-14.03216.328.10.10.00.90.2XPotentially BenignLeu607 is located in a short helical region (res. Ser606-Phe608) within an α-α loop connecting two α helices (res. Glu582-Met603 and res. Glu617-Asn635). In the WT simulations, the iso-butyl side chain of Leu607 does not interact with any other residues, but it could potentially interact directly with Ras due to its location at the GAP domain.In the variant simulations, Val607, which has similar size and physicochemical properties to leucine, does not cause any negative effects on the protein structure. However, due to its location at the GAP-Ras interface, the residue swap could affect the complex formation with the GTPase, but this cannot be investigated using solvent-only simulations.
c.1154C>GS385W
(3D Viewer)
C2Benign 16-33438059-C-G-9.353Likely Pathogenic0.362AmbiguousLikely Benign0.373Likely Benign0.53Ambiguous0.20.69Ambiguous0.61Ambiguous0.00Likely Benign-0.84Neutral0.986Probably Damaging0.968Probably Damaging4.63Benign0.00Affected4.323-2-3-0.199.14260.4-71.20.51.30.70.4UncertainSer385 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like tryptophan are rarely tolerated. Although no major negative structural effects are observed in the variant simulations, Trp385 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effects on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.10.1016/j.ajhg.2020.11.011
c.3179G>TG1060VLikely BenignBenign 16-33443731-G-T16.22e-7-6.966Likely Benign0.103Likely BenignLikely Benign0.369Likely Benign-0.73Neutral0.986Probably Damaging0.728Possibly Damaging2.63Benign0.33Tolerated4.322-1-34.642.08
c.3632T>AM1211KLikely PathogenicCoiled-coilLikely Benign 1-9.013Likely Pathogenic0.662Likely PathogenicLikely Benign0.595Likely Pathogenic-2.95Deleterious0.987Probably Damaging0.979Probably Damaging5.59Benign0.01Affected3.7750-1-5.8-3.02
c.1441C>TH481Y
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33438473-C-T169.91e-6-10.910Likely Pathogenic0.565Likely PathogenicLikely Benign0.256Likely Benign-0.53Ambiguous0.1-0.46Likely Benign-0.50Ambiguous0.20Likely Benign-3.32Deleterious0.988Probably Damaging0.979Probably Damaging3.40Benign0.59Tolerated3.3733021.926.03256.5-44.40.00.00.20.2XXUncertainThe imidazole ring of the His481 side chain is located in a short helical structure (res. Glu480-Leu482) within an α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. In the WT simulations, His481 alternately stacks against Arg485, Arg587, and Glu480 without a definite role. In the variant simulations, Tyr481 also alternately stacks with nearby arginine residues, including Arg485, Arg587, and Arg479. The interaction between Tyr481 and Arg479 affects the α-α loop, causing it to fold into a distorted helical structure, an effect that might be more pronounced during protein folding. Finally, the potential effect of the residue swap on SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.3920C>AP1307QLikely BenignUncertain 16-33451794-C-A-4.227Likely Benign0.114Likely BenignLikely Benign0.192Likely Benign-0.88Neutral0.988Probably Damaging0.765Possibly Damaging2.82Benign0.03Affected3.7750-1-1.931.01
c.484C>TR162CPathogenic 2-8.157Likely Pathogenic0.787Likely PathogenicAmbiguous0.150Likely Benign-2.05Neutral0.988Probably Damaging0.513Possibly Damaging4.00Benign0.11Tolerated3.744-4-37.0-53.05
c.2302G>TD768YLikely PathogenicUncertain 16-33442460-G-T-9.866Likely Pathogenic0.824Likely PathogenicAmbiguous0.234Likely Benign-2.86Deleterious0.989Probably Damaging0.806Possibly Damaging4.01Benign0.07Tolerated3.646-4-32.248.09
c.379C>TR127WUncertain 1-4.776Likely Benign0.806Likely PathogenicAmbiguous0.118Likely Benign-2.98Deleterious0.989Probably Damaging0.420Benign3.88Benign0.00Affected2-33.630.03
c.3059G>TR1020LUncertain 1-6.031Likely Benign0.907Likely PathogenicAmbiguous0.216Likely Benign-4.03Deleterious0.990Probably Damaging0.921Probably Damaging2.50Benign0.00Affected3.775-3-28.3-43.03
c.3154G>AG1052RUncertain 1-9.050Likely Pathogenic0.383AmbiguousLikely Benign0.497Likely Benign-0.41Neutral0.990Probably Damaging0.798Possibly Damaging3.90Benign0.10Tolerated3.775-2-3-4.199.14
c.3260C>TS1087FUncertain 1-3.843Likely Benign0.497AmbiguousLikely Benign0.105Likely Benign-2.75Deleterious0.990Probably Damaging0.796Possibly Damaging2.56Benign0.03Affected3.775-2-33.660.10
c.745G>AA249T
(3D Viewer)
Likely BenignPHUncertain 1-3.564Likely Benign0.805Likely PathogenicAmbiguous0.487Likely Benign1.50Ambiguous0.61.39Ambiguous1.45Ambiguous0.30Likely Benign-0.96Neutral0.990Probably Damaging0.815Possibly Damaging5.65Benign0.40Tolerated3.391510-2.530.03214.5-43.30.00.00.50.2XPotentially BenignThe methyl group of Ala249, located on the surface of an α helix (res. Ala236-Val250) facing an anti-parallel β sheet strand (res. Ile205-Val209), packs against nearby hydrophobic residues such as Leu200, Leu246, and Val250. In the variant simulations, the hydroxyl group of Thr249, which is not suitable for hydrophobic packing, forms a stable hydrogen bond with the backbone carbonyl of Asn245 in the same helix. Although this interaction could theoretically weaken the structural integrity of the α helix, this destabilizing effect is not observed in the variant simulations.
c.2684G>AS895NLikely BenignUncertain 1-6.399Likely Benign0.604Likely PathogenicLikely Benign0.118Likely Benign-0.85Neutral0.991Probably Damaging0.988Probably Damaging2.64Benign0.30Tolerated4.32411-2.727.03
c.2768T>AI923NLikely BenignUncertain 1-0.733Likely Benign0.712Likely PathogenicLikely Benign0.108Likely Benign-1.16Neutral0.991Probably Damaging0.793Possibly Damaging2.70Benign0.13Tolerated3.775-2-3-8.00.94
c.2948G>AS983NLikely Benign 16-33443500-G-A63.72e-6-5.604Likely Benign0.909Likely PathogenicAmbiguous0.136Likely Benign-1.78Neutral0.991Probably Damaging0.988Probably Damaging2.04Pathogenic0.00Affected4.32111-2.727.03
c.2954G>AS985NLikely BenignUncertain 1-6.979Likely Benign0.845Likely PathogenicAmbiguous0.088Likely Benign-1.68Neutral0.991Probably Damaging0.988Probably Damaging2.65Benign0.00Affected4.32111-2.727.03
c.3487C>GH1163DUncertain 1-2.107Likely Benign0.949Likely PathogenicAmbiguous0.476Likely Benign-2.60Deleterious0.991Probably Damaging0.991Probably Damaging5.44Benign0.31Tolerated3.8831-1-0.3-22.05
c.892C>TP298S
(3D Viewer)
Likely BenignC2Benign 16-33437797-C-T53.10e-6-6.342Likely Benign0.144Likely BenignLikely Benign0.189Likely Benign1.38Ambiguous0.21.41Ambiguous1.40Ambiguous0.58Ambiguous-1.20Neutral0.991Probably Damaging0.898Possibly Damaging2.03Pathogenic0.85Tolerated3.3920-110.8-10.04
c.2086C>GL696V
(3D Viewer)
Likely PathogenicGAPUncertain 1-11.909Likely Pathogenic0.745Likely PathogenicLikely Benign0.351Likely Benign2.35Destabilizing0.11.85Ambiguous2.10Destabilizing1.46Destabilizing-2.79Deleterious0.992Probably Damaging0.970Probably Damaging3.16Benign0.00Affected3.4613120.4-14.03
c.2131C>GL711V
(3D Viewer)
Likely PathogenicGAPUncertain16-33441596-C-G16.20e-7-10.045Likely Pathogenic0.709Likely PathogenicLikely Benign0.170Likely Benign3.48Destabilizing0.12.22Destabilizing2.85Destabilizing1.40Destabilizing-2.59Deleterious0.992Probably Damaging0.970Probably Damaging3.34Benign0.00Affected3.509120.4-14.03
c.2224C>TR742WLikely BenignUncertain 16-33441689-C-T63.72e-6-7.725In-Between0.133Likely BenignLikely Benign0.079Likely Benign-1.71Neutral0.992Probably Damaging0.684Possibly Damaging2.66Benign0.01Affected4.322-323.630.03
c.227C>GS76CLikely BenignUncertain 16-33425835-C-G21.24e-6-5.408Likely Benign0.100Likely BenignLikely Benign0.076Likely Benign-1.78Neutral0.992Probably Damaging0.869Possibly Damaging3.71Benign0.00Affected4.3210-13.316.06
c.2291A>GN764SLikely BenignBenign 1-3.149Likely Benign0.159Likely BenignLikely Benign0.058Likely Benign-0.84Neutral0.992Probably Damaging0.846Possibly Damaging2.65Benign0.61Tolerated3.646112.7-27.03
c.1998G>CE666D
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.820Likely Pathogenic0.704Likely PathogenicLikely Benign0.197Likely Benign0.88Ambiguous0.00.37Likely Benign0.63Ambiguous1.05Destabilizing-2.69Deleterious0.992Probably Damaging0.603Possibly Damaging3.43Benign0.06Tolerated3.3828320.0-14.03237.216.50.00.0-0.30.1XPotentially PathogenicThe carboxylate group of Glu666, located on the α-helix (res. Ser641-Glu666), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), such as Lys566, Thr672, and Asn669, in the WT simulations. In the variant simulations, the shorter side chain of Asp666 cannot maintain these interactions as efficiently as Glu666 in the WT, resulting in a less coordinated hydrogen-bond network.
c.2522T>CV841AUncertain 16-33443074-T-C31.86e-6-8.152Likely Pathogenic0.901Likely PathogenicAmbiguous0.183Likely Benign-2.13Neutral0.992Probably Damaging0.989Probably Damaging2.57Benign0.02Affected3.77500-2.4-28.05
c.2765G>AR922QLikely BenignBenign 16-33443317-G-A74.34e-6-3.295Likely Benign0.189Likely BenignLikely Benign0.085Likely Benign-0.27Neutral0.992Probably Damaging0.736Possibly Damaging2.57Benign0.20Tolerated3.775111.0-28.06
c.3567G>CE1189DLikely BenignCoiled-coilLikely Benign 16-33444602-G-C31.86e-6-3.582Likely Benign0.461AmbiguousLikely Benign0.359Likely Benign-1.42Neutral0.992Probably Damaging0.989Probably Damaging5.30Benign0.25Tolerated3.824320.0-14.03
c.886T>GS296A
(3D Viewer)
Likely BenignC2Uncertain 1-6.847Likely Benign0.247Likely BenignLikely Benign0.209Likely Benign0.50Ambiguous0.3-0.26Likely Benign0.12Likely Benign0.35Likely Benign-1.79Neutral0.992Probably Damaging0.987Probably Damaging1.97Pathogenic0.65Tolerated3.4016112.6-16.00182.526.6-0.20.1-0.50.0XPotentially PathogenicThe hydroxyl group of the Ser296 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), stably hydrogen bonds with the carboxylate group of Asp330 in a neighboring β strand (res. Ala322-Asp332). The backbone carbonyl group of Ser296 also hydrogen bonds with the guanidinium group of Arg279 in another nearby β strand (res. Arg279-Cys285). In the variant simulations, the methyl group of the Ala296 side chain cannot hydrogen bond with Asp330, causing the carboxylate group positioning to fluctuate more than in the WT simulations.Although the residue swap does not seem to affect the anti-parallel β sheet assembly during the simulations, it is possible that the Ser296-Asp330 hydrogen bond plays a crucial role in maintaining the C2 domain fold. Notably, because Ser296 is located near the membrane interface, the potential effect of the residue swap on the SynGAP-membrane association cannot be addressed by solvent-only simulations.
c.1600T>CS534P
(3D Viewer)
Likely BenignGAPUncertain 16-33438843-T-C31.86e-6-5.056Likely Benign0.265Likely BenignLikely Benign0.203Likely Benign-0.40Likely Benign0.20.35Likely Benign-0.03Likely Benign0.47Likely Benign-3.81Deleterious0.993Probably Damaging0.993Probably Damaging3.32Benign0.05Affected3.3735-11-0.810.04
c.2255C>TS752LLikely BenignUncertain 26-33441720-C-T63.72e-6-3.386Likely Benign0.182Likely BenignLikely Benign0.195Likely Benign-2.09Neutral0.993Probably Damaging0.641Possibly Damaging1.51Pathogenic0.01Affected3.995-3-24.626.08
c.2015C>TT672M
(3D Viewer)
GAPConflicting 26-33441274-C-T191.18e-5-9.472Likely Pathogenic0.174Likely BenignLikely Benign0.127Likely Benign0.31Likely Benign0.41.52Ambiguous0.92Ambiguous0.41Likely Benign-4.34Deleterious0.993Probably Damaging0.520Possibly Damaging3.39Benign0.00Affected3.4025-1-12.630.09231.9-52.91.10.10.50.0XXPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. Met672 can only form a hydrogen bond with the amino group of the Lys566 side chain via its backbone carbonyl group. Nevertheless, the Lys566-Glu666 salt bridge forms intermittently. This is possible because Asn669 keeps the carboxylate group of Glu666 in the vicinity through hydrogen bonding, and the hydrophobic side chain of Met stays mostly rotated away from the salt bridge. Consequently, no drastic disruption of the hydrogen-bond network that keeps the loop close to the helices occurs in the variant simulations.
c.323A>GK108RLikely BenignUncertain 16-33432188-A-G63.72e-6-2.892Likely Benign0.148Likely BenignLikely Benign0.184Likely Benign0.37Neutral0.993Probably Damaging0.956Probably Damaging4.22Benign1.00Tolerated3.61532-0.628.01
c.718G>AD240NLikely PathogenicPHUncertain 1-12.942Likely Pathogenic0.755Likely PathogenicLikely Benign0.701Likely Pathogenic0.22Likely Benign0.90.47Likely Benign0.35Likely Benign0.37Likely Benign-4.37Deleterious0.993Probably Damaging0.984Probably Damaging5.88Benign0.01Affected210.0-0.98
c.719A>GD240GLikely PathogenicPHUncertain 1-12.825Likely Pathogenic0.951Likely PathogenicAmbiguous0.912Likely Pathogenic1.85Ambiguous0.12.72Destabilizing2.29Destabilizing0.24Likely Benign-6.19Deleterious0.993Probably Damaging0.984Probably Damaging5.79Benign0.01Affected1-13.1-58.04
c.1405G>AA469T
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.540Likely Pathogenic0.723Likely PathogenicLikely Benign0.527Likely Pathogenic2.26Destabilizing0.11.90Ambiguous2.08Destabilizing0.34Likely Benign-1.46Neutral0.994Probably Damaging0.986Probably Damaging-1.21Pathogenic0.42Tolerated10-2.530.03
c.1172G>TG391V
(3D Viewer)
Likely BenignC2Likely Benign 16-33438077-G-T31.86e-6-6.642Likely Benign0.133Likely BenignLikely Benign0.595Likely Pathogenic4.23Destabilizing1.34.81Destabilizing4.52Destabilizing-0.11Likely Benign-0.98Neutral0.994Probably Damaging0.887Possibly Damaging1.32Pathogenic0.10Tolerated3.698-1-34.642.08228.6-69.00.00.8-0.50.3UncertainGly387 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. This loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Val391 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1306G>AE436K
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.869Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.829Likely Pathogenic0.56Ambiguous0.12.86Destabilizing1.71Ambiguous0.82Ambiguous-3.77Deleterious0.994Probably Damaging0.951Probably Damaging4.71Benign0.02Affected3.372901-0.4-0.94186.839.80.00.0-0.20.0XXXPotentially PathogenicThe carboxylate group of Glu436, located on the α helix (res. Met414-Glu436), forms a salt bridge with the amino group of the Lys444 side chain on an opposing α helix (res. Val441-Ser457). The backbone carbonyl of Glu436 also H-bonds with the Lys444 side chain, which helps keep the ends of the two α helices tightly connected. In contrast, in the variant simulations, the salt bridge formation with Lys444 is not possible. Instead, the repelled Lys436 side chain rotates outward, causing a change in the α helix backbone H-bonding: the amide group of Lys444 H-bonds with the carbonyl of Ala433 instead of the carbonyl of Cys432.
c.1403T>CM468T
(3D Viewer)
Likely PathogenicGAPUncertain 26-33438435-T-C16.20e-7-12.399Likely Pathogenic0.862Likely PathogenicAmbiguous0.801Likely Pathogenic3.47Destabilizing0.13.10Destabilizing3.29Destabilizing1.84Destabilizing-3.85Deleterious0.994Probably Damaging0.985Probably Damaging-1.31Pathogenic0.01Affected3.3731-1-1-2.6-30.09214.647.10.00.00.10.0XPotentially PathogenicThe thioether group of Met468, located in the middle of an α helix (res. Ala461–Phe476), interacts with hydrophobic residues (e.g., Phe464, Leu465, Leu489) in an inter-helix space formed by two other α helices (res. Ala461–Phe476, res. Thr488–Gly502). In the variant simulations, the hydrophilic side chain of Thr468 does not pack favorably in the hydrophobic niche, and the methionine-aromatic stacking is lost. Although the hydroxyl group of Thr468 forms an H-bond with the backbone carbonyl group of Phe464, the integrity of the α helix is not affected in the simulations. No large-scale structural changes are observed during the variant simulations; however, due to the importance of hydrophobic packing, the effects could be more pronounced during protein folding.
c.1851G>TE617D
(3D Viewer)
Likely BenignGAPUncertain 1-1.349Likely Benign0.241Likely BenignLikely Benign0.322Likely Benign0.12Likely Benign0.10.80Ambiguous0.46Likely Benign0.07Likely Benign-0.01Neutral0.994Probably Damaging0.979Probably Damaging-1.35Pathogenic0.88Tolerated3.3735230.0-14.03
c.2095G>AV699M
(3D Viewer)
GAPUncertain 26-33441354-G-A84.96e-6-8.869Likely Pathogenic0.484AmbiguousLikely Benign0.276Likely Benign-0.58Ambiguous0.10.29Likely Benign-0.15Likely Benign0.96Ambiguous-2.18Neutral0.994Probably Damaging0.806Possibly Damaging3.37Benign0.03Affected3.471021-2.332.06257.8-47.20.00.00.90.1XPotentially BenignThe isopropyl side chain of Val699, located on an α-helix (res. Leu685-Gln702), packs against hydrophobic residues (e.g., Leu703, Leu696, Leu435, Leu439) in the inter-helix space. In the variant simulations, the thioether side chain of Met699 has similar physicochemical properties to Val699 in the WT, and thus, it is able to maintain similar interactions. Consequently, the mutation causes no apparent changes in the structure.
c.2485G>AE829KLikely PathogenicPathogenic 1-7.527In-Between0.807Likely PathogenicAmbiguous0.194Likely Benign-2.65Deleterious0.994Probably Damaging0.900Possibly Damaging2.27Pathogenic0.00Affected3.77501-0.4-0.94
c.2900G>AR967QLikely BenignBenign/Likely benign 26-33443452-G-A311.92e-5-3.057Likely Benign0.080Likely BenignLikely Benign0.104Likely Benign-0.01Neutral0.994Probably Damaging0.626Possibly Damaging4.21Benign0.36Tolerated4.322111.0-28.06
c.3773A>GQ1258RLikely PathogenicCoiled-coilUncertain 1-10.971Likely Pathogenic0.931Likely PathogenicAmbiguous0.316Likely Benign-3.19Deleterious0.994Probably Damaging0.988Probably Damaging2.00Pathogenic0.00Affected11-1.028.06
c.3980C>TP1327LLikely BenignUncertain 16-33451854-C-T21.28e-6-5.264Likely Benign0.242Likely BenignLikely Benign0.142Likely Benign-1.24Neutral0.994Probably Damaging0.908Possibly Damaging4.12Benign0.10Tolerated3.775-3-35.416.04
c.73C>TR25WLikely BenignUncertain 26-33423482-C-T63.72e-6-5.133Likely Benign0.549AmbiguousLikely Benign0.158Likely Benign-1.60Neutral0.994Probably Damaging0.919Probably Damaging3.92Benign0.00Affected4.321-323.630.03
c.76G>AG26RLikely BenignBenign 16-33423485-G-A31.86e-6-2.946Likely Benign0.678Likely PathogenicLikely Benign0.189Likely Benign-2.22Neutral0.994Probably Damaging0.990Probably Damaging3.87Benign0.00Affected4.321-3-2-4.199.14
c.1771G>CA591P
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.479Likely Pathogenic0.991Likely PathogenicLikely Pathogenic0.404Likely Benign3.78Destabilizing0.37.29Destabilizing5.54Destabilizing1.45Destabilizing-4.41Deleterious0.995Probably Damaging0.853Possibly Damaging3.35Benign0.01Affected3.37351-1-3.426.04191.5-10.10.20.10.40.1XPotentially PathogenicThe methyl group of the Ala591 side chain, located in the middle of an α helix (res. Glu582-Met603), packs against hydrophobic residues (e.g., Ile483, Phe484) of an opposing partially helical loop (res. Phe476-Asn487).In the variant simulations, Pro591 lacks a free backbone amide group and, therefore, cannot form a hydrogen bond with the backbone carbonyl of Arg587 as Ala591 does in the WT. This notably weakens the α helix integrity and compromises the continuity of the helix. In reality, the effect on the structure during protein folding could be more severe.
c.2650C>TR884WLikely BenignUncertain 16-33443202-C-T53.10e-6-3.785Likely Benign0.332Likely BenignLikely Benign0.151Likely Benign0.26Neutral0.995Probably Damaging0.812Possibly Damaging2.56Benign0.05Affected4.324-323.630.03
c.2835T>AH945QLikely BenignConflicting 26-33443387-T-A31.86e-6-5.248Likely Benign0.091Likely BenignLikely Benign0.343Likely Benign-0.36Neutral0.995Probably Damaging0.939Probably Damaging5.03Benign0.06Tolerated4.32430-0.3-9.01
c.3056G>AR1019HLikely BenignConflicting 26-33443608-G-A674.15e-5-4.610Likely Benign0.258Likely BenignLikely Benign0.122Likely Benign-1.95Neutral0.995Probably Damaging0.845Possibly Damaging2.39Pathogenic0.01Affected3.775201.3-19.05
c.986G>AR329H
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437891-G-A21.24e-6-10.154Likely Pathogenic0.769Likely PathogenicLikely Benign0.155Likely Benign2.53Destabilizing0.70.71Ambiguous1.62Ambiguous0.82Ambiguous-3.17Deleterious0.995Probably Damaging0.778Possibly Damaging4.04Benign0.05Affected3.4115201.3-19.05220.481.40.10.10.20.3UncertainThe guanidinium group of Arg329, located at the end of an anti-parallel β sheet strand (res. Ala322-Asp330), faces the negatively charged lipid bilayer surface. While the residue swap does not cause any apparent negative effects on the protein structure in the variant simulations, it could adversely affect the SynGAP-membrane association in reality. The positively charged Arg329 side chain forms hydrogen bonds with other loop residues (e.g., Ser371, Asp338) that are expected to dynamically interact with the membrane head group region. However, this phenomenon is beyond the scope of the solvent-only simulations to unravel. Notably, histidine can also be double protonated and positively charged, but this alternative protonation state was not considered in the variant simulations.
c.1082A>CQ361P
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-13.280Likely Pathogenic0.956Likely PathogenicLikely Pathogenic0.482Likely Benign3.12Destabilizing0.03.45Destabilizing3.29Destabilizing0.38Likely Benign-3.03Deleterious0.996Probably Damaging0.979Probably Damaging1.63Pathogenic0.05Affected3.3725-101.9-31.01
c.1393C>GL465V
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.893Likely Pathogenic0.838Likely PathogenicAmbiguous0.276Likely Benign2.46Destabilizing0.12.66Destabilizing2.56Destabilizing1.21Destabilizing-2.98Deleterious0.996Probably Damaging0.992Probably Damaging2.44Pathogenic0.10Tolerated3.3734210.4-14.03204.330.90.00.0-0.40.6XPotentially BenignThe iso-butyl side chain of Leu465, located in the middle of an α helix (res. Ala461–Phe476), packs with hydrophobic residues (e.g., Phe464, Met468, Tyr497, Ile494) in an inter-helix space formed with two other α helices (res. Ala461–Phe476 and res. Thr488-Gly502). In the variant simulations, the iso-propyl side chain of Val465 is equally sized and similarly hydrophobic as the original side chain of Leu465. Hence, the mutation does not exert any negative effects on the protein structure based on the variant simulations.
c.1409T>CM470T
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.104Likely Pathogenic0.976Likely PathogenicLikely Pathogenic0.763Likely Pathogenic3.19Destabilizing0.12.68Destabilizing2.94Destabilizing1.49Destabilizing-5.30Deleterious0.996Probably Damaging0.985Probably Damaging-1.08Pathogenic0.24Tolerated3.3734-1-1-2.6-30.09213.846.50.00.0-0.20.2XXPotentially PathogenicThe thioether group of Met470, located in the middle of an α helix (res. Ala461–Phe476), interacts with hydrophobic residues in the inter-helix space (e.g., Val473, Leu558, Cys576, Trp572) formed by two other α helices (res. Ser604–Arg581, res. Pro562–Arg579). In the WT simulations, the Met470 side chain also packs against the positively charged guanidinium groups of Arg575, Arg429, and Arg579, which form salt bridges with the negatively charged carboxylate groups of the Asp474 and Asp467 side chains at the protein surface. In the variant simulations, the hydroxyl group of the Thr470 side chain forms an H-bond with the backbone carbonyl group of Ser466 in the α helix, potentially lowering its structural integrity. Importantly, the hydroxyl group of Thr470 also forms an H-bond with the guanidinium group of Arg575, which helps it form a more permanent salt bridge with Asp467.
c.2115G>CK705N
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-9.767Likely Pathogenic0.925Likely PathogenicAmbiguous0.183Likely Benign0.74Ambiguous0.00.37Likely Benign0.56Ambiguous0.44Likely Benign-3.12Deleterious0.996Probably Damaging0.876Possibly Damaging3.37Benign0.02Affected3.4710100.4-14.07221.4-20.20.00.00.00.1XUncertainThe amino side chain of Lys705, located at the end and outer surface of an α-helix (res. Thr704-Gly712), does not form any interactions in the WT simulations. In the variant simulations, the carboxamide side chain of Asn705 briefly forms a salt bridge with Glu706. However, there is no apparent difference between the systems. Due to the model ending abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.2282G>AR761QLikely BenignUncertain 16-33441747-G-A116.81e-6-4.187Likely Benign0.202Likely BenignLikely Benign0.191Likely Benign-0.63Neutral0.996Probably Damaging0.878Possibly Damaging2.75Benign0.40Tolerated3.995111.0-28.06
c.2724G>CQ908HLikely BenignConflicting 46-33443276-G-C16.20e-7-4.658Likely Benign0.311Likely BenignLikely Benign0.112Likely Benign-0.74Neutral0.996Probably Damaging0.995Probably Damaging2.58Benign0.05Affected3.775300.39.01
c.3197C>TP1066LLikely BenignLikely Benign 16-33443749-C-T148.71e-6-5.478Likely Benign0.092Likely BenignLikely Benign0.173Likely Benign-3.68Deleterious0.996Probably Damaging0.903Possibly Damaging2.72Benign0.00Affected4.322-3-35.416.04
c.3307C>TR1103CUncertain 16-33443859-C-T63.92e-6-2.440Likely Benign0.246Likely BenignLikely Benign0.140Likely Benign-3.01Deleterious0.996Probably Damaging0.787Possibly Damaging2.41Pathogenic0.01Affected3.775-3-47.0-53.05
c.3308G>AR1103HLikely BenignBenign/Likely benign 36-33443860-G-A312.03e-5-3.622Likely Benign0.156Likely BenignLikely Benign0.116Likely Benign-1.97Neutral0.996Probably Damaging0.733Possibly Damaging2.49Pathogenic0.01Affected3.775201.3-19.05
c.1540A>TI514F
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.383Likely Pathogenic0.962Likely PathogenicLikely Pathogenic0.601Likely Pathogenic2.35Destabilizing0.33.74Destabilizing3.05Destabilizing0.93Ambiguous-3.98Deleterious0.997Probably Damaging0.993Probably Damaging2.89Benign0.00Affected3.373501-1.734.02
c.1558T>CS520P
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.707Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.855Likely Pathogenic3.72Destabilizing0.88.86Destabilizing6.29Destabilizing0.83Ambiguous-4.57Deleterious0.997Probably Damaging0.986Probably Damaging-1.32Pathogenic0.01Affected1-1-0.810.04
c.1428C>GF476L
(3D Viewer)
GAPUncertain 26-33438460-C-G42.48e-6-10.109Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.180Likely Benign1.00Ambiguous0.11.04Ambiguous1.02Ambiguous0.75Ambiguous-1.10Neutral0.997Probably Damaging0.978Probably Damaging3.53Benign0.60Tolerated3.4022201.0-34.02235.916.10.00.1-0.20.0XPotentially BenignIn the WT simulations, the phenyl ring of Phe476, located at the end of an α-helix (res. Ala461-Phe476), packs with the hydrophobic side chains of Leu482 and Ile483. Additionally, Phe476 stacks with the Arg475 side chain on the preceding α-α loop connecting the two α-helices (res. Ala461-Phe476 and res. Leu489-Glu519) near the GAP-Ras interface.In the variant simulations, Leu476 can maintain hydrophobic packing with neighboring residues, although not as efficiently as the phenylalanine in the WT system. The absence of Phe476/Arg475 stacking weakens the integrity of the α-helix end in the variant simulations. Nonetheless, no large-scale adverse effects are observed in the simulations. Lastly, the potential effect of the residue swap on SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.2113A>CK705Q
(3D Viewer)
Likely BenignGAPUncertain 16-33441372-A-C16.20e-7-5.787Likely Benign0.436AmbiguousLikely Benign0.142Likely Benign-0.10Likely Benign0.00.33Likely Benign0.12Likely Benign-0.02Likely Benign-0.24Neutral0.997Probably Damaging0.969Probably Damaging3.42Benign0.78Tolerated3.4710110.4-0.04
c.1730C>GA577G
(3D Viewer)
Likely BenignGAPBenign/Likely benign 26-33440782-C-G16.20e-7-5.717Likely Benign0.268Likely BenignLikely Benign0.443Likely Benign0.83Ambiguous0.01.02Ambiguous0.93Ambiguous0.86Ambiguous-1.84Neutral0.997Probably Damaging0.990Probably Damaging-1.31Pathogenic0.31Tolerated3.373410-2.2-14.03158.723.60.00.00.00.0XPotentially BenignAla577 is located near the end and outer surface of an α-helix (res. Arg563-Glu578), where its methyl group does not form any particular interactions in the WT simulations. The introduced residue, glycine, is known as an “α-helix breaker.” However, the residue swap caused only minor helix shortening in one of the replica simulations for the variant system. Regardless, the residue swap seems to be well tolerated based on the variant simulations.
c.2369C>GT790SLikely BenignSH3-binding motifUncertain 1-3.914Likely Benign0.123Likely BenignLikely Benign0.134Likely Benign-1.83Neutral0.997Probably Damaging0.989Probably Damaging2.39Pathogenic0.33Tolerated3.64611-0.1-14.03
c.2420A>GY807CSH3-binding motifUncertain 16-33442972-A-G16.20e-7-7.228In-Between0.204Likely BenignLikely Benign0.243Likely Benign-3.89Deleterious0.997Probably Damaging0.934Probably Damaging2.42Pathogenic0.01Affected3.7750-23.8-60.04
c.2514C>AN838KLikely PathogenicUncertain 2-8.470Likely Pathogenic0.862Likely PathogenicAmbiguous0.097Likely Benign-2.78Deleterious0.997Probably Damaging0.995Probably Damaging2.69Benign0.16Tolerated3.77510-0.414.07
c.2561G>AR854HLikely BenignUncertain 16-33443113-G-A42.48e-6-3.686Likely Benign0.094Likely BenignLikely Benign0.183Likely Benign-1.38Neutral0.997Probably Damaging0.899Possibly Damaging4.07Benign0.04Affected3.883201.3-19.05
c.2608C>GL870VLikely BenignUncertain 1-4.123Likely Benign0.300Likely BenignLikely Benign0.111Likely Benign-1.19Neutral0.997Probably Damaging0.992Probably Damaging2.64Benign0.12Tolerated3.883210.4-14.03
c.2619C>GS873RUncertain 16-33443171-C-G16.20e-7-5.856Likely Benign0.976Likely PathogenicLikely Pathogenic0.192Likely Benign-2.74Deleterious0.997Probably Damaging0.995Probably Damaging2.67Benign0.06Tolerated3.7750-1-3.769.11
c.2945A>GY982CLikely BenignLikely Benign 16-33443497-A-G21.24e-6-6.256Likely Benign0.746Likely PathogenicLikely Benign0.195Likely Benign-1.67Neutral0.997Probably Damaging0.923Probably Damaging3.87Benign0.00Affected4.3210-23.8-60.04
c.3020G>AS1007NLikely BenignBenign 1-5.113Likely Benign0.803Likely PathogenicAmbiguous0.075Likely Benign-1.54Neutral0.997Probably Damaging0.992Probably Damaging2.65Benign0.01Affected3.77511-2.727.03
c.3251C>AP1084HLikely BenignUncertain 16-33443803-C-A16.31e-7-4.125Likely Benign0.323Likely BenignLikely Benign0.134Likely Benign-3.16Deleterious0.997Probably Damaging0.840Possibly Damaging3.96Benign0.00Affected3.775-20-1.640.02
c.3413C>AS1138YUncertain 16-33444448-C-A31.86e-6-6.610Likely Benign0.449AmbiguousLikely Benign0.391Likely Benign-2.51Deleterious0.997Probably Damaging0.996Probably Damaging5.41Benign0.05Affected4.324-2-3-0.576.10
c.3434A>GN1145SLikely BenignUncertain 16-33444469-A-G21.24e-6-0.989Likely Benign0.126Likely BenignLikely Benign0.308Likely Benign-1.15Neutral0.997Probably Damaging0.989Probably Damaging5.55Benign0.89Tolerated4.324112.7-27.03
c.3731G>AS1244NLikely PathogenicCoiled-coilUncertain 1-9.008Likely Pathogenic0.751Likely PathogenicLikely Benign0.154Likely Benign-1.87Neutral0.997Probably Damaging0.992Probably Damaging2.10Pathogenic0.15Tolerated3.77511-2.727.03
c.3794G>CR1265TLikely PathogenicCoiled-coilLikely Pathogenic 1-10.129Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.529Likely Pathogenic-4.97Deleterious0.997Probably Damaging0.994Probably Damaging2.29Pathogenic0.00Affected3.775-1-13.8-55.08
c.455G>AR152QUncertain 16-33432752-G-A53.14e-6-10.336Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.181Likely Benign-2.34Neutral0.997Probably Damaging0.968Probably Damaging3.89Benign0.00Affected3.615111.0-28.06
c.514C>TR172WLikely PathogenicUncertain 26-33435156-C-T95.58e-6-10.258Likely Pathogenic0.878Likely PathogenicAmbiguous0.228Likely Benign-3.61Deleterious0.997Probably Damaging0.803Possibly Damaging3.95Benign0.00Affected3.6152-33.630.03
c.583G>CA195PLikely PathogenicLikely Pathogenic 1-9.715Likely Pathogenic0.978Likely PathogenicLikely Pathogenic0.152Likely Benign-3.03Deleterious0.997Probably Damaging0.916Probably Damaging4.00Benign0.04Affected3.5461-1-3.426.04
c.600G>CL200F
(3D Viewer)
PHUncertain 16-33435242-G-C21.24e-6-7.606In-Between0.592Likely PathogenicLikely Benign0.094Likely Benign1.00Ambiguous0.51.45Ambiguous1.23Ambiguous0.43Likely Benign-1.97Neutral0.997Probably Damaging0.916Probably Damaging4.02Benign0.17Tolerated3.46920-1.034.02250.4-15.10.60.20.50.0XUncertainLeu200, a hydrophobic residue located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by another hydrophobic residue, phenylalanine. Both the phenyl group of Phe200 and the branched iso-butyl hydrocarbon sidechain of Leu200 occupy an inward hydrophobic niche (e.g., Leu246, Val222, Phe231) during the simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.767A>GN256S
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-10.640Likely Pathogenic0.950Likely PathogenicAmbiguous0.707Likely Pathogenic0.31Likely Benign0.20.36Likely Benign0.34Likely Benign0.48Likely Benign-4.33Deleterious0.997Probably Damaging0.970Probably Damaging5.87Benign0.02Affected3.3915112.7-27.03
c.700C>TR234W
(3D Viewer)
Likely PathogenicPHUncertain 16-33435551-C-T31.86e-6-12.625Likely Pathogenic0.947Likely PathogenicAmbiguous0.805Likely Pathogenic0.96Ambiguous0.30.69Ambiguous0.83Ambiguous0.13Likely Benign-5.52Deleterious0.997Probably Damaging0.803Possibly Damaging5.76Benign0.01Affected3.40142-33.630.03262.839.6-0.10.0-0.20.2XPotentially PathogenicThe guanidinium group of Arg234, located in a β-α loop between an anti-parallel β sheet strand (residues Gly227-Phe231) and an α helix (res. Ala236-Val250), forms a salt bridge with the carboxylate group of Glu238 in the α helix. Occasionally, it also bonds with the GAP domain residues Ser678 and Glu680. Thus, the positively charged Arg234 could contribute to the tertiary structure assembly between the PH and GAP domains. In contrast, the indole side chain of Trp234 in the variant is located on the protein surface in the variant simulations and is unable to form any interactions.
c.844T>AC282S
(3D Viewer)
Likely PathogenicC2Uncertain 1-11.846Likely Pathogenic0.958Likely PathogenicLikely Pathogenic0.460Likely Benign1.55Ambiguous0.11.23Ambiguous1.39Ambiguous1.62Destabilizing-9.19Deleterious0.997Probably Damaging0.994Probably Damaging1.64Pathogenic0.03Affected3.39180-1-3.3-16.06233.214.8-0.10.0-0.20.3XPotentially BenignThe thiol-containing side chain of Cys282, located at the beginning of an anti-parallel β sheet strand (res. Arg279-Leu286), packs against multiple hydrophobic residues (e.g., Ile268, Leu284, Trp308, Leu327). In the variant simulations, the hydroxyl-containing side chain of Ser282 is more hydrophilic and, hence, not as favorable as Cys282 for this hydrophobic niche. Due to this polarity difference, the residue swap could potentially weaken the hydrophobic packing of the C2 domain during the folding process.Moreover, because the C2 domain interacts with the membrane, there could also be a negative effect on the stability of the SynGAP-membrane association. However, no large-scale structural changes were observed during the variant simulations. The hydroxyl group of Ser282 forms a hydrogen bond with the backbone carbonyl group of His326 in another β strand (res. Ala322-Arg329), which competes directly with the backbone amide group of Glu283 within the secondary structure element.
c.901G>AA301T
(3D Viewer)
Likely BenignC2Uncertain 56-33437806-G-A21.24e-6-3.448Likely Benign0.070Likely BenignLikely Benign0.150Likely Benign0.36Likely Benign0.2-0.33Likely Benign0.02Likely Benign0.03Likely Benign-0.25Neutral0.997Probably Damaging0.989Probably Damaging4.15Benign0.22Tolerated4.321410-2.530.03219.8-42.8-0.10.0-0.50.2UncertainThe methyl group of Ala301, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), points outward from the β hairpin loop, and its backbone atoms do not participate in the loop formation in the WT simulations. In the variant simulations, the hydroxyl group of the Thr301 side chain also mostly points outward; however, the guanidinium group of Arg299 is moved away from its central hairpin loop position.β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Due to its location near the membrane surface, the residue swap could also affect the C2 loop dynamics and SynGAP-membrane association. However, this is beyond the scope of the solvent-only simulations to unravel.
c.930G>CE310D
(3D Viewer)
Likely PathogenicC2Likely Pathogenic1-11.218Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.666Likely Pathogenic1.87Ambiguous0.52.39Destabilizing2.13Destabilizing1.04Destabilizing-2.76Deleterious0.997Probably Damaging0.992Probably Damaging1.19Pathogenic0.02Affected3.3819320.0-14.03232.627.20.10.00.10.1XPotentially BenignThe carboxylate group of Glu310, located in an anti-parallel β sheet strand (res. Thr305-Asn315), is ideally positioned to interact with the hydroxyl and backbone amide groups of Thr295 on a twisted anti-parallel β strand. Because the carboxylate group can also interact with the GAP domain residues (e.g., Gln612, Tyr614), Glu310 potentially plays a key role in maintaining the tertiary assembly between the C2 and GAP domains. In the variant simulations, the carboxylate group of Asp310 can form the same interactions as glutamate; however, due to its one hydrocarbon shorter length, the connections are less stable or less optimal.
c.1136C>GS379W
(3D Viewer)
C2Uncertain 16-33438041-C-G-8.898Likely Pathogenic0.388AmbiguousLikely Benign0.520Likely Pathogenic4.32Destabilizing3.43.56Destabilizing3.94Destabilizing0.16Likely Benign-1.02Neutral0.998Probably Damaging0.844Possibly Damaging3.82Benign0.01Affected4.3211-2-3-0.199.14271.3-75.71.41.00.60.5UncertainSer379 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like tryptophan are rarely tolerated. Although no major negative structural effects are observed in the variant simulations, Trp379 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn
c.1402A>GM468V
(3D Viewer)
GAPUncertain 1-9.461Likely Pathogenic0.361AmbiguousLikely Benign0.570Likely Pathogenic2.69Destabilizing0.12.20Destabilizing2.45Destabilizing0.89Ambiguous-1.66Neutral0.998Probably Damaging0.993Probably Damaging-1.21Pathogenic0.08Tolerated3.3731122.3-32.06
c.1259T>CF420S
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-13.231Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.544Likely Pathogenic5.34Destabilizing0.15.73Destabilizing5.54Destabilizing2.14Destabilizing-7.43Deleterious0.998Probably Damaging0.938Probably Damaging3.09Benign0.00Affected3.3729-3-2-3.6-60.10213.357.80.00.0-0.40.1XPotentially PathogenicIn the WT, the phenyl ring of the Phe420 side chain, located on an α helix (res. Met414-Glu436), packs against hydrophobic residues in the interhelix area of the GAP domain (e.g., Leu689, Leu714, Leu717, Leu718). Although no large-scale adverse effects are seen in the variant simulations, the polar hydroxyl group of Ser420 is not suitable for the hydrophobic inter-helix space. Thus, the residue swap could affect protein folding. In theory, the introduced hydroxyl group could also lower the α helix integrity by H-bonding with the backbone atoms of neighboring residues in the same α helix. However, no such effect is seen in the variant simulations.
c.1606T>GL536V
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.014Likely Pathogenic0.269Likely BenignLikely Benign0.586Likely Pathogenic1.25Ambiguous0.31.22Ambiguous1.24Ambiguous1.20Destabilizing-2.81Deleterious0.998Probably Damaging0.992Probably Damaging-1.34Pathogenic0.09Tolerated3.3734210.4-14.03204.726.40.20.0-0.20.2XPotentially BenignLeu536 is located on an α-helix (res. Ala533-Val560) at the membrane interface. The iso-butyl group of Leu536 interacts with nearby hydrophobic residues in the preceding loop (e.g., Val526, Pro528, Cys531). In the variant simulations, the iso-propyl side chain of Val536 forms similar hydrophobic interactions as Leu536 in the WT, causing no negative structural effects.
c.1390T>GF464V
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.254Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.592Likely Pathogenic3.61Destabilizing0.12.89Destabilizing3.25Destabilizing1.40Destabilizing-6.96Deleterious0.998Probably Damaging0.996Probably Damaging3.36Benign0.04Affected3.3734-1-11.4-48.04210.140.5-0.10.0-0.90.3XPotentially PathogenicThe phenyl ring of Phe464, located in the middle of an α helix (res. Ala461–Phe476), packs against hydrophobic residues (e.g., Met468, Leu451, Leu455, and Tyr428) in the inter-helix space formed with two other α helices (res. Asn440-Lys460 and res. Pro413-Glu436). The iso-propyl side chain of Val464 is similarly hydrophobic but considerably smaller than the original phenyl ring of Phe464. To compensate for the size difference, neighboring residues need to fill in the gap in the variant simulations.The phenolic side chain of Tyr428, located at the middle bend of an α helix (res. Glu436-Pro413), assumes a new position in the inter-helix space or rotates inward next to the third α helix (res. Asn440-Lys460) when the stable H-bond between Tyr428 and Asp467 seen in the WT simulations breaks. The residue swap also leads to the loss of the methionine-aromatic interaction between the Met468 and Phe464 side chains, which could weaken the integrity of the parent α helix (res. Ala461-Phe476). Although the simulations likely underestimate the full adverse effect of the introduced mutation during folding, the two opposing α helices (res. Ala461–Phe476 and res. Glu436-Pro413) move substantially closer to each other in the variant simulations.
c.1485A>CE495D
(3D Viewer)
Likely PathogenicGAPConflicting 2-3.574Likely Benign0.958Likely PathogenicLikely Pathogenic0.566Likely Pathogenic1.39Ambiguous0.11.03Ambiguous1.21Ambiguous0.98Ambiguous-2.52Deleterious0.998Probably Damaging0.989Probably Damaging-1.41Pathogenic0.17Tolerated3.3735320.0-14.03220.638.80.00.00.10.1XXUncertainGlu495 is located in the α-helix (res. Leu489-Glu519), and its carboxylate group forms salt bridges with the neighboring Lys492 and with Arg596 on an opposing α-helix (res. Glu582-Met603) in the WT simulations. In the variant simulations, the acidic carboxylate side chain of Asp495 can also form salt bridges with both Lys492 and Arg596. However, the shorter side chain of aspartate tends to favor forming a salt bridge with the nearby Arg499 on the same α-helix instead. Asp495 might not maintain the salt bridge with Arg596 on the opposing α-helix as efficiently as Glu495 in the WT, potentially weakening the tertiary structure. Regardless, the potential negative effect is likely to be minor, with no deleterious effects observed on the protein structure during the simulations. However, due to its location at the GAP-Ras interface, the effect of the residue swap on SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.1873C>GL625VLikely PathogenicGAPUncertain 1-11.319Likely Pathogenic0.833Likely PathogenicAmbiguous0.480Likely Benign1.80Ambiguous0.71.69Ambiguous1.75Ambiguous1.42Destabilizing-2.96Deleterious0.998Probably Damaging0.992Probably Damaging3.07Benign0.01Affected210.4-14.03
c.1760G>CR587T
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.697Likely Pathogenic0.784Likely PathogenicLikely Benign0.603Likely Pathogenic1.14Ambiguous0.20.74Ambiguous0.94Ambiguous0.98Ambiguous-4.71Deleterious0.998Probably Damaging0.847Possibly Damaging-1.19Pathogenic0.08Tolerated3.3735-1-13.8-55.08227.287.40.00.00.50.1XPotentially PathogenicThe guanidinium group of Arg587, located on an α helix (res. Glu582-Met603), is constantly rotating and breaking/forming multiple hydrogen bonds and/or salt bridges at the surface intersection of α helices in the WT simulations. The positively charged Arg587 side chain can form a salt bridge with either the carboxylate group of Asp583 or Asp586 in the same helix, or with Glu480 on the opposing short helical loop structure (res. Glu480-Leu482).Importantly, the Arg587 side chain also hydrogen bonds with the backbone carbonyl groups of Ala634 and Asn635, as well as the carboxamide group of Asn635 at the end of another α helix (res. Asp616-Phe636). However, in the variant simulations, the neutral hydroxyl group of the Thr587 side chain is unable to form these salt bridges. Due to its smaller size, it also does not form the hydrogen bonds that the Arg587 side chain could. Instead, the hydroxyl group of Thr587 hydrogen bonds with the backbone carbonyl group of Asp583, which could weaken the integrity of the α helix, although this is not observed in the simulations.Overall, the residue swap could weaken the tertiary structure assembly and negatively affect the overall protein folding process.
c.2068T>CS690P
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.568Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.431Likely Benign4.84Destabilizing0.34.40Destabilizing4.62Destabilizing1.42Destabilizing-4.77Deleterious0.998Probably Damaging0.790Possibly Damaging3.44Benign0.01Affected3.42171-1-0.810.04207.515.10.10.0-0.10.2XXPotentially PathogenicThe hydroxyl side chain of Ser690, located in an α-helix (res. Leu696-Leu685), forms a hydrogen bond with the backbone carbonyl group of Ser410 in an anti-parallel β-sheet of the C2 domain (res. Ile411-Ala399). In the variant simulations, the pyrrolidine side chain of Pro690 cannot form hydrogen bonds with the C2 domain residue, resulting in the loss of this inter-domain connection. Additionally, prolines lack a free amide group necessary for hydrogen bonding with the carbonyl group of Gly686, introducing a slight bend in the α-helix and compromising its integrity.
c.2627C>TS876LUncertain 2-5.856Likely Benign0.489AmbiguousLikely Benign0.249Likely Benign-3.56Deleterious0.998Probably Damaging0.992Probably Damaging2.57Benign0.05Affected3.775-2-34.626.08
c.3254G>AR1085QLikely BenignUncertain 16-33443806-G-A53.16e-6-3.843Likely Benign0.589Likely PathogenicLikely Benign0.224Likely Benign-1.43Neutral0.998Probably Damaging0.988Probably Damaging2.73Benign0.02Affected3.775111.0-28.06
c.3494C>TS1165LLikely BenignConflicting 2-2.984Likely Benign0.793Likely PathogenicAmbiguous0.166Likely Benign-2.01Neutral0.998Probably Damaging0.992Probably Damaging2.60Benign0.33Tolerated3.883-3-24.626.0810.1016/j.ajhg.2020.11.011
c.3557C>TS1186LCoiled-coilUncertain 16-33444592-C-T-4.829Likely Benign0.923Likely PathogenicAmbiguous0.177Likely Benign-2.58Deleterious0.998Probably Damaging0.992Probably Damaging2.65Benign0.04Affected3.824-3-24.626.08
c.3572G>AR1191QLikely BenignCoiled-coilUncertain 26-33444607-G-A95.58e-6-1.069Likely Benign0.943Likely PathogenicAmbiguous0.343Likely Benign-1.41Neutral0.998Probably Damaging0.992Probably Damaging2.68Benign0.08Tolerated3.824111.0-28.06
c.3686A>CQ1229PLikely PathogenicCoiled-coilUncertain 1-10.397Likely Pathogenic0.980Likely PathogenicLikely Pathogenic0.422Likely Benign-3.69Deleterious0.998Probably Damaging0.995Probably Damaging1.75Pathogenic0.12Tolerated3.7750-11.9-31.01
c.3923G>AR1308HUncertain 16-33451797-G-A31.86e-6-3.586Likely Benign0.201Likely BenignLikely Benign0.319Likely Benign-3.12Deleterious0.998Probably Damaging0.991Probably Damaging2.33Pathogenic0.00Affected3.775201.3-19.05
c.743G>CR248P
(3D Viewer)
Likely PathogenicPHLikely Pathogenic 1-10.751Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.848Likely Pathogenic3.09Destabilizing0.68.87Destabilizing5.98Destabilizing1.21Destabilizing-5.97Deleterious0.998Probably Damaging0.878Possibly Damaging5.64Benign0.00Affected3.41140-22.9-59.07223.8126.60.00.0-0.20.1XXPotentially PathogenicThe guanidinium group of Arg248, located on an α helix (residues Ala236-Val250), forms two very stable salt bridges with Asp255 (from a short α helical section, res. Lys254-Asn256) and Glu244 (from a nearby loop) in the WT simulations. In the variant simulations, the pyrrolidine side chain of Pro248 cannot form any salt bridges, which could negatively affect the tertiary structure assembly of the PH domain. Additionally, Pro248 lacks a free amide group needed for hydrogen bonding with the backbone carbonyl group of Asn245, disrupting the continuity of the α helix.
c.1067G>AR356H
(3D Viewer)
Likely PathogenicC2Likely Benign 16-33437972-G-A95.66e-6-11.453Likely Pathogenic0.614Likely PathogenicLikely Benign0.314Likely Benign0.59Ambiguous0.1-0.27Likely Benign0.16Likely Benign1.17Destabilizing-4.43Deleterious0.999Probably Damaging0.987Probably Damaging1.70Pathogenic0.01Affected3.3922021.3-19.05
c.1202G>AR401Q
(3D Viewer)
Likely PathogenicC2Uncertain 16-33438107-G-A-11.213Likely Pathogenic0.969Likely PathogenicLikely Pathogenic0.780Likely Pathogenic0.96Ambiguous0.11.50Ambiguous1.23Ambiguous1.20Destabilizing-3.69Deleterious0.999Probably Damaging0.978Probably Damaging5.47Benign0.04Affected3.3827111.0-28.06
c.1084T>CW362R
(3D Viewer)
Likely PathogenicC2Pathogenic 2-14.004Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.706Likely Pathogenic2.64Destabilizing0.33.90Destabilizing3.27Destabilizing1.10Destabilizing-12.87Deleterious0.999Probably Damaging0.996Probably Damaging1.28Pathogenic0.00Affected3.39242-3-3.6-30.03287.5-34.1-0.20.1-0.60.2XXXPotentially PathogenicThe indole ring of Trp362, located on the surface of an anti-parallel β sheet (res. Thr359-Pro364) in the C2 domain, stacks with nearby residues (e.g., Arg401, Arg272). In the variant simulations, the guanidinium group of the introduced residue Arg362 forms a salt bridge with the carboxylate group of Glu273 and, like Trp362, stacks with other arginine residues (e.g., Arg401, Arg272). This residue is at both the C2-membrane interface and the C2-RasGTPase interface, so the residue swap could potentially affect both interactions. However, these phenomena cannot be addressed using solvent-only simulations. Notably, Arg272, which stacks with both the non-mutated Trp362 and the mutated Arg362, forms a salt bridge directly with Asp105 of Ras in the WT simulations. Therefore, the residue swap could affect the C2 domain stability, the SynGAP-membrane association, and the SynGAP-Ras association.10.1016/j.ajhg.2020.11.011
c.1240A>GM414VGAPUncertain 1-8.003Likely Pathogenic0.541AmbiguousLikely Benign0.261Likely Benign1.81Ambiguous0.41.73Ambiguous1.77Ambiguous0.95Ambiguous-2.95Deleterious0.999Probably Damaging0.987Probably Damaging3.43Benign0.24Tolerated212.3-32.06
c.1408A>GM470V
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.856Likely Pathogenic0.478AmbiguousLikely Benign0.770Likely Pathogenic2.73Destabilizing0.11.88Ambiguous2.31Destabilizing1.31Destabilizing-3.58Deleterious0.999Probably Damaging0.993Probably Damaging-1.20Pathogenic0.15Tolerated3.3734122.3-32.06
c.1483G>AE495K
(3D Viewer)
Likely PathogenicGAPUncertain 1-11.478Likely Pathogenic0.986Likely PathogenicLikely Pathogenic0.869Likely Pathogenic0.15Likely Benign0.20.66Ambiguous0.41Likely Benign0.70Ambiguous-3.91Deleterious0.999Probably Damaging0.994Probably Damaging-1.29Pathogenic0.01Affected3.373510-0.4-0.94
c.1516C>TL506F
(3D Viewer)
Likely PathogenicGAPUncertain 1-11.262Likely Pathogenic0.883Likely PathogenicAmbiguous0.464Likely Benign4.92Destabilizing0.85.76Destabilizing5.34Destabilizing0.91Ambiguous-3.98Deleterious0.999Probably Damaging0.997Probably Damaging1.62Pathogenic0.01Affected3.373502-1.034.02
c.1559C>TS520F
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.541Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.833Likely Pathogenic-1.20Ambiguous0.40.39Likely Benign-0.41Likely Benign0.25Likely Benign-5.57Deleterious0.999Probably Damaging0.996Probably Damaging-1.36Pathogenic0.00Affected3.3735-2-33.660.10
c.1622C>GA541G
(3D Viewer)
GAPUncertain 16-33438865-C-G21.24e-6-7.233In-Between0.341AmbiguousLikely Benign0.421Likely Benign0.67Ambiguous0.00.94Ambiguous0.81Ambiguous0.76Ambiguous-1.48Neutral0.999Probably Damaging0.995Probably Damaging-1.31Pathogenic0.57Tolerated3.373510-2.2-14.03170.123.60.00.00.00.0XPotentially PathogenicAla541 is located on the outer surface of an α-helix (res. Ala533-Val560). The methyl group of Ala541 is on the surface and does not form any interactions. Glycine, known as an “α-helix breaker,” weakens the integrity of the helix. Indeed, in the variant simulations, the hydrogen bond formation between Gly541 and the backbone carbonyl of Ala537 is disrupted.
c.1349C>AA450E
(3D Viewer)
Likely PathogenicGAPUncertain 1-16.578Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.653Likely Pathogenic3.86Destabilizing0.25.23Destabilizing4.55Destabilizing1.59Destabilizing-4.67Deleterious0.999Probably Damaging0.992Probably Damaging3.38Benign0.07Tolerated3.37320-1-5.358.04240.1-82.60.00.00.70.0XXPotentially PathogenicThe methyl group of Ala450, located in an α helix (res. Asn440-Thr458), packs against hydrophobic residues in the inter-helix space (e.g., Leu692). In the variant simulations, the carboxylate group of the Glu450 side chain rotates outward, away from the hydrophobic niche, where it does not form any lasting salt bridges or H-bonds. Although the residue swap does not negatively affect the protein structure based on the simulations, it is possible that the introduction of the negatively charged residue adversely affects the folding process or tertiary assembly.
c.1354G>TV452F
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.769Likely Pathogenic0.975Likely PathogenicLikely Pathogenic0.511Likely Pathogenic9.21Destabilizing0.10.37Likely Benign4.79Destabilizing0.61Ambiguous-4.94Deleterious0.999Probably Damaging0.993Probably Damaging3.29Benign0.00Affected3.3734-1-1-1.448.04249.4-35.70.00.00.40.1XPotentially PathogenicThe iso-propyl side chain of Val452, located in the middle of an α helix (res. Val441-Ser457), packs against hydrophobic residues in the inter-helix space at the intersection of three α helices (e.g., Leu500, His453, Leu465). In the variant simulations, the larger side chain of Phe452 cannot pack against the opposing α helix (res. Leu489-Glu519) as efficiently as valine. Due to space restrictions, the phenol ring adjusts to make room by rotating slightly sideways in the inter-helix space. Besides this small and local shift, no large-scale effects on the protein structure are seen based on the simulations. However, the size difference between the swapped residues could affect the protein folding process.
c.1406C>AA469D
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.643Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.738Likely Pathogenic5.09Destabilizing0.24.16Destabilizing4.63Destabilizing1.68Destabilizing-3.48Deleterious0.999Probably Damaging0.996Probably Damaging-1.34Pathogenic0.21Tolerated3.37340-2-5.344.01237.0-58.2-0.20.10.80.1XXPotentially PathogenicThe methyl group of Ala469, located in an α helix (res. Ala461–Phe476), interacts with hydrophobic residues (e.g., Trp572, Leu588, Met470) in an inter-helix space formed by two other α helices (res. Glu582–Ser604, res. Arg563–Gly580). In the variant simulations, Asp469 introduces a negatively charged and bulky side chain into the hydrophobic niche. Consequently, the side chain of Asp469 rotates outward, allowing the carboxylate group to form a salt bridge with the guanidinium group of Arg575 on the protein surface. This interaction affects the continuity of the parent α helix (Ala461–Phe476). Due to the importance of hydrophobic packing, the structural effects could be more pronounced during actual protein folding.
c.1678G>AV560M
(3D Viewer)
GAPUncertain 26-33440730-G-A159.50e-6-9.598Likely Pathogenic0.517AmbiguousLikely Benign0.520Likely Pathogenic-0.33Likely Benign0.10.88Ambiguous0.28Likely Benign0.72Ambiguous-2.42Neutral0.999Probably Damaging0.863Possibly Damaging-1.25Pathogenic0.14Tolerated3.373521-2.332.06234.9-52.60.00.0-0.10.1XPotentially BenignVal560 is located on the surface at the end of an α-helix (res. Ala533-Val560). The iso-propyl group of Val560 favorably packs against Asp508 of the opposing α-helix (res. Gln503-Glu519). However, in the variant simulations, the bulkier thioether side chain of Met560 does not form equally favorable inter-helix interactions. Regardless, no negative structural effects are observed during the simulations.
c.1726T>CC576R
(3D Viewer)
Likely PathogenicGAPConflicting 2-14.886Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.579Likely Pathogenic7.20Destabilizing1.04.09Destabilizing5.65Destabilizing1.64Destabilizing-10.88Deleterious0.999Probably Damaging0.996Probably Damaging3.38Benign0.00Affected3.3735-3-4-7.053.05
c.1789T>CF597L
(3D Viewer)
Likely PathogenicGAPUncertain 1-10.173Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.929Likely Pathogenic0.74Ambiguous0.12.12Destabilizing1.43Ambiguous1.20Destabilizing-5.97Deleterious0.999Probably Damaging0.994Probably Damaging-2.06Pathogenic0.13Tolerated201.0-34.02
c.1481T>GI494R
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-15.758Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.911Likely Pathogenic6.71Destabilizing0.33.40Destabilizing5.06Destabilizing2.19Destabilizing-6.43Deleterious0.999Probably Damaging0.957Probably Damaging-1.41Pathogenic0.00Affected3.3735-2-3-9.043.03273.9-59.80.00.00.00.1XXXXPotentially PathogenicThe sec-butyl side chain of Ile494, located in an α-helix (res. Leu489-Glu519), packs against hydrophobic residues (e.g., Phe484, Leu465, Trp572, Ala493, Met468) in an inter-helix space (res. Leu489-Glu519 and res. Ala461-Phe476). In the variant simulations, the bulkier and positively charged residue, Arg494, weakens the integrity of the opposing helix. Additionally, the bulkier Arg494 stacks with Phe484, causing the α-helices to move farther apart to accommodate it. This mutation could have substantial negative effects due to the fundamental role of hydrophobic packing, which is disrupted by Arg494 during protein folding.
c.1855A>TT619S
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.608Likely Pathogenic0.677Likely PathogenicLikely Benign0.602Likely Pathogenic1.09Ambiguous0.21.35Ambiguous1.22Ambiguous0.85Ambiguous-3.42Deleterious0.999Probably Damaging0.998Probably Damaging-1.30Pathogenic0.05Affected3.373511-0.1-14.03
c.1505G>AG502D
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.796Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.915Likely Pathogenic3.79Destabilizing0.95.69Destabilizing4.74Destabilizing1.38Destabilizing-6.80Deleterious0.999Probably Damaging0.977Probably Damaging-1.66Pathogenic0.00Affected3.37351-1-3.158.04224.2-80.0-0.80.70.60.3XXXPotentially PathogenicGly502 is located in a hinge in the middle of an α-helix (res. Leu489-Glu519). In the WT, Gly502 acts as an α-helix breaker due to its lack of a side chain, facilitating a bend in the middle of the α-helix. In the variant simulations, the carboxylate group of Asp502 forms hydrogen bonds with neighboring residues (e.g., Ser677, Lys504), disrupting the hinge. Additionally, Asp502 struggles to fit into the α-helix hinge and cannot generate a similar bend as Gly502, which would drastically affect the secondary structure during folding. Thus, the deleterious effect seen in the simulations is likely an underestimate of the impact of the residue swap on the protein structure during protein folding.
c.1942T>CF648LLikely PathogenicGAPUncertain 1-9.296Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.468Likely Benign2.71Destabilizing0.82.08Destabilizing2.40Destabilizing1.04Destabilizing-5.98Deleterious0.999Probably Damaging0.976Probably Damaging3.45Benign0.08Tolerated201.0-34.02
c.1556A>CE519A
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-8.557Likely Pathogenic0.904Likely PathogenicAmbiguous0.384Likely Benign-0.05Likely Benign0.00.55Ambiguous0.25Likely Benign0.00Likely Benign-5.23Deleterious0.999Probably Damaging0.998Probably Damaging3.33Benign0.10Tolerated3.37350-15.3-58.04162.483.5-0.10.1-0.20.0XPotentially BenignGlu519 is located at the beginning of an α-α loop between the two α-helices (res. Gly502-Tyr518 and Ala533-Val560). In the WT simulations, the carboxylate side chain of Glu519 does not make any specific interactions. Accordingly, the Ala residue swap does not show any negative structural effects in the variant simulations. However, it should be noted that Glu519 faces the missing part of the N-terminal in the model, and thus its potential role in maintaining the tertiary structure might be de-emphasized in the current model.
c.2050G>AD684N
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.155Likely Pathogenic0.985Likely PathogenicLikely Pathogenic0.382Likely Benign1.47Ambiguous0.81.76Ambiguous1.62Ambiguous0.37Likely Benign-4.99Deleterious0.999Probably Damaging0.746Possibly Damaging3.39Benign0.01Affected210.0-0.98
c.2195G>CR732TUncertain 1-8.545Likely Pathogenic0.434AmbiguousLikely Benign0.075Likely Benign-1.96Neutral0.999Probably Damaging0.892Possibly Damaging2.59Benign0.12Tolerated3.597-1-13.8-55.08
c.2206C>TR736CConflicting 36-33441671-C-T84.96e-6-7.113In-Between0.120Likely BenignLikely Benign0.190Likely Benign-2.06Neutral0.999Probably Damaging0.825Possibly Damaging2.48Pathogenic0.00Affected4.073-4-37.0-53.05
c.1729G>AA577T
(3D Viewer)
Likely BenignGAPBenign 16-33440781-G-A63.72e-6-5.311Likely Benign0.322Likely BenignLikely Benign0.427Likely Benign0.86Ambiguous0.10.54Ambiguous0.70Ambiguous0.54Ambiguous-1.47Neutral0.999Probably Damaging0.987Probably Damaging-1.31Pathogenic0.47Tolerated3.373410-2.530.03191.9-43.40.00.00.70.1XPotentially BenignAla577 is located near the end and outer surface of an α-helix (res. Arg563-Glu578), where its methyl group does not form any particular interactions in the WT simulations. In the variant simulations, the hydroxyl group of the Thr577 side chain hydrogen bonds with the backbone atoms of Arg573 and Lys574 within the same helix, which has the potential to weaken the stability of the secondary structure element. Regardless, the residue swap seems to be well tolerated based on the variant simulations.
c.2219G>AR740QLikely BenignUncertain 16-33441684-G-A42.48e-6-5.195Likely Benign0.078Likely BenignLikely Benign0.102Likely Benign-0.67Neutral0.999Probably Damaging0.881Possibly Damaging2.60Benign0.08Tolerated4.322111.0-28.06
c.2246G>AR749QLikely BenignLikely Benign 16-33441711-G-A42.48e-6-3.069Likely Benign0.212Likely BenignLikely Benign0.152Likely Benign-1.00Neutral0.999Probably Damaging0.994Probably Damaging2.64Benign0.03Affected4.322111.0-28.06
c.2282G>CR761PLikely BenignUncertain 36-33441747-G-C16.20e-7-5.091Likely Benign0.640Likely PathogenicLikely Benign0.201Likely Benign-1.89Neutral0.999Probably Damaging0.968Probably Damaging2.69Benign0.38Tolerated3.9950-22.9-59.07
c.2354G>AR785HSH3-binding motifUncertain 26-33442906-G-A42.50e-6-4.782Likely Benign0.388AmbiguousLikely Benign0.129Likely Benign-2.61Deleterious0.999Probably Damaging0.947Probably Damaging2.25Pathogenic0.01Affected3.646201.3-19.05
c.2369C>AT790NSH3-binding motifConflicting 36-33442921-C-A694.28e-5-5.243Likely Benign0.276Likely BenignLikely Benign0.103Likely Benign-2.54Deleterious0.999Probably Damaging0.997Probably Damaging2.27Pathogenic0.02Affected3.64600-2.813.00
c.2434C>TP812SLikely BenignSH3-binding motifUncertain 16-33442986-C-T16.20e-7-5.689Likely Benign0.456AmbiguousLikely Benign0.162Likely Benign-0.62Neutral0.999Probably Damaging0.966Probably Damaging2.89Benign0.95Tolerated4.3241-10.8-10.04
c.2443C>AR815SSH3-binding motifBenign 1-7.324In-Between0.950Likely PathogenicAmbiguous0.138Likely Benign-1.86Neutral0.999Probably Damaging0.997Probably Damaging2.67Benign0.02Affected0-13.7-69.11
c.2443C>GR815GSH3-binding motifUncertain 1-7.983In-Between0.854Likely PathogenicAmbiguous0.146Likely Benign-3.22Deleterious0.999Probably Damaging0.997Probably Damaging2.62Benign0.02Affected4.324-3-24.1-99.14
c.2444G>TR815LLikely PathogenicSH3-binding motifUncertain 1-8.546Likely Pathogenic0.865Likely PathogenicAmbiguous0.175Likely Benign-3.06Deleterious0.999Probably Damaging0.997Probably Damaging2.63Benign0.03Affected4.324-2-38.3-43.03
c.2458T>AY820NUncertain 1-9.032Likely Pathogenic0.842Likely PathogenicAmbiguous0.143Likely Benign-1.53Neutral0.999Probably Damaging0.977Probably Damaging2.74Benign0.20Tolerated-2-2-2.2-49.07
c.2474C>TS825LLikely PathogenicUncertain 16-33443026-C-T16.20e-7-4.987Likely Benign0.910Likely PathogenicAmbiguous0.249Likely Benign-4.30Deleterious0.999Probably Damaging0.994Probably Damaging1.94Pathogenic0.01Affected3.775-2-34.626.08
c.2003C>TS668F
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-15.047Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.643Likely Pathogenic16.72Destabilizing5.011.07Destabilizing13.90Destabilizing0.00Likely Benign-5.98Deleterious0.999Probably Damaging0.935Probably Damaging3.18Benign0.00Affected3.3828-3-23.660.10250.9-59.6-0.10.10.00.1XXXPotentially PathogenicIn the WT simulations, the hydroxyl side chain of Ser668, located on an α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), forms hydrogen bonds with the backbone carbonyl groups of Leu664, Tyr665, and Glu666, as well as the guanidinium group of Arg573 on a nearby α-helix (res. Arg563-Glu578). In the variant simulations, the side chain of Phe668 cannot maintain the same hydrogen-bond network. Due to its larger size, it moves away to avoid steric hindrance. In the WT simulations, a network of hydrogen bonds between several residues (e.g., Asn669, Lys566, and Glu666) keeps both α-helices and the proceeding loop (res. Asn669-Asp684) tightly connected, but this setup is not present in the variant simulations. Additionally, in the variant simulations, the side chain of Arg573 shifts to form a more stable salt bridge with the carboxylate group of Glu582 instead of hydrogen bonding with Ser668 as in the WT simulations.
c.2503C>AL835MLikely BenignBenign 1-4.153Likely Benign0.121Likely BenignLikely Benign0.068Likely Benign-0.45Neutral0.999Probably Damaging0.977Probably Damaging2.67Benign0.12Tolerated3.77524-1.918.03
c.2518A>TS840CLikely PathogenicUncertain 1-8.799Likely Pathogenic0.904Likely PathogenicAmbiguous0.376Likely Benign-3.96Deleterious0.999Probably Damaging0.975Probably Damaging1.50Pathogenic0.00Affected3.7750-13.316.06
c.2521G>AV841MUncertain 16-33443073-G-A31.86e-6-7.000In-Between0.651Likely PathogenicLikely Benign0.119Likely Benign-0.74Neutral0.999Probably Damaging0.998Probably Damaging2.54Benign0.02Affected3.77512-2.332.06
c.2669G>CR890PLikely BenignLikely Benign 26-33443221-G-C281.74e-5-1.931Likely Benign0.301Likely BenignLikely Benign0.191Likely Benign-1.21Neutral0.999Probably Damaging0.977Probably Damaging4.02Benign0.28Tolerated4.3240-22.9-59.07
c.2719A>TS907CLikely BenignLikely Benign 1-6.685Likely Benign0.298Likely BenignLikely Benign0.113Likely Benign-2.34Neutral0.999Probably Damaging0.988Probably Damaging2.60Benign0.02Affected3.7750-13.316.06
c.2729G>CG910ALikely BenignUncertain 16-33443281-G-C16.20e-7-3.587Likely Benign0.361AmbiguousLikely Benign0.209Likely Benign-1.43Neutral0.999Probably Damaging0.999Probably Damaging2.78Benign0.10Tolerated3.775102.214.03
c.2735C>AT912NLikely BenignUncertain 1-4.260Likely Benign0.190Likely BenignLikely Benign0.116Likely Benign-1.15Neutral0.999Probably Damaging0.977Probably Damaging3.96Benign0.00Affected3.77500-2.813.00
c.2741A>TD914VLikely BenignUncertain 1-4.260Likely Benign0.723Likely PathogenicLikely Benign0.187Likely Benign-2.24Neutral0.999Probably Damaging0.986Probably Damaging2.64Benign0.01Affected3.775-3-27.7-15.96
c.2812G>AG938RLikely BenignUncertain 1-5.271Likely Benign0.732Likely PathogenicLikely Benign0.141Likely Benign-1.11Neutral0.999Probably Damaging0.985Probably Damaging2.74Benign0.36Tolerated3.775-3-2-4.199.14
c.3009C>GS1003RUncertain 1-5.113Likely Benign0.991Likely PathogenicLikely Pathogenic0.141Likely Benign-1.88Neutral0.999Probably Damaging0.996Probably Damaging2.48Pathogenic0.00Affected3.7750-1-3.769.11
c.3022G>AD1008NLikely BenignLikely Benign 16-33443574-G-A31.86e-6-4.045Likely Benign0.714Likely PathogenicLikely Benign0.128Likely Benign-2.15Neutral0.999Probably Damaging0.997Probably Damaging2.75Benign0.01Affected3.775210.0-0.98
c.3023A>GD1008GUncertain 16-33443575-A-G16.20e-7-3.213Likely Benign0.742Likely PathogenicLikely Benign0.203Likely Benign-2.84Deleterious0.999Probably Damaging0.997Probably Damaging2.65Benign0.01Affected3.775-113.1-58.04
c.3055C>TR1019CLikely PathogenicConflicting 26-33443607-C-T106.19e-6-7.386In-Between0.646Likely PathogenicLikely Benign0.168Likely Benign-4.00Deleterious0.999Probably Damaging0.880Possibly Damaging2.36Pathogenic0.00Affected3.775-4-37.0-53.0510.1016/j.ajhg.2020.11.011
c.3059G>CR1020PLikely PathogenicUncertain 1-3.491Likely Benign0.902Likely PathogenicAmbiguous0.205Likely Benign-3.50Deleterious0.999Probably Damaging0.977Probably Damaging2.46Pathogenic0.00Affected0-22.9-59.07
c.3313C>TR1105WUncertain 16-33443865-C-T63.93e-6-6.911Likely Benign0.488AmbiguousLikely Benign0.133Likely Benign-4.34Deleterious0.999Probably Damaging0.696Possibly Damaging2.42Pathogenic0.02Affected3.775-323.630.03
c.3374G>CG1125ALikely BenignUncertain 16-33443926-G-C16.68e-7-6.569Likely Benign0.083Likely BenignLikely Benign0.232Likely Benign-0.60Neutral0.999Probably Damaging0.995Probably Damaging4.60Benign0.11Tolerated3.775102.214.03
c.3635C>TS1212FLikely PathogenicCoiled-coilConflicting 2-14.445Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.271Likely Benign-4.52Deleterious0.999Probably Damaging0.998Probably Damaging2.03Pathogenic0.00Affected3.775-3-23.660.10
c.3806T>AV1269ELikely PathogenicCoiled-coilUncertain 1-11.418Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.403Likely Benign-5.05Deleterious0.999Probably Damaging0.995Probably Damaging2.09Pathogenic0.00Affected3.775-2-2-7.729.98
c.3922C>TR1308CConflicting 26-33451796-C-T42.48e-6-4.994Likely Benign0.421AmbiguousLikely Benign0.352Likely Benign-4.89Deleterious0.999Probably Damaging0.993Probably Damaging2.31Pathogenic0.00Affected3.775-4-37.0-53.05
c.3977C>AP1326QLikely BenignUncertain 16-33451851-C-A16.40e-7-5.422Likely Benign0.128Likely BenignLikely Benign0.138Likely Benign-0.86Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.775-10-1.931.01
c.3977C>GP1326RLikely BenignUncertain 1-5.097Likely Benign0.240Likely BenignLikely Benign0.133Likely Benign-0.82Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.7750-2-2.959.07
c.3977C>TP1326LLikely BenignUncertain 1-5.541Likely Benign0.115Likely BenignLikely Benign0.117Likely Benign-1.06Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.775-3-35.416.04
c.451G>CD151HLikely PathogenicUncertain 16-33432748-G-C21.26e-6-11.747Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.335Likely Benign-3.90Deleterious0.999Probably Damaging0.995Probably Damaging3.86Benign0.00Affected3.615-110.322.05
c.467T>GF156CLikely PathogenicUncertain 1-13.658Likely Pathogenic0.988Likely PathogenicLikely Pathogenic0.297Likely Benign-3.54Deleterious0.999Probably Damaging0.990Probably Damaging3.92Benign0.00Affected-4-2-0.3-44.04
c.470G>AR157HUncertain 16-33432767-G-A16.20e-7-10.235Likely Pathogenic0.604Likely PathogenicLikely Benign0.254Likely Benign-2.23Neutral0.999Probably Damaging0.987Probably Damaging3.80Benign0.00Affected3.744201.3-19.05
c.508C>TR170WLikely PathogenicUncertain 2-11.660Likely Pathogenic0.978Likely PathogenicLikely Pathogenic0.241Likely Benign-4.28Deleterious0.999Probably Damaging0.849Possibly Damaging3.84Benign0.00Affected3.7442-33.630.03
c.862G>AD288N
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437767-G-A21.24e-6-10.535Likely Pathogenic0.521AmbiguousLikely Benign0.321Likely Benign-0.39Likely Benign0.10.01Likely Benign-0.19Likely Benign-0.03Likely Benign-3.73Deleterious0.999Probably Damaging0.997Probably Damaging1.78Pathogenic0.05Affected3.3823120.0-0.98
c.910G>AD304N
(3D Viewer)
C2Uncertain 1-6.194Likely Benign0.391AmbiguousLikely Benign0.345Likely Benign0.30Likely Benign0.1-0.08Likely Benign0.11Likely Benign0.21Likely Benign-4.18Deleterious0.999Probably Damaging0.997Probably Damaging1.81Pathogenic0.03Affected3.3823120.0-0.98
c.815G>AR272Q
(3D Viewer)
C2Uncertain 26-33437720-G-A148.67e-6-9.559Likely Pathogenic0.286Likely BenignLikely Benign0.321Likely Benign0.73Ambiguous0.10.15Likely Benign0.44Likely Benign1.00Destabilizing-1.81Neutral0.999Probably Damaging0.994Probably Damaging1.88Pathogenic0.03Affected3.3819111.0-28.06255.752.90.00.0-0.20.1XUncertainThe guanidinium group of Arg272, located at the end of an anti-parallel β sheet strand (res. Arg259-Arg272), is stably maintained in an upright and outward position via stacking with the indole ring of the Trp362 side chain in another β strand (res. Thr359-Pro364). In the WT simulations, Arg272 forms hydrogen bonds with the glycine-rich Ω loop residues (res. Val365-Pro398, e.g., Gly380) and creates a salt bridge with the carboxylate group of the Asp304 side chain.In the variant simulations, the carboxamide group of the Gln272 side chain does not stack with the indole ring of Trp362 as stably as the guanidinium group of Arg272 in the WT. Consequently, the Gln272 side chain is freer to interact with the loop residues than Arg272, potentially negatively affecting the dynamic SynGAP-membrane association. Additionally, Arg272 faces the RasGTPase interface, so the residue swap could impact the SynGAP-Ras complex formation and GTPase activation.
c.971G>AR324Q
(3D Viewer)
Likely BenignC2Uncertain 36-33437876-G-A31.86e-6-5.001Likely Benign0.173Likely BenignLikely Benign0.307Likely Benign0.56Ambiguous0.10.63Ambiguous0.60Ambiguous1.02Destabilizing-1.17Neutral0.999Probably Damaging0.994Probably Damaging1.92Pathogenic0.41Tolerated3.3922111.0-28.06
c.844T>CC282R
(3D Viewer)
Likely PathogenicC2Pathogenic 2-16.378Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.466Likely Benign3.13Destabilizing0.61.58Ambiguous2.36Destabilizing1.70Destabilizing-11.03Deleterious0.999Probably Damaging0.998Probably Damaging1.63Pathogenic0.00Affected3.3918-4-3-7.053.05297.4-98.2-0.10.10.50.0XXXPotentially PathogenicThe thiol-containing side chain of Cys282, located at the beginning of an anti-parallel β sheet strand (res. Arg279-Leu286), is packed against multiple hydrophobic residues (e.g., Ile268, Leu284, Trp308, Leu327). In the variant simulations, the bulky side chain of Arg282 with its positively charged guanidinium group is not suitable for this hydrophobic niche. Consequently, the hydrophobic residues must either make room to accommodate Arg282 or it must escape the hydrophobic C2 domain core.As a result, new hydrogen bonds are formed with the backbone carbonyl groups of the surrounding β sheet residues Ala399, Leu325, and His326, which decreases the unity of the secondary structure elements. Notably, it is likely that the residue swap causes major problems during the C2 domain folding that are not visible in the variant simulations. In fact, even increased lability in the C2 domain could adversely affect the establishment of a stable SynGAP-membrane association.
c.968T>CL323P
(3D Viewer)
Likely PathogenicC2Uncertain 1-12.507Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.762Likely Pathogenic3.39Destabilizing0.68.46Destabilizing5.93Destabilizing2.20Destabilizing-4.80Deleterious0.999Probably Damaging0.977Probably Damaging0.59Pathogenic0.01Affected4.29398-3-3-5.4-16.04201.968.20.00.10.60.3XPotentially PathogenicThe iso-butyl side chain of Leu323, located at the beginning of an anti-parallel β sheet strand (res. Ala322-Asp330), packs against multiple hydrophobic leucine residues (e.g., Leu264, Leu266, Leu284, Leu286). In contrast, in the variant simulations, the less bulky cyclic five-membered pyrrolidine ring of Pro323 cannot fill the hydrophobic space as effectively as the branched hydrocarbon side chain of leucine. Notably, the backbone amide group of Leu323 forms a hydrogen bond with the backbone carbonyl group of Cys285. Pro323 cannot form this bond due to the absence of the backbone amide group, resulting in partial unfolding of the anti-parallel β sheet end in the variant simulations.
c.968T>GL323R
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-14.568Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.692Likely Pathogenic3.75Destabilizing0.44.47Destabilizing4.11Destabilizing2.15Destabilizing-4.70Deleterious0.999Probably Damaging0.969Probably Damaging0.59Pathogenic0.01Affected3.3922-3-2-8.343.03261.8-61.6-0.40.20.80.2XXXPotentially PathogenicThe iso-butyl side chain of Leu323, located at the beginning of an anti-parallel β sheet strand (res. Ala322-Asp330), packs against multiple hydrophobic leucine residues (e.g., Leu264, Leu266, Leu284, Leu286). In contrast, in the variant simulations, the positively charged guanidinium group of the Arg323 side chain is unsuitable for the hydrophobic niche. Consequently, the side chain either rotates away from the center of the C2 domain or, if it remains within the C2 domain core, it reorients nearby residues to form hydrogen bonds. Regardless, the residue swap extensively disrupts the C2 domain structure.
c.1003C>TR335C
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437908-C-T16.20e-7-14.354Likely Pathogenic0.938Likely PathogenicAmbiguous0.277Likely Benign0.53Ambiguous0.10.85Ambiguous0.69Ambiguous0.46Likely Benign-5.69Deleterious1.000Probably Damaging0.998Probably Damaging1.67Pathogenic0.01Affected3.3822-3-47.0-53.05
c.1004G>AR335H
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437909-G-A21.24e-6-12.521Likely Pathogenic0.831Likely PathogenicAmbiguous0.132Likely Benign0.58Ambiguous0.10.22Likely Benign0.40Likely Benign0.72Ambiguous-3.02Deleterious1.000Probably Damaging0.998Probably Damaging1.70Pathogenic0.03Affected3.3822201.3-19.05242.482.1-2.40.6-0.10.1UncertainThe guanidinium group of Arg335, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Ala322-Asp330, res. Gly341-Pro349), faces the post-synaptic inner membrane surface. In the WT simulations, the Arg335 side chain dynamically forms salt bridges with the carboxylate groups of Asp322, Asp338, and Asp616. In contrast, the imidazole ring of His335, which is not double protonated and thus not positively charged in the variant simulations, continues to move dynamically without forming any lasting or strong interactions. Importantly, the positively charged arginine residues of the C2 domain are ideal membrane anchors for ensuring SynGAP-membrane association. However, this phenomenon cannot be addressed using solvent-only simulations.
c.1025A>CY342S
(3D Viewer)
Likely PathogenicC2Uncertain 2-7.996In-Between0.925Likely PathogenicAmbiguous0.407Likely Benign3.03Destabilizing0.12.87Destabilizing2.95Destabilizing0.93Ambiguous-6.60Deleterious1.000Probably Damaging0.998Probably Damaging1.75Pathogenic0.04Affected3.3725-3-20.5-76.10200.177.80.00.0-0.20.1Potentially PathogenicThe phenol ring of Tyr342, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), faces outward in the C2 domain. In the WT simulations, the phenol ring of Tyr342 contributes to a triple tyrosine stack (Tyr342, Tyr328, and Tyr281) that links together three anti-parallel β sheet strands. Additionally, it shields Gly344 from the solvent, reducing its exposure and providing stability for the β-sandwich. This motif also contributes to a twist formation in the β sheet.In the variant simulations, the Ser342 side chain cannot participate in the stack formation. Instead, the hydroxyl group of the Ser342 side chain forms a hydrogen bond with the imidazole ring of His326 in a neighboring β strand (res. Ala322-Asp330). This disrupts the formation of a hydrogen bond between His326 and the carboxylate group of the Glu283 side chain from another β strand (res. Arg279-Cys285). Although these changes in surface interactions could weaken the characteristic twist that strengthens the β sheet fold, no major structural effects are observed in the variant simulations. The residue swap could also affect the SynGAP-membrane association, as the hydroxyl group of Ser342 could form hydrogen bonds with membrane-facing loop residues. However, this phenomenon cannot be addressed using solvent-only simulations.
c.1025A>GY342C
(3D Viewer)
Likely PathogenicC2Benign/Likely benign 26-33437930-A-G211.30e-5-7.596In-Between0.682Likely PathogenicLikely Benign0.404Likely Benign2.48Destabilizing0.12.73Destabilizing2.61Destabilizing0.92Ambiguous-6.67Deleterious1.000Probably Damaging0.999Probably Damaging1.72Pathogenic0.02Affected3.37250-23.8-60.04242.462.80.10.0-0.10.2Potentially PathogenicThe phenol ring of Tyr342, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), faces outward in the C2 domain. This phenol ring contributes to a triple tyrosine stack (Tyr342, Tyr328, and Tyr281) that links together three anti-parallel β sheet strands. Additionally, it shields Gly344 from the solvent, reducing its exposure and providing stability for the β-sandwich. This motif also contributes to a twist formation in the β sheet.In the variant simulations, the Cys342 side chain cannot participate in the stack formation. Instead, its thiol group forms a hydrogen bond with the backbone carbonyl group of Leu327. Although these changes in surface interactions could weaken the characteristic twist that strengthens the β sheet fold, no major structural effects are observed in the variant simulations. The residue swap could also affect the SynGAP-membrane association; however, this phenomenon cannot be addressed using solvent-only simulations. Notably, the thiol group of cysteine is not a particularly strong hydrogen-bonding partner, which could mitigate the negative effects of the residue swap.
c.1030G>AG344S
(3D Viewer)
Likely PathogenicC2Pathogenic 5-11.254Likely Pathogenic0.986Likely PathogenicLikely Pathogenic0.790Likely Pathogenic9.02Destabilizing0.76.08Destabilizing7.55Destabilizing0.98Ambiguous-5.28Deleterious1.000Probably Damaging1.000Probably Damaging-0.45Pathogenic0.04Affected3.372510-0.430.03217.3-51.70.00.10.20.1XXPotentially PathogenicBecause Gly344 lacks a proper side chain, it allows the anti-parallel β sheet strand (res. Gly341-Pro349) to have a slight twist. Within a β strand, side chains normally alternate between outward and inward positions, but glycine is an exception as it allows the alternating pattern to skip a residue. Introducing serine or any other residue with a side chain at position 344 prevents this unique skip in the alternating pattern, causing structural strain or likely preventing correct folding altogether. Additionally, Tyr342 shields Gly344 from the solvent, contributing to twist formation in the β sheet and stabilizing the β-strand.In the variant simulations, the side chain of Ser344 assumes the inward position. However, the hydrophobic niche formed by multiple C2 domain residues (e.g., Val365, Val343, Leu327) is not accommodating for its hydroxyl group. The outward position, not seen in the simulations, would be equally disadvantageous due to the presence of hydrophobic residues on that side as well (e.g., Leu345, Tyr342). Serine is also not well-suited for twist formation, as it tends to suppress twisting and bending in β sheets. At this position, the hydroxyl group of Ser344 could also form hydrogen bonds with the backbone atoms of the Gly-rich Ω loop in the C2 domain (e.g., Thr366, Leu367, Gly378; res. Pro364-Pro398), potentially adversely affecting membrane-loop dynamics and ultimately compromising the stability of the SynGAP-membrane association.
c.1045C>TP349S
(3D Viewer)
C2Uncertain 1-7.654In-Between0.217Likely BenignLikely Benign0.277Likely Benign1.92Ambiguous0.12.28Destabilizing2.10Destabilizing0.87Ambiguous-6.13Deleterious1.000Probably Damaging0.996Probably Damaging1.66Pathogenic0.06Tolerated3.37251-10.8-10.04194.9-18.1-0.10.00.20.1XXPotentially PathogenicThe cyclic pyrrolidine side chain of Pro349, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), allows the strand to end and make a tight turn before a short α helical section within a loop connecting to another β strand (res. Thr359-Pro364). In the variant simulations, the hydroxyl group of Ser349 forms a hydrogen bond with the backbone amide group of Ala351 in the short helical section. Conversely, the backbone amide group of Ser349 (absent in proline) does not form any intra-protein hydrogen bonds. However, the β strand end connects to the α helical section in a more stable and consistent manner compared to the WT. Although the residue swap does not cause major adverse effects on the protein structure in the simulations, it is possible that the tight turn at the β strand end could not be created during folding without the presence of proline.
c.1126G>TG376CC2Uncertain 1-7.686In-Between0.125Likely BenignLikely Benign0.560Likely Pathogenic2.56Destabilizing0.50.22Likely Benign1.39Ambiguous0.16Likely Benign-1.15Neutral1.000Probably Damaging1.000Probably Damaging1.32Pathogenic0.01Affected-3-32.946.09

Found 757 rows. Show 200 rows per page. Page 3/4 |