SynGap Missense Server

Table of SynGAP1 Isoform α2 (UniProt Q96PV0-1) Missense Variants.

c.dna Variant SGM Consensus Domain ClinVar gnomAD ESM1b AlphaMissense REVEL FoldX Rosetta Foldetta PremPS PROVEAN PolyPhen-2 HumDiv PolyPhen-2 HumVar FATHMM SIFT PAM Physical SASA Normalized B-factor backbone Normalized B-factor sidechain SynGAP Structural Annotation DOI
Clinical Status Review Subm. ID Allele count Allele freq. LLR score Prediction Pathogenicity Class Optimized Score Prediction Average ΔΔG Prediction StdDev ΔΔG Prediction ΔΔG Prediction ΔΔG Prediction Score Prediction pph2_prob Prediction pph2_prob Prediction Nervous System Score Prediction Prediction Status Conservation Sequences PAM250 PAM120 Hydropathy Δ MW Δ Average Δ Δ StdDev Δ StdDev Secondary Tertiary bonds Inside out GAP-Ras interface At membrane No effect MD Alert Verdict Description
c.2362T>A
S788T
2D
AIThe SynGAP1 missense variant S788T is listed in ClinVar with an uncertain significance (ClinVar ID 392728.0) and is present in the gnomAD database (gnomAD ID 6‑33442914‑T‑A). Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus score, which is derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN. Tools that predict a pathogenic outcome are polyPhen‑2 (HumDiv and HumVar), SIFT, and FATHMM. High‑accuracy assessments show AlphaMissense‑Optimized classifying the variant as benign, while the SGM‑Consensus (majority vote) also favors a benign interpretation. No Foldetta stability prediction is available for this variant. Overall, the majority of computational evidence points to a benign effect, which is consistent with the ClinVar uncertain status rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignSH3-binding motifUncertain 26-33442914-T-A42.49e-6-4.288Likely Benign0.288Likely BenignLikely Benign0.092Likely Benign-2.25Neutral0.979Probably Damaging0.982Probably Damaging1.55Pathogenic0.02Affected3.646110.114.03
c.3262A>G
S1088G
2D
AIThe SynGAP1 missense variant S1088G is listed in ClinVar (ID 2742833.0) with an “Uncertain” clinical significance and is not reported in gnomAD. Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (Likely Benign). In contrast, polyPhen‑2 (HumDiv and HumVar) and SIFT all predict a pathogenic impact. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus also as Likely Benign; a Foldetta stability analysis is unavailable. Overall, the majority of evidence points to a benign effect, and this is consistent with the ClinVar “Uncertain” status rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 1-5.034Likely Benign0.285Likely BenignLikely Benign0.163Likely Benign-1.83Neutral0.979Probably Damaging0.973Probably Damaging2.63Benign0.03Affected3.775010.4-30.03
c.3862A>G
K1288E
2D
AISynGAP1 missense variant K1288E is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6‑33447910‑A‑G). Functional prediction tools cluster into two groups: benign predictions come from REVEL, ESM1b, and AlphaMissense‑Optimized, while pathogenic predictions are made by PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, and FATHMM. AlphaMissense‑Default remains uncertain. High‑accuracy assessments show AlphaMissense‑Optimized as benign, whereas the SGM Consensus—derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN—labels the variant pathogenic. Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, has no available result for this change. Overall, the preponderance of evidence points to a pathogenic effect, which is consistent with the ClinVar designation of uncertain significance rather than a clear benign classification. Thus, the variant is most likely pathogenic, and this does not contradict the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 16-33447910-A-G53.22e-6-2.751Likely Benign0.407AmbiguousLikely Benign0.185Likely Benign-3.27Deleterious0.979Probably Damaging0.973Probably Damaging2.13Pathogenic0.00Affected3.775100.40.94
c.1150G>A
G384S
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant G384S (gnomAD ID 6-33438055‑G‑A) is listed in ClinVar with an uncertain significance. Functional prediction tools cluster into two groups: benign predictions from REVEL, premPS, PROVEAN, ESM1b, AlphaMissense‑Default, and AlphaMissense‑Optimized; pathogenic predictions from polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, and FATHMM. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a likely benign outcome. High‑accuracy assessments further support benignity: AlphaMissense‑Optimized predicts benign, the SGM‑Consensus (majority vote) is likely benign, and Foldetta, which integrates FoldX‑MD and Rosetta stability outputs, is inconclusive. No evidence from FoldX or Rosetta alone is available. Overall, the preponderance of evidence points to a benign effect, which does not contradict the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignC2Uncertain 16-33438055-G-A16.22e-7-5.243Likely Benign0.090Likely BenignLikely Benign0.315Likely Benign1.92Ambiguous0.21.66Ambiguous1.79Ambiguous0.19Likely Benign-0.67Neutral0.980Probably Damaging0.968Probably Damaging1.33Pathogenic0.04Affected4.32210-0.430.03202.4-49.80.51.0-0.20.0UncertainGly384 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and so they are rich in glycines, prolines, and, to a lesser extent, small hydrophilic residues to ensure maximum flexibility. Thus, the variant’s Ser384 is potentially tolerated in the Ω loop, although the hydroxyl group of Ser384 forms various hydrogen bonds with several other loop residues in the variant simulations. However, since the effects on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1966G>C
E656Q
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant E656Q is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6‑33441225‑G‑C). Functional prediction tools that agree on a benign effect include REVEL, FoldX, Foldetta, premPS, PROVEAN, FATHMM, and AlphaMissense‑Optimized. Tools that predict a pathogenic outcome are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, and AlphaMissense‑Default; Rosetta reports an uncertain result. High‑accuracy assessments show AlphaMissense‑Optimized as benign, Foldetta as benign, while the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is inconclusive due to a 2‑2 split. Overall, the majority of evidence points to a benign effect, and this conclusion does not contradict the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
GAPUncertain 16-33441225-G-C16.20e-7-9.145Likely Pathogenic0.766Likely PathogenicLikely Benign0.249Likely Benign-0.14Likely Benign0.0-0.81Ambiguous-0.48Likely Benign0.25Likely Benign-2.29Neutral0.980Probably Damaging0.528Possibly Damaging3.46Benign0.02Affected3.3924220.0-0.98224.31.70.00.10.10.0XPotentially BenignThe carboxylate side chain of Glu656, located on an α helix (res. Ser641-Glu666), frequently forms a hydrogen bond with the nearby residue Ser659 on the same α helix. In the variant simulations, the carboxamide side chain of Gln656 alternatively forms a hydrogen bond with either Ser659 or Glu548 on an opposing helix (res. Ala533-Val560).Although the frequent interaction between Gln656 and Glu548 may strengthen or stabilize the tertiary structure assembly, the effect is likely to be marginal.
c.2752G>A
A918T
2D
AISynGAP1 missense variant A918T is listed in ClinVar with an uncertain significance (ClinVar ID 3964538.0) and is present in gnomAD (6‑33443304‑G‑A). Functional prediction tools cluster into two groups: benign predictions come from REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (Likely Benign). Pathogenic predictions are reported by polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and SIFT. High‑accuracy assessments further support a benign outcome: AlphaMissense‑Optimized predicts benign, and the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) also indicates likely benign. Foldetta stability analysis is unavailable. Overall, the preponderance of evidence points to a benign effect, which is consistent with the ClinVar uncertain status rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33443304-G-A16.20e-7-4.139Likely Benign0.083Likely BenignLikely Benign0.065Likely Benign-1.09Neutral0.980Probably Damaging0.721Possibly Damaging2.64Benign0.03Affected4.32401-2.530.03
c.2753C>T
A918V
2D
AIThe SynGAP1 missense variant A918V is listed in ClinVar with an “Uncertain” status and is present in gnomAD (gnomAD ID 6‑33443305‑C‑T). Prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (Likely Benign). Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and SIFT. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as Likely Benign; a Foldetta stability prediction is not available. Overall, the majority of evidence points to a benign impact, which does not contradict the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 36-33443305-C-T21.24e-6-3.684Likely Benign0.112Likely BenignLikely Benign0.119Likely Benign-1.61Neutral0.980Probably Damaging0.782Possibly Damaging2.61Benign0.03Affected4.324002.428.05
c.3026A>C
E1009A
2D
AIThe SynGAP1 missense variant E1009A is listed in ClinVar (ID 2238288.0) with an “Uncertain” status and is not reported in gnomAD. Prediction tools that agree on a benign effect include REVEL, ESM1b, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, FATHMM, and AlphaMissense‑Default. The SGM‑Consensus, which is a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports the variant as “Likely Pathogenic.” High‑accuracy assessments show AlphaMissense‑Optimized as benign, SGM‑Consensus as likely pathogenic, and Foldetta (a protein‑folding stability method combining FoldX‑MD and Rosetta) results are unavailable. Overall, the majority of predictions (six pathogenic vs. three benign) lean toward a pathogenic impact, and this conclusion does not contradict the ClinVar status, which remains uncertain.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicUncertain 1-3.118Likely Benign0.679Likely PathogenicLikely Benign0.109Likely Benign-3.06Deleterious0.980Probably Damaging0.630Possibly Damaging2.39Pathogenic0.01Affected3.7750-15.3-58.04
c.3958C>T
P1320S
2D
AIThe SynGAP1 missense variant P1320S is listed in ClinVar (ID 469160.0) with an “Uncertain” clinical significance and is present in gnomAD (variant ID 6‑33451832‑C‑T). Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN). In contrast, polyPhen‑2 (HumDiv and HumVar) and SIFT predict a pathogenic impact. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as likely benign; Foldetta results are unavailable. Overall, the majority of evidence points to a benign effect, and this is not in conflict with the ClinVar “Uncertain” status. Thus, the variant is most likely benign based on current predictions.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33451832-C-T21.28e-6-4.928Likely Benign0.073Likely BenignLikely Benign0.097Likely Benign-0.69Neutral0.980Probably Damaging0.968Probably Damaging4.25Benign0.00Affected3.7751-10.8-10.04
c.3979C>T
P1327S
2D
AIThe SynGAP1 missense variant P1327S is listed in ClinVar with an “Uncertain” status and is present in gnomAD (ID 6‑33451853‑C‑T). Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN). In contrast, polyPhen‑2 (both HumDiv and HumVar models) predict a pathogenic outcome. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as likely benign; the Foldetta protein‑folding stability analysis is unavailable for this variant. Overall, the majority of evidence points to a benign effect, and this conclusion does not contradict the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33451853-C-T-4.744Likely Benign0.131Likely BenignLikely Benign0.092Likely Benign0.28Neutral0.980Probably Damaging0.857Possibly Damaging4.25Benign0.71Tolerated3.7751-10.8-10.04
c.2393C>T
P798L
2D
AIThe SynGAP1 missense variant P798L is listed in ClinVar with an “Uncertain” status and is present in gnomAD (ID 6‑33442945‑C‑T). Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus score (Likely Benign). In contrast, polyPhen‑2 (HumDiv and HumVar) and SIFT all predict a pathogenic impact. High‑accuracy assessments show AlphaMissense‑Optimized as Benign and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) as Likely Benign; a Foldetta stability prediction is not available. Overall, the majority of evidence points to a benign effect, which does not contradict the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignSH3-binding motifUncertain 26-33442945-C-T63.72e-6-5.640Likely Benign0.074Likely BenignLikely Benign0.042Likely Benign-0.86Neutral0.981Probably Damaging0.631Possibly Damaging4.21Benign0.00Affected4.321-3-35.416.04
c.707C>T
A236V
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant A236V is listed in ClinVar as Benign (ID 469162.0) and is present in gnomAD (6‑33435558‑C‑T). Prediction tools that report benign include polyPhen‑2 HumVar, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. Tools that predict pathogenicity are REVEL, PROVEAN, polyPhen‑2 HumDiv, SIFT, and ESM1b. Four tools give uncertain or inconclusive results: FoldX, Rosetta, Foldetta, and premPS. The SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is inconclusive because the votes are evenly split. High‑accuracy assessments show AlphaMissense‑Optimized as benign, Foldetta as uncertain, and the SGM Consensus as unavailable. Consequently, the overall prediction profile is mixed, but the most reliable high‑accuracy evidence points toward a benign effect. Therefore, the variant is most likely benign, which aligns with its ClinVar classification and does not contradict the reported status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
PHBenign/Likely benign 26-33435558-C-T63.72e-6-8.752Likely Pathogenic0.267Likely BenignLikely Benign0.777Likely Pathogenic0.61Ambiguous0.21.08Ambiguous0.85Ambiguous0.64Ambiguous-3.55Deleterious0.981Probably Damaging0.446Benign5.79Benign0.03Affected3.4014002.428.05213.8-44.70.00.0-0.20.2XPotentially BenignThe methyl side chain of Ala236, located on an α helix (residues Ala236-Val250) facing an anti-parallel β sheet strand (residues Ile205-Val209), interacts hydrophobically with nearby residues such as Arg239 and Phe218. In the variant simulations, the isopropyl branched hydrocarbon side chain of Val236 maintains similar hydrophobic interactions as alanine in the WT, with an overall arrangement remarkably similar to Ala236. The residue swap does not affect the protein structure based on the simulations.
c.1221G>T
Q407H
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant Q407H is listed in ClinVar with an uncertain significance (ClinVar ID 2772184.0) and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign predictions come from REVEL and FATHMM, while pathogenic predictions are made by premPS, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, and AlphaMissense‑Default. Predictions marked as uncertain include FoldX, Rosetta, Foldetta, and AlphaMissense‑Optimized. High‑accuracy assessments show AlphaMissense‑Optimized as uncertain, the SGM Consensus (derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) as likely pathogenic, and Foldetta as uncertain. Overall, the preponderance of evidence points to a pathogenic effect for Q407H. This conclusion does not conflict with the ClinVar designation of uncertain significance, which remains unresolved pending further evidence.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Uncertain 1-10.526Likely Pathogenic0.830Likely PathogenicAmbiguous0.206Likely Benign0.59Ambiguous0.00.61Ambiguous0.60Ambiguous1.10Destabilizing-4.51Deleterious0.982Probably Damaging0.947Probably Damaging3.88Benign0.01Affected3.3828030.39.01
c.113C>T
P38L
2D
AIThe SynGAP1 missense variant P38L is listed in ClinVar with an “Uncertain” status and is present in gnomAD (gnomAD ID 6‑33423522‑C‑T). Prediction tools that agree on a benign effect include REVEL, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (which is “Likely Benign”). In contrast, tools that predict a pathogenic effect are PROVEAN, polyPhen‑2 (HumDiv and HumVar), and SIFT. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as likely benign; the Foldetta stability analysis is unavailable. Overall, the majority of evidence points to a benign impact, and this conclusion does not contradict the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignConflicting 46-33423522-C-T84.96e-6-2.469Likely Benign0.197Likely BenignLikely Benign0.141Likely Benign-2.56Deleterious0.983Probably Damaging0.931Probably Damaging4.02Benign0.00Affected4.321-3-35.416.04
c.1752C>G
I584M
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant I584M is listed in ClinVar with an uncertain significance (ClinVar ID 1301269.0) and is present in gnomAD (6‑33440804‑C‑G). Consensus from multiple in‑silico predictors shows a split: benign calls come from REVEL, FoldX, Rosetta, Foldetta, SIFT, and AlphaMissense‑Optimized, whereas pathogenic calls arise from premPS, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, ESM1b, and FATHMM. The SGM Consensus, derived from a majority vote of AlphaMissense‑Default (uncertain), ESM1b, FATHMM, and PROVEAN, is pathogenic. High‑accuracy assessments further support a pathogenic interpretation: AlphaMissense‑Optimized predicts benign, but SGM Consensus is pathogenic, and Foldetta (combining FoldX‑MD and Rosetta) predicts benign. Overall, the majority of tools favor pathogenicity, and the high‑accuracy consensus leans pathogenic, indicating the variant is most likely pathogenic, which is consistent with the ClinVar uncertain status rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 26-33440804-C-G16.20e-7-10.119Likely Pathogenic0.419AmbiguousLikely Benign0.478Likely Benign0.11Likely Benign0.10.46Likely Benign0.29Likely Benign1.16Destabilizing-2.62Deleterious0.983Probably Damaging0.925Probably Damaging-1.25Pathogenic0.12Tolerated3.373421-2.618.03247.5-20.3-0.10.3-0.10.1XPotentially BenignA hydrophobic residue, Ile584, located in an α helix (res. Glu582-Met603), is swapped for another hydrophobic residue, Met584. The sec-butyl hydrocarbon side chain of Ile584 packs hydrophobically with residues in an inter-helix hydrophobic space (e.g., Leu588, Met477, Val473, and Ile483).In the variant simulations, the thioether hydrophobic side chain of Met584 maintains similar interactions as Ile584 in the WT, as it is roughly the same size and fits well within the hydrophobic space. Thus, the residue swap does not appear to cause any negative effects on the protein structure.
c.391G>C
G131R
2D
AIThe SynGAP1 missense variant G131R is listed in ClinVar with an “Uncertain” significance and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign predictions come from REVEL, ESM1b, and FATHMM, while pathogenic predictions are made by PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, AlphaMissense‑Default, and AlphaMissense‑Optimized. The SGM Consensus, which aggregates AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is inconclusive due to a 2‑to‑2 split and therefore does not contribute evidence. Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, has no available result for this variant. Overall, the majority of high‑confidence tools predict a pathogenic effect, and the variant is most likely pathogenic based on current predictions, which does not contradict the ClinVar “Uncertain” status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 1-6.564Likely Benign0.983Likely PathogenicLikely Pathogenic0.099Likely Benign-3.82Deleterious0.983Probably Damaging0.656Possibly Damaging3.92Benign0.00Affected3.615-2-3-4.199.14
c.2971G>A
G991R
2D
AIThe SynGAP1 missense variant G991R is listed in ClinVar (ID 1029090.0) with an “Uncertain” status and is present in gnomAD (variant ID 6‑33443523‑G‑A). Prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Optimized, and the SGM‑Consensus score (Likely Benign). Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and SIFT. AlphaMissense‑Default remains uncertain. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) also benign; Foldetta results are unavailable. Overall, the majority of evidence points to a benign impact, and this conclusion does not contradict the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignConflicting 36-33443523-G-A84.96e-6-3.934Likely Benign0.411AmbiguousLikely Benign0.102Likely Benign-1.20Neutral0.984Probably Damaging0.772Possibly Damaging4.11Benign0.01Affected4.322-3-2-4.199.14
c.453C>A
D151E
2D
AIThe SynGAP1 D151E variant is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, and FATHMM. Those that predict a pathogenic outcome are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and AlphaMissense‑Default. The SGM‑Consensus, which aggregates AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a “Likely Benign” classification. High‑accuracy assessments show AlphaMissense‑Optimized as “Uncertain,” SGM‑Consensus as “Likely Benign,” and Foldetta (a protein‑folding stability method combining FoldX‑MD and Rosetta) has no available result for this variant. Overall, the majority of evidence points to a benign effect, and this conclusion does not contradict the ClinVar “Uncertain” designation.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 1-5.662Likely Benign0.886Likely PathogenicAmbiguous0.142Likely Benign-2.02Neutral0.984Probably Damaging0.967Probably Damaging3.99Benign0.11Tolerated3.615320.014.03
c.1819C>G
L607V
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant L607V is listed in ClinVar with an uncertain significance (ClinVar ID 1450275.0) and is present in gnomAD (ID 6‑33440871‑C‑G). Prediction tools that agree on a benign effect include only AlphaMissense‑Optimized. All other evaluated algorithms—REVEL, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN)—predict a pathogenic impact. High‑accuracy assessments further support this: AlphaMissense‑Optimized reports benign, whereas the SGM‑Consensus, derived from the majority of pathogenic predictions, indicates pathogenic. Foldetta, which integrates FoldX‑MD and Rosetta outputs, is inconclusive and therefore not considered evidence. Overall, the preponderance of computational evidence points to a pathogenic effect for L607V, a conclusion that contrasts with the current ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 26-33440871-C-G21.24e-6-11.190Likely Pathogenic0.637Likely PathogenicLikely Benign0.715Likely Pathogenic1.04Ambiguous0.21.36Ambiguous1.20Ambiguous0.90Ambiguous-2.99Deleterious0.985Probably Damaging0.992Probably Damaging-1.50Pathogenic0.01Affected3.3735210.4-14.03216.328.10.10.00.90.2XPotentially BenignLeu607 is located in a short helical region (res. Ser606-Phe608) within an α-α loop connecting two α helices (res. Glu582-Met603 and res. Glu617-Asn635). In the WT simulations, the iso-butyl side chain of Leu607 does not interact with any other residues, but it could potentially interact directly with Ras due to its location at the GAP domain.In the variant simulations, Val607, which has similar size and physicochemical properties to leucine, does not cause any negative effects on the protein structure. However, due to its location at the GAP-Ras interface, the residue swap could affect the complex formation with the GTPase, but this cannot be investigated using solvent-only simulations.
c.2294G>A
S765N
2D
AIThe SynGAP1 missense variant S765N (ClinVar ID 2979632.0) is listed as “Uncertain” in ClinVar and is not reported in gnomAD. Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Optimized, and the SGM‑Consensus score (Likely Benign). In contrast, PolyPhen‑2 (HumDiv and HumVar) predict a pathogenic impact. High‑accuracy assessments further support a benign interpretation: AlphaMissense‑Optimized is benign, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is also benign. No Foldetta stability prediction is available, so it does not influence the assessment. Overall, the majority of evidence points to a benign effect, which is consistent with the ClinVar “Uncertain” classification and does not contradict it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 1-5.098Likely Benign0.378AmbiguousLikely Benign0.094Likely Benign-0.94Neutral0.985Probably Damaging0.950Probably Damaging4.11Benign0.06Tolerated3.64611-2.727.03
c.1154C>G
S385W
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant S385W is listed in ClinVar as Benign (ClinVar ID 218691.0) and is present in gnomAD (ID 6‑33438059‑C‑G). Functional prediction tools that agree on a benign effect include REVEL, premPS, PROVEAN, FATHMM, AlphaMissense‑Optimized, and the SGM Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN). Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, and ESM1b. Predictions that are inconclusive or unavailable are FoldX, Rosetta, Foldetta, and AlphaMissense‑Default. High‑accuracy assessments show AlphaMissense‑Optimized as Benign, the SGM Consensus as Benign, and Foldetta as Uncertain. Taken together, the majority of evidence points to a benign impact, which aligns with the ClinVar classification and does not contradict it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
C2Benign 16-33438059-C-G-9.353Likely Pathogenic0.362AmbiguousLikely Benign0.373Likely Benign0.53Ambiguous0.20.69Ambiguous0.61Ambiguous0.00Likely Benign-0.84Neutral0.986Probably Damaging0.968Probably Damaging4.63Benign0.00Affected4.323-2-3-0.199.14260.4-71.20.51.30.70.4UncertainSer385 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like tryptophan are rarely tolerated. Although no major negative structural effects are observed in the variant simulations, Trp385 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effects on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.10.1016/j.ajhg.2020.11.011
c.3179G>T
G1060V
2D
AIThe SynGAP1 missense variant G1060V is listed in ClinVar as benign (ClinVar ID 1345112.0) and is observed in gnomAD (6‑33443731‑G‑T). Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. Two tools, polyPhen‑2 HumDiv and HumVar, predict a pathogenic effect. The high‑accuracy consensus from SGM (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) classifies the variant as likely benign, and AlphaMissense‑Optimized also reports a benign outcome. No Foldetta stability assessment is available for this variant. Overall, the majority of evidence points to a benign impact, aligning with the ClinVar designation and not contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignBenign 16-33443731-G-T16.22e-7-6.966Likely Benign0.103Likely BenignLikely Benign0.369Likely Benign-0.73Neutral0.986Probably Damaging0.728Possibly Damaging2.63Benign0.33Tolerated4.322-1-34.642.08
c.3632T>A
M1211K
2D
AIThe SynGAP1 missense variant M1211K is listed in ClinVar (ID 834052.0) as benign and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign predictions come from FATHMM and AlphaMissense‑Optimized, while the remaining seven tools—REVEL, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, and AlphaMissense‑Default—classify the change as pathogenic. High‑accuracy assessments further clarify the picture: AlphaMissense‑Optimized predicts a benign effect, whereas the SGM Consensus (a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) indicates a likely pathogenic outcome; Foldetta data are unavailable. Overall, the preponderance of evidence from standard predictors and the SGM Consensus supports a pathogenic interpretation, which contradicts the benign classification reported in ClinVar.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicCoiled-coilLikely Benign 1-9.013Likely Pathogenic0.662Likely PathogenicLikely Benign0.595Likely Pathogenic-2.95Deleterious0.987Probably Damaging0.979Probably Damaging5.59Benign0.01Affected3.7750-1-5.8-3.02
c.1441C>T
H481Y
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant H481Y is listed in ClinVar as benign (ClinVar ID 1543764.0) and is present in the gnomAD database (gnomAD ID 6‑33438473‑C‑T). Prediction tools that classify the variant as benign include REVEL, Rosetta, premPS, SIFT, FATHMM, and AlphaMissense‑Optimized. Those that predict pathogenicity are PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, ESM1b, and AlphaMissense‑Default. FoldX and Foldetta report uncertain stability effects. High‑accuracy assessments show AlphaMissense‑Optimized as benign, the SGM Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) as likely pathogenic, and Foldetta as uncertain. Taking all available evidence together, the variant is most likely benign, which is consistent with its ClinVar benign annotation.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPLikely Benign 16-33438473-C-T169.91e-6-10.910Likely Pathogenic0.565Likely PathogenicLikely Benign0.256Likely Benign-0.53Ambiguous0.1-0.46Likely Benign-0.50Ambiguous0.20Likely Benign-3.32Deleterious0.988Probably Damaging0.979Probably Damaging3.40Benign0.59Tolerated3.3733021.926.03256.5-44.40.00.00.20.2XXUncertainThe imidazole ring of the His481 side chain is located in a short helical structure (res. Glu480-Leu482) within an α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. In the WT simulations, His481 alternately stacks against Arg485, Arg587, and Glu480 without a definite role. In the variant simulations, Tyr481 also alternately stacks with nearby arginine residues, including Arg485, Arg587, and Arg479. The interaction between Tyr481 and Arg479 affects the α-α loop, causing it to fold into a distorted helical structure, an effect that might be more pronounced during protein folding. Finally, the potential effect of the residue swap on SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.3920C>A
P1307Q
2D
AIThe SynGAP1 missense variant P1307Q is listed in ClinVar (ID 982827.0) with an “Uncertain” clinical significance and is present in gnomAD (variant ID 6‑33451794‑C‑A). Prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN). Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and SIFT. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as likely benign; Foldetta results are unavailable. Overall, the majority of evidence points to a benign impact. This conclusion does not contradict the ClinVar status, which remains uncertain.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33451794-C-A-4.227Likely Benign0.114Likely BenignLikely Benign0.192Likely Benign-0.88Neutral0.988Probably Damaging0.765Possibly Damaging2.82Benign0.03Affected3.7750-1-1.931.01
c.484C>T
R162C
2D
AIThe SynGAP1 missense variant R162C is listed in ClinVar as Pathogenic and is not reported in gnomAD. Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, and FATHMM, whereas tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, ESM1b, and AlphaMissense‑Default. The high‑accuracy AlphaMissense‑Optimized score is uncertain, the SGM Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) is inconclusive, and Foldetta stability analysis is unavailable. Overall, the available predictions are split evenly between benign and pathogenic, with no single method providing decisive evidence. Thus, the variant’s pathogenicity remains uncertain based on computational predictions, which contradicts the ClinVar pathogenic classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Pathogenic 2-8.157Likely Pathogenic0.787Likely PathogenicAmbiguous0.150Likely Benign-2.05Neutral0.988Probably Damaging0.513Possibly Damaging4.00Benign0.11Tolerated3.744-4-37.0-53.05
c.2302G>T
D768Y
2D
AIThe SynGAP1 missense variant D768Y is listed in ClinVar with status “Uncertain” (ClinVar ID 1061652.0) and is present in gnomAD (variant ID 6‑33442460‑G‑T). Prediction tools that agree on a benign effect include REVEL, SIFT, and FATHMM, whereas those that predict a pathogenic effect are PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, ESM1b, and AlphaMissense‑Default. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports the variant as “Likely Pathogenic.” High‑accuracy assessments show AlphaMissense‑Optimized as “Uncertain,” SGM‑Consensus as “Likely Pathogenic,” and Foldetta (combining FoldX‑MD and Rosetta outputs) is unavailable for this variant. Overall, the majority of computational evidence points to a pathogenic impact, which does not contradict the ClinVar designation of uncertainty. Thus, based on current predictions, the variant is most likely pathogenic.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicUncertain 16-33442460-G-T-9.866Likely Pathogenic0.824Likely PathogenicAmbiguous0.234Likely Benign-2.86Deleterious0.989Probably Damaging0.806Possibly Damaging4.01Benign0.07Tolerated3.646-4-32.248.09
c.379C>T
R127W
2D
AISynGAP1 missense variant R127W is listed in ClinVar with an Uncertain significance status and is not reported in gnomAD. Functional prediction tools show a split: benign calls come from REVEL, polyPhen‑2 HumVar, ESM1b, and FATHMM, while pathogenic calls come from PROVEAN, polyPhen‑2 HumDiv, SIFT, and AlphaMissense‑Default. The high‑accuracy AlphaMissense‑Optimized score is Uncertain, the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is inconclusive, and Foldetta stability analysis is unavailable. Consequently, the evidence does not favor a clear benign or pathogenic outcome; the predictions are balanced and align with the ClinVar designation of Uncertain significance.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 1-4.776Likely Benign0.806Likely PathogenicAmbiguous0.118Likely Benign-2.98Deleterious0.989Probably Damaging0.420Benign3.88Benign0.00Affected2-33.630.03
c.3059G>T
R1020L
2D
AISynGAP1 missense variant R1020L is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign predictions come from REVEL, ESM1b, and FATHMM, while pathogenic predictions are made by PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, and AlphaMissense‑Default. The high‑accuracy AlphaMissense‑Optimized score is uncertain, and the SGM consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) is inconclusive; Foldetta stability analysis is unavailable. Overall, the majority of evidence points toward a pathogenic effect, which contrasts with the ClinVar designation of uncertain significance.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 1-6.031Likely Benign0.907Likely PathogenicAmbiguous0.216Likely Benign-4.03Deleterious0.990Probably Damaging0.921Probably Damaging2.50Benign0.00Affected3.775-3-28.3-43.03
c.3154G>A
G1052R
2D
AISynGAP1 missense variant G1052R is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign predictions from REVEL, PROVEAN, SIFT, FATHMM, and AlphaMissense‑Optimized; pathogenic predictions from polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and ESM1b; AlphaMissense‑Default remains uncertain. High‑accuracy assessments further support a benign outcome: AlphaMissense‑Optimized scores the variant as benign, and the SGM consensus (derived from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) also favors benign. Foldetta, a protein‑folding stability method, has no available result for this variant. Overall, the majority of evidence points to a benign effect, which does not contradict the ClinVar uncertain status but provides additional support toward a likely benign classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 1-9.050Likely Pathogenic0.383AmbiguousLikely Benign0.497Likely Benign-0.41Neutral0.990Probably Damaging0.798Possibly Damaging3.90Benign0.10Tolerated3.775-2-3-4.199.14
c.3260C>T
S1087F
2D
AISynGAP1 missense variant S1087F is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Functional prediction tools show a split: benign calls come from REVEL, ESM1b, FATHMM, and AlphaMissense‑Optimized, while pathogenic calls come from PROVEAN, polyPhen‑2 (HumDiv and HumVar), and SIFT; AlphaMissense‑Default remains uncertain. High‑accuracy assessments reinforce the benign trend: AlphaMissense‑Optimized predicts benign, and the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) also yields benign. Foldetta, a protein‑folding stability method, has no available result for this variant. Overall, the majority of reliable predictors and the two high‑accuracy tools suggest a benign effect, which does not contradict the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 1-3.843Likely Benign0.497AmbiguousLikely Benign0.105Likely Benign-2.75Deleterious0.990Probably Damaging0.796Possibly Damaging2.56Benign0.03Affected3.775-2-33.660.10
c.745G>A
A249T
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant A249T is listed in ClinVar (ID 1031675.0) with an uncertain significance annotation and is not reported in gnomAD. Functional prediction tools that agree on a benign effect include REVEL, premPS, PROVEAN, SIFT, ESM1b, and FATHMM, whereas polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and AlphaMissense‑Default predict a pathogenic outcome. Predictions that are inconclusive are FoldX, Rosetta, Foldetta, and AlphaMissense‑Optimized. High‑accuracy assessments show AlphaMissense‑Optimized as uncertain, the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) as likely benign, and Foldetta (combining FoldX‑MD and Rosetta) as uncertain. Overall, the balance of evidence favors a benign interpretation, which does not contradict the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignPHUncertain 1-3.564Likely Benign0.805Likely PathogenicAmbiguous0.487Likely Benign1.50Ambiguous0.61.39Ambiguous1.45Ambiguous0.30Likely Benign-0.96Neutral0.990Probably Damaging0.815Possibly Damaging5.65Benign0.40Tolerated3.391510-2.530.03214.5-43.30.00.00.50.2XPotentially BenignThe methyl group of Ala249, located on the surface of an α helix (res. Ala236-Val250) facing an anti-parallel β sheet strand (res. Ile205-Val209), packs against nearby hydrophobic residues such as Leu200, Leu246, and Val250. In the variant simulations, the hydroxyl group of Thr249, which is not suitable for hydrophobic packing, forms a stable hydrogen bond with the backbone carbonyl of Asn245 in the same helix. Although this interaction could theoretically weaken the structural integrity of the α helix, this destabilizing effect is not observed in the variant simulations.
c.2684G>A
S895N
2D
AIThe SynGAP1 missense variant S895N is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and AlphaMissense‑Default. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is “Likely Benign.” High‑accuracy assessments show AlphaMissense‑Optimized as benign, and the SGM‑Consensus (majority vote) also leans benign. No Foldetta (protein‑folding stability) result is available, so it does not influence the assessment. Overall, the preponderance of predictions indicates the variant is most likely benign, which is consistent with its ClinVar “Uncertain” classification rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 1-6.399Likely Benign0.604Likely PathogenicLikely Benign0.118Likely Benign-0.85Neutral0.991Probably Damaging0.988Probably Damaging2.64Benign0.30Tolerated4.32411-2.727.03
c.2768T>A
I923N
2D
AIThe SynGAP1 missense variant I923N (ClinVar ID 647043.0) is listed as “Uncertain” and is not reported in gnomAD. Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, and AlphaMissense‑Optimized. Those that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and AlphaMissense‑Default. The SGM‑Consensus, which aggregates AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is “Likely Benign” because the majority of its constituent tools (three benign, one pathogenic) favor a benign outcome. High‑accuracy assessments show AlphaMissense‑Optimized as benign, SGM‑Consensus as benign, and the Foldetta stability analysis is unavailable. Overall, the collective predictions point to a benign impact, which does not contradict the ClinVar “Uncertain” status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 1-0.733Likely Benign0.712Likely PathogenicLikely Benign0.108Likely Benign-1.16Neutral0.991Probably Damaging0.793Possibly Damaging2.70Benign0.13Tolerated3.775-2-3-8.00.94
c.2948G>A
S983N
2D
AISynGAP1 missense variant S983N is listed as Benign in ClinVar (ID 469153) and is present in gnomAD (6‑33443500‑G‑A). Prediction tools that agree on a benign effect include REVEL, PROVEAN, and ESM1b, whereas tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, FATHMM, and AlphaMissense‑Default. The high‑accuracy AlphaMissense‑Optimized score is uncertain, and the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is inconclusive; Foldetta results are not available. Overall, the majority of available predictions (five pathogenic vs. three benign) suggest a pathogenic impact, which contradicts the ClinVar benign classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely Benign 16-33443500-G-A63.72e-6-5.604Likely Benign0.909Likely PathogenicAmbiguous0.136Likely Benign-1.78Neutral0.991Probably Damaging0.988Probably Damaging2.04Pathogenic0.00Affected4.32111-2.727.03
c.2954G>A
S985N
2D
AIThe SynGAP1 missense variant S985N is listed in ClinVar (ID 2087879.0) with an “Uncertain” status and is not reported in gnomAD. Prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, and FATHMM, while those that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, and AlphaMissense‑Default. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a “Likely Benign” classification. Separately, the high‑accuracy AlphaMissense‑Optimized result is “Uncertain,” and the Foldetta protein‑folding stability assessment is unavailable. Based on the overall distribution of predictions, the variant is most likely benign; this conclusion does not contradict the ClinVar status, which remains uncertain.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 1-6.979Likely Benign0.845Likely PathogenicAmbiguous0.088Likely Benign-1.68Neutral0.991Probably Damaging0.988Probably Damaging2.65Benign0.00Affected4.32111-2.727.03
c.3487C>G
H1163D
2D
AISynGAP1 missense variant H1163D is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Functional prediction tools show a split: benign calls come from REVEL, SIFT, ESM1b, and FATHMM, while pathogenic calls come from PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and AlphaMissense‑Default. High‑accuracy assessments are inconclusive: AlphaMissense‑Optimized rates the variant as uncertain, the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) yields a tie and is therefore unavailable, and Foldetta folding‑stability analysis is not provided. With an equal number of benign and pathogenic predictions and no decisive high‑accuracy evidence, the variant remains ambiguous. Thus, it is most likely neither clearly benign nor pathogenic, and this uncertainty aligns with its ClinVar status of uncertain significance.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 1-2.107Likely Benign0.949Likely PathogenicAmbiguous0.476Likely Benign-2.60Deleterious0.991Probably Damaging0.991Probably Damaging5.44Benign0.31Tolerated3.8831-1-0.3-22.05
c.892C>T
P298S
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant P298S is listed in ClinVar as Benign (ClinVar ID 2965590.0) and is present in gnomAD (ID 6‑33437797‑C‑T). Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (Likely Benign). Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and FATHMM. High‑accuracy assessments show AlphaMissense‑Optimized as Benign, the SGM‑Consensus as Likely Benign, and Foldetta (combining FoldX‑MD and Rosetta outputs) as Uncertain. No evidence from FoldX, Rosetta, or premPS is available to support either outcome. Overall, the majority of predictions support a benign impact, aligning with the ClinVar designation. Thus, the variant is most likely benign and does not contradict the ClinVar status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignC2Benign 16-33437797-C-T53.10e-6-6.342Likely Benign0.144Likely BenignLikely Benign0.189Likely Benign1.38Ambiguous0.21.41Ambiguous1.40Ambiguous0.58Ambiguous-1.20Neutral0.991Probably Damaging0.898Possibly Damaging2.03Pathogenic0.85Tolerated3.3920-110.8-10.04
c.1998G>C
E666D
2D
3DClick to see structure in 3D Viewer
AISynGAP1 E666D is listed in ClinVar with an uncertain significance (ID 587483.0) and is not reported in gnomAD. Functional prediction tools show a mixed signal: benign calls come from REVEL, SIFT, FATHMM, AlphaMissense‑Optimized, and Rosetta; pathogenic calls come from premPS, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, ESM1b, and AlphaMissense‑Default. The SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is classified as likely pathogenic. High‑accuracy assessments give AlphaMissense‑Optimized a benign prediction, while the SGM Consensus remains pathogenic; Foldetta, which integrates FoldX‑MD and Rosetta stability outputs, is inconclusive. Overall, the balance of evidence slightly favors a pathogenic interpretation, but the predictions are not unequivocal. Thus, the variant is most likely pathogenic according to the current computational data, and this does not contradict the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-8.820Likely Pathogenic0.704Likely PathogenicLikely Benign0.197Likely Benign0.88Ambiguous0.00.37Likely Benign0.63Ambiguous1.05Destabilizing-2.69Deleterious0.992Probably Damaging0.603Possibly Damaging3.43Benign0.06Tolerated3.3828320.0-14.03237.216.50.00.0-0.30.1XPotentially PathogenicThe carboxylate group of Glu666, located on the α-helix (res. Ser641-Glu666), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), such as Lys566, Thr672, and Asn669, in the WT simulations. In the variant simulations, the shorter side chain of Asp666 cannot maintain these interactions as efficiently as Glu666 in the WT, resulting in a less coordinated hydrogen-bond network.
c.2086C>G
L696V
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 L696V variant is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Prediction tools that indicate a benign effect include REVEL, FATHMM, and AlphaMissense‑Optimized, whereas the majority of other in silico predictors (FoldX, Foldetta, premPS, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, AlphaMissense‑Default) report a pathogenic outcome; Rosetta remains inconclusive. High‑accuracy assessments further support a deleterious impact: AlphaMissense‑Optimized predicts benign, but the SGM Consensus—derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN—leans pathogenic, and Foldetta (combining FoldX‑MD and Rosetta outputs) also predicts pathogenic. Overall, the preponderance of evidence points to a pathogenic effect for the variant, which does not contradict the current ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-11.909Likely Pathogenic0.745Likely PathogenicLikely Benign0.351Likely Benign2.35Destabilizing0.11.85Ambiguous2.10Destabilizing1.46Destabilizing-2.79Deleterious0.992Probably Damaging0.970Probably Damaging3.16Benign0.00Affected3.4613120.4-14.03
c.2131C>G
L711V
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant L711V is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6‑33441596‑C‑G). Prediction tools that indicate a benign effect include REVEL, FATHMM, and AlphaMissense‑Optimized. The majority of other in silico predictors—FoldX, Rosetta, Foldetta, premPS, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, and AlphaMissense‑Default—classify the change as pathogenic, and the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) reports it as likely pathogenic. High‑accuracy assessments further show AlphaMissense‑Optimized as benign, SGM‑Consensus as likely pathogenic, and Foldetta (combining FoldX‑MD and Rosetta outputs) as pathogenic. Overall, the preponderance of evidence points to a pathogenic effect, which does not conflict with the ClinVar designation of uncertain significance.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain16-33441596-C-G16.20e-7-10.045Likely Pathogenic0.709Likely PathogenicLikely Benign0.170Likely Benign3.48Destabilizing0.12.22Destabilizing2.85Destabilizing1.40Destabilizing-2.59Deleterious0.992Probably Damaging0.970Probably Damaging3.34Benign0.00Affected3.509120.4-14.03
c.2224C>T
R742W
2D
AIThe SynGAP1 missense variant R742W is listed in ClinVar (ID 2581888.0) with an “Uncertain” status and is present in gnomAD (variant ID 6‑33441689‑C‑T). Prediction tools that agree on a benign effect include REVEL, PROVEAN, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus score (Likely Benign). Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and SIFT; ESM1b is uncertain. High‑accuracy assessments show AlphaMissense‑Optimized as benign, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) also favors benign. Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, has no available result for this variant. Overall, the majority of computational evidence points to a benign impact, which is consistent with the ClinVar “Uncertain” classification and does not contradict it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33441689-C-T63.72e-6-7.725In-Between0.133Likely BenignLikely Benign0.079Likely Benign-1.71Neutral0.992Probably Damaging0.684Possibly Damaging2.66Benign0.01Affected4.322-323.630.03
c.227C>G
S76C
2D
AIThe SynGAP1 missense variant S76C is listed in ClinVar with an “Uncertain” status (ClinVar ID 1951273.0) and is present in the gnomAD database (gnomAD ID 6‑33425835‑C‑G). Prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and SIFT. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a “Likely Benign” classification. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus also as benign; Foldetta results are not available for this variant. Overall, the majority of computational evidence points to a benign impact, which does not contradict the ClinVar “Uncertain” designation.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33425835-C-G21.24e-6-5.408Likely Benign0.100Likely BenignLikely Benign0.076Likely Benign-1.78Neutral0.992Probably Damaging0.869Possibly Damaging3.71Benign0.00Affected4.3210-13.316.06
c.2291A>G
N764S
2D
AIThe SynGAP1 missense variant N764S is listed in ClinVar as Benign (ClinVar ID 1948460.0) and is not reported in gnomAD. Prediction tools that agree on a benign effect include SGM‑Consensus (Likely Benign), REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. In contrast, polyPhen‑2 (HumDiv and HumVar) predict a pathogenic outcome. High‑accuracy assessments show AlphaMissense‑Optimized as Benign and the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) as Likely Benign; Foldetta stability analysis is unavailable. Overall, the majority of evidence points to a benign effect, consistent with the ClinVar classification, and there is no contradiction between the predictions and the reported ClinVar status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignBenign 1-3.149Likely Benign0.159Likely BenignLikely Benign0.058Likely Benign-0.84Neutral0.992Probably Damaging0.846Possibly Damaging2.65Benign0.61Tolerated3.646112.7-27.03
c.2522T>C
V841A
2D
AIThe SynGAP1 missense variant V841A (ClinVar ID 1395978.0) is listed as Uncertain in ClinVar and is present in gnomAD (ID 6‑33443074‑T‑C). Prediction tools that agree on a benign effect include REVEL, PROVEAN, and FATHMM, whereas those that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, and AlphaMissense‑Default. The high‑accuracy AlphaMissense‑Optimized tool reports an uncertain outcome, and the SGM Consensus—derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN—yields a tie (two pathogenic, two benign) and is therefore inconclusive. No Foldetta stability assessment is available for this variant. Overall, the balance of evidence favors a pathogenic interpretation, which does not contradict the current ClinVar designation of Uncertain.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 16-33443074-T-C31.86e-6-8.152Likely Pathogenic0.901Likely PathogenicAmbiguous0.183Likely Benign-2.13Neutral0.992Probably Damaging0.989Probably Damaging2.57Benign0.02Affected3.77500-2.4-28.05
c.2765G>A
R922Q
2D
AIThe SynGAP1 missense variant R922Q is listed in ClinVar as Benign (ClinVar ID 2917638.0) and is present in gnomAD (ID 6‑33443317‑G‑A). Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN). Tools that predict a pathogenic effect are PolyPhen‑2 HumDiv and PolyPhen‑2 HumVar. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus (derived from the same set of high‑confidence predictors) also as benign. Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, has no available result for this variant. Overall, the majority of evidence points to a benign impact, aligning with the ClinVar classification and indicating no contradiction.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignBenign 16-33443317-G-A74.34e-6-3.295Likely Benign0.189Likely BenignLikely Benign0.085Likely Benign-0.27Neutral0.992Probably Damaging0.736Possibly Damaging2.57Benign0.20Tolerated3.775111.0-28.06
c.3567G>C
E1189D
2D
AIThe SynGAP1 missense variant E1189D (gnomAD ID 6-33444602‑G‑C) is listed in ClinVar as Benign (ClinVar ID 833989.0). In silico predictors that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Optimized, and the SGM‑Consensus score (Likely Benign). Predictors that indicate a pathogenic effect are PolyPhen‑2 HumDiv and PolyPhen‑2 HumVar. The high‑accuracy AlphaMissense‑Optimized tool classifies the variant as benign, and the SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, also favors a benign outcome. No Foldetta stability assessment is available for this residue. Overall, the majority of evidence points to a benign impact, and this conclusion aligns with the ClinVar designation, showing no contradiction.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignCoiled-coilLikely Benign 16-33444602-G-C31.86e-6-3.582Likely Benign0.461AmbiguousLikely Benign0.359Likely Benign-1.42Neutral0.992Probably Damaging0.989Probably Damaging5.30Benign0.25Tolerated3.824320.0-14.03
c.886T>G
S296A
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant S296A (ClinVar ID 469166.0) is listed as ClinVar status Uncertain and is not present in gnomAD. Functional prediction tools largely agree on a benign effect: REVEL, Rosetta, Foldetta, premPS, PROVEAN, SIFT, ESM1b, AlphaMissense‑Default, and AlphaMissense‑Optimized all predict benign or neutral. In contrast, polyPhen‑2 (HumDiv and HumVar) and FATHMM predict pathogenic. Grouping by consensus, the benign‑predicting tools outnumber the pathogenic ones. High‑accuracy assessments reinforce this view: AlphaMissense‑Optimized is benign; the SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is also benign; and Foldetta, which integrates FoldX‑MD and Rosetta stability calculations, reports a benign effect. No evidence from the available tools suggests a deleterious impact. Therefore, the variant is most likely benign, and this conclusion is consistent with its ClinVar status of Uncertain rather than pathogenic.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignC2Uncertain 1-6.847Likely Benign0.247Likely BenignLikely Benign0.209Likely Benign0.50Ambiguous0.3-0.26Likely Benign0.12Likely Benign0.35Likely Benign-1.79Neutral0.992Probably Damaging0.987Probably Damaging1.97Pathogenic0.65Tolerated3.4016112.6-16.00182.526.6-0.20.1-0.50.0XPotentially PathogenicThe hydroxyl group of the Ser296 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), stably hydrogen bonds with the carboxylate group of Asp330 in a neighboring β strand (res. Ala322-Asp332). The backbone carbonyl group of Ser296 also hydrogen bonds with the guanidinium group of Arg279 in another nearby β strand (res. Arg279-Cys285). In the variant simulations, the methyl group of the Ala296 side chain cannot hydrogen bond with Asp330, causing the carboxylate group positioning to fluctuate more than in the WT simulations.Although the residue swap does not seem to affect the anti-parallel β sheet assembly during the simulations, it is possible that the Ser296-Asp330 hydrogen bond plays a crucial role in maintaining the C2 domain fold. Notably, because Ser296 is located near the membrane interface, the potential effect of the residue swap on the SynGAP-membrane association cannot be addressed by solvent-only simulations.
c.1600T>C
S534P
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant S534P is listed in ClinVar with an “Uncertain” status and is present in gnomAD (ID 6‑33438843‑T‑C). Functional prediction tools that report a benign effect include REVEL, FoldX, Rosetta, Foldetta, premPS, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. In contrast, tools that predict a pathogenic effect are PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and SIFT. The high‑accuracy assessments are consistent with a benign outcome: AlphaMissense‑Optimized predicts benign, the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) indicates “Likely Benign,” and Foldetta (combining FoldX‑MD and Rosetta outputs) also predicts benign. Based on the aggregate predictions, the variant is most likely benign, which does not contradict the ClinVar status of uncertainty.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignGAPUncertain 16-33438843-T-C31.86e-6-5.056Likely Benign0.265Likely BenignLikely Benign0.203Likely Benign-0.40Likely Benign0.20.35Likely Benign-0.03Likely Benign0.47Likely Benign-3.81Deleterious0.993Probably Damaging0.993Probably Damaging3.32Benign0.05Affected3.3735-11-0.810.04
c.2015C>T
T672M
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant T672M is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6‑33441274‑C‑T). Functional prediction tools that report a benign effect include REVEL, FoldX, premPS, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, and ESM1b. Rosetta and Foldetta provide uncertain results. High‑accuracy assessments show AlphaMissense‑Optimized as benign, while the SGM Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) is inconclusive due to a 2‑2 split, and Foldetta is also inconclusive. Overall, the majority of predictions lean toward a benign impact, and this does not contradict the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
GAPConflicting 26-33441274-C-T191.18e-5-9.472Likely Pathogenic0.174Likely BenignLikely Benign0.127Likely Benign0.31Likely Benign0.41.52Ambiguous0.92Ambiguous0.41Likely Benign-4.34Deleterious0.993Probably Damaging0.520Possibly Damaging3.39Benign0.00Affected3.4025-1-12.630.09231.9-52.91.10.10.50.0XXPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. Met672 can only form a hydrogen bond with the amino group of the Lys566 side chain via its backbone carbonyl group. Nevertheless, the Lys566-Glu666 salt bridge forms intermittently. This is possible because Asn669 keeps the carboxylate group of Glu666 in the vicinity through hydrogen bonding, and the hydrophobic side chain of Met stays mostly rotated away from the salt bridge. Consequently, no drastic disruption of the hydrogen-bond network that keeps the loop close to the helices occurs in the variant simulations.
c.2255C>T
S752L
2D
AIThe SynGAP1 missense variant S752L is listed in ClinVar with an “Uncertain” status (ClinVar ID 2143952.0) and is present in gnomAD (ID 6‑33441720‑C‑T). Prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, AlphaMissense‑Default, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, and FATHMM. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a “Likely Benign” classification. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as likely benign; Foldetta results are unavailable. Overall, the preponderance of evidence points to a benign impact, which does not contradict the ClinVar “Uncertain” designation.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 26-33441720-C-T63.72e-6-3.386Likely Benign0.182Likely BenignLikely Benign0.195Likely Benign-2.09Neutral0.993Probably Damaging0.641Possibly Damaging1.51Pathogenic0.01Affected3.995-3-24.626.08
c.323A>G
K108R
2D
AIThe SynGAP1 missense variant K108R is listed in ClinVar with an “Uncertain” status and is present in gnomAD (ID 6‑33432188‑A‑G). Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. In contrast, polyPhen‑2 (HumDiv and HumVar) predict a pathogenic impact. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a “Likely Benign” classification. High‑accuracy assessments further support benignity: AlphaMissense‑Optimized is benign, and the SGM‑Consensus itself is benign; Foldetta results are unavailable. Overall, the majority of evidence points to a benign effect, and this conclusion does not contradict the ClinVar “Uncertain” designation.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33432188-A-G63.72e-6-2.892Likely Benign0.148Likely BenignLikely Benign0.184Likely Benign0.37Neutral0.993Probably Damaging0.956Probably Damaging4.22Benign1.00Tolerated3.61532-0.628.01
c.718G>A
D240N
2D
AIThe SynGAP1 missense variant D240N is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Benign predictions are provided by FoldX, Rosetta, Foldetta, premPS, FATHMM, and AlphaMissense‑Optimized, whereas pathogenic predictions come from REVEL, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, AlphaMissense‑Default, and the SGM‑Consensus. High‑accuracy methods give a split: AlphaMissense‑Optimized predicts benign, SGM‑Consensus predicts pathogenic, and Foldetta predicts benign. Overall, the majority of tools favor a benign effect, and this consensus does not contradict the ClinVar uncertain status. Thus, the variant is most likely benign based on current computational predictions.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicPHUncertain 1-12.942Likely Pathogenic0.755Likely PathogenicLikely Benign0.701Likely Pathogenic0.22Likely Benign0.90.47Likely Benign0.35Likely Benign0.37Likely Benign-4.37Deleterious0.993Probably Damaging0.984Probably Damaging5.88Benign0.01Affected210.0-0.98
c.719A>G
D240G
2D
AIThe SynGAP1 missense variant D240G is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Benign predictions are provided by premPS and FATHMM, whereas pathogenic predictions are made by REVEL, Rosetta, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, AlphaMissense‑Default, the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN), and Foldetta. FoldX‑MD is inconclusive, and AlphaMissense‑Optimized is uncertain. High‑accuracy methods show that AlphaMissense‑Optimized is inconclusive, SGM Consensus predicts pathogenic, and Foldetta predicts pathogenic. Overall, the majority of evidence points to a pathogenic effect, which is consistent with the ClinVar uncertain status and does not contradict it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicPHUncertain 1-12.825Likely Pathogenic0.951Likely PathogenicAmbiguous0.912Likely Pathogenic1.85Ambiguous0.12.72Destabilizing2.29Destabilizing0.24Likely Benign-6.19Deleterious0.993Probably Damaging0.984Probably Damaging5.79Benign0.01Affected1-13.1-58.04
c.1172G>T
G391V
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant G391V is listed in ClinVar as Benign (ClinVar ID 1014488.0) and is present in gnomAD (variant ID 6‑33438077‑G‑T). Prediction tools that classify the variant as benign include premPS, PROVEAN, SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus. Tools that predict pathogenicity are REVEL, FoldX, Rosetta, Foldetta, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and FATHMM. High‑accuracy assessments show AlphaMissense‑Optimized as benign, the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) as benign, and Foldetta (combining FoldX‑MD and Rosetta outputs) as pathogenic. With two high‑accuracy tools supporting benign and one supporting pathogenic, the overall prediction leans toward a benign effect. This conclusion aligns with the ClinVar benign classification, so there is no contradiction with the existing clinical annotation.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignC2Likely Benign 16-33438077-G-T31.86e-6-6.642Likely Benign0.133Likely BenignLikely Benign0.595Likely Pathogenic4.23Destabilizing1.34.81Destabilizing4.52Destabilizing-0.11Likely Benign-0.98Neutral0.994Probably Damaging0.887Possibly Damaging1.32Pathogenic0.10Tolerated3.698-1-34.642.08228.6-69.00.00.8-0.50.3UncertainGly387 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. This loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Val391 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1306G>A
E436K
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant E436K is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Prediction tools that agree on a benign effect include only FATHMM, whereas the remaining evaluated algorithms (REVEL, Rosetta, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus) uniformly predict a pathogenic impact; FoldX, Foldetta, and premPS are inconclusive. High‑accuracy assessments show AlphaMissense‑Optimized as pathogenic, the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) as likely pathogenic, and Foldetta as uncertain. Overall, the preponderance of evidence points to a pathogenic effect for E436K, which does not conflict with the ClinVar designation of uncertain significance.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-13.869Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.829Likely Pathogenic0.56Ambiguous0.12.86Destabilizing1.71Ambiguous0.82Ambiguous-3.77Deleterious0.994Probably Damaging0.951Probably Damaging4.71Benign0.02Affected3.372901-0.4-0.94186.839.80.00.0-0.20.0XXXPotentially PathogenicThe carboxylate group of Glu436, located on the α helix (res. Met414-Glu436), forms a salt bridge with the amino group of the Lys444 side chain on an opposing α helix (res. Val441-Ser457). The backbone carbonyl of Glu436 also H-bonds with the Lys444 side chain, which helps keep the ends of the two α helices tightly connected. In contrast, in the variant simulations, the salt bridge formation with Lys444 is not possible. Instead, the repelled Lys436 side chain rotates outward, causing a change in the α helix backbone H-bonding: the amide group of Lys444 H-bonds with the carbonyl of Ala433 instead of the carbonyl of Cys432.
c.1403T>C
M468T
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant M468T is listed in ClinVar with an “Uncertain” status and is present in the gnomAD database. Prediction tools that are available all converge on a pathogenic interpretation: REVEL, FoldX, Rosetta, Foldetta, premPS, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN). No tool reports a benign outcome. High‑accuracy assessments are consistent: AlphaMissense‑Optimized is “Uncertain,” SGM Consensus is pathogenic, and Foldetta (combining FoldX‑MD and Rosetta outputs) is pathogenic. **Based on the aggregate predictions, the variant is most likely pathogenic, which does not contradict the ClinVar “Uncertain” classification.**

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 26-33438435-T-C16.20e-7-12.399Likely Pathogenic0.862Likely PathogenicAmbiguous0.801Likely Pathogenic3.47Destabilizing0.13.10Destabilizing3.29Destabilizing1.84Destabilizing-3.85Deleterious0.994Probably Damaging0.985Probably Damaging-1.31Pathogenic0.01Affected3.3731-1-1-2.6-30.09214.647.10.00.00.10.0XPotentially PathogenicThe thioether group of Met468, located in the middle of an α helix (res. Ala461–Phe476), interacts with hydrophobic residues (e.g., Phe464, Leu465, Leu489) in an inter-helix space formed by two other α helices (res. Ala461–Phe476, res. Thr488–Gly502). In the variant simulations, the hydrophilic side chain of Thr468 does not pack favorably in the hydrophobic niche, and the methionine-aromatic stacking is lost. Although the hydroxyl group of Thr468 forms an H-bond with the backbone carbonyl group of Phe464, the integrity of the α helix is not affected in the simulations. No large-scale structural changes are observed during the variant simulations; however, due to the importance of hydrophobic packing, the effects could be more pronounced during protein folding.
c.1405G>A
A469T
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant A469T is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign predictions come from premPS, PROVEAN, SIFT, and AlphaMissense‑Optimized; pathogenic predictions arise from REVEL, FoldX, polyPhen‑2 (HumDiv and HumVar), ESM1b, FATHMM, AlphaMissense‑Default, the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN), and the Foldetta stability assessment (combining FoldX‑MD and Rosetta). The high‑accuracy subset shows AlphaMissense‑Optimized as benign, whereas SGM Consensus and Foldetta both predict pathogenic. Overall, the majority of evidence supports a pathogenic effect, and this conclusion does not conflict with the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-9.540Likely Pathogenic0.723Likely PathogenicLikely Benign0.527Likely Pathogenic2.26Destabilizing0.11.90Ambiguous2.08Destabilizing0.34Likely Benign-1.46Neutral0.994Probably Damaging0.986Probably Damaging-1.21Pathogenic0.42Tolerated10-2.530.03
c.1851G>T
E617D
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant E617D is listed in ClinVar with an uncertain significance (ID 2584916.0) and is not reported in gnomAD. Functional prediction tools largely agree on a benign effect: REVEL, FoldX, Foldetta, premPS, PROVEAN, SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus score all indicate benign or likely benign. In contrast, polyPhen‑2 (HumDiv and HumVar) and FATHMM predict a pathogenic impact, while Rosetta remains inconclusive. High‑accuracy assessments reinforce the benign consensus: AlphaMissense‑Optimized is benign; the SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is likely benign; and Foldetta, which integrates FoldX‑MD and Rosetta outputs, also predicts benign. Overall, the preponderance of evidence supports a benign classification, which does not contradict the current ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignGAPUncertain 1-1.349Likely Benign0.241Likely BenignLikely Benign0.322Likely Benign0.12Likely Benign0.10.80Ambiguous0.46Likely Benign0.07Likely Benign-0.01Neutral0.994Probably Damaging0.979Probably Damaging-1.35Pathogenic0.88Tolerated3.3735230.0-14.03
c.2095G>A
V699M
2D
3DClick to see structure in 3D Viewer
AISynGAP1 variant V699M is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6‑33441354‑G‑A). Across in silico predictors, benign calls are made by REVEL, Rosetta, Foldetta, PROVEAN, FATHMM, and AlphaMissense‑Optimized, whereas pathogenic calls come from polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, and ESM1b. Predictions that are inconclusive (FoldX, premPS, AlphaMissense‑Default) are noted but not used as evidence. High‑accuracy assessments further support a benign outcome: AlphaMissense‑Optimized predicts benign, the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) also yields benign, and Foldetta (combining FoldX‑MD and Rosetta outputs) reports benign stability. Overall, the preponderance of evidence indicates the variant is most likely benign, which does not contradict the ClinVar uncertain status but provides a stronger leaning toward benignity.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
GAPUncertain 26-33441354-G-A84.96e-6-8.869Likely Pathogenic0.484AmbiguousLikely Benign0.276Likely Benign-0.58Ambiguous0.10.29Likely Benign-0.15Likely Benign0.96Ambiguous-2.18Neutral0.994Probably Damaging0.806Possibly Damaging3.37Benign0.03Affected3.471021-2.332.06257.8-47.20.00.00.90.1XPotentially BenignThe isopropyl side chain of Val699, located on an α-helix (res. Leu685-Gln702), packs against hydrophobic residues (e.g., Leu703, Leu696, Leu435, Leu439) in the inter-helix space. In the variant simulations, the thioether side chain of Met699 has similar physicochemical properties to Val699 in the WT, and thus, it is able to maintain similar interactions. Consequently, the mutation causes no apparent changes in the structure.
c.2485G>A
E829K
2D
AIThe SynGAP1 missense variant E829K is listed in ClinVar as Pathogenic (ClinVar ID 1721258.0) and is not reported in gnomAD. Functional prediction tools largely agree on a deleterious effect: pathogenic predictions come from PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, FATHMM, AlphaMissense‑Default, and the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN). Only REVEL predicts a benign outcome, while ESM1b and AlphaMissense‑Optimized are uncertain. High‑accuracy assessments show the SGM‑Consensus as Likely Pathogenic, AlphaMissense‑Optimized as uncertain, and Foldetta results are unavailable. Overall, the preponderance of evidence indicates that E829K is most likely pathogenic, and this conclusion aligns with the ClinVar pathogenic classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicPathogenic 1-7.527In-Between0.807Likely PathogenicAmbiguous0.194Likely Benign-2.65Deleterious0.994Probably Damaging0.900Possibly Damaging2.27Pathogenic0.00Affected3.77501-0.4-0.94
c.2900G>A
R967Q
2D
AIThe SynGAP1 missense variant R967Q is listed in ClinVar as Benign (ClinVar ID 536992.0) and is present in gnomAD (6‑33443452‑G‑A). Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus score (Likely Benign). Tools that predict a pathogenic effect are PolyPhen‑2 HumDiv and PolyPhen‑2 HumVar. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) as Likely Benign; Foldetta results are unavailable. Overall, the majority of evidence points to a benign impact, aligning with the ClinVar classification and not contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignBenign/Likely benign 26-33443452-G-A311.92e-5-3.057Likely Benign0.080Likely BenignLikely Benign0.104Likely Benign-0.01Neutral0.994Probably Damaging0.626Possibly Damaging4.21Benign0.36Tolerated4.322111.0-28.06
c.3773A>G
Q1258R
2D
AIThe SynGAP1 missense variant Q1258R is listed in ClinVar with an uncertain significance (ClinVar ID 3359527.0) and is not observed in gnomAD. Functional prediction tools largely agree on a deleterious effect: pathogenic predictions come from PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, and AlphaMissense‑Default, while only REVEL predicts a benign outcome. The high‑accuracy predictors give the following results: AlphaMissense‑Optimized is uncertain; the SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a likely pathogenic classification; Foldetta, which integrates FoldX‑MD and Rosetta stability calculations, has no available output for this variant. Based on the preponderance of pathogenic predictions and the SGM Consensus, the variant is most likely pathogenic, which is consistent with its ClinVar uncertain status rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicCoiled-coilUncertain 1-10.971Likely Pathogenic0.931Likely PathogenicAmbiguous0.316Likely Benign-3.19Deleterious0.994Probably Damaging0.988Probably Damaging2.00Pathogenic0.00Affected11-1.028.06
c.3980C>T
P1327L
2D
AIThe SynGAP1 missense variant P1327L is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6‑33451854‑C‑T). Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are polyPhen‑2 HumDiv and polyPhen‑2 HumVar. The high‑accuracy AlphaMissense‑Optimized score is benign, and the SGM Consensus—derived from the majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN—also indicates a benign outcome. Foldetta results are not available for this variant. Overall, the majority of computational evidence supports a benign classification, which is consistent with the ClinVar uncertain status rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33451854-C-T21.28e-6-5.264Likely Benign0.242Likely BenignLikely Benign0.142Likely Benign-1.24Neutral0.994Probably Damaging0.908Possibly Damaging4.12Benign0.10Tolerated3.775-3-35.416.04
c.73C>T
R25W
2D
AIThe SynGAP1 missense variant R25W is listed in ClinVar with an “Uncertain” status (ClinVar ID 2993054.0) and is present in gnomAD (ID 6‑33423482‑C‑T). Prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN). Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and SIFT; AlphaMissense‑Default remains uncertain. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as likely benign, while Foldetta results are unavailable. Overall, the majority of evidence points to a benign impact, and this is not in conflict with the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 26-33423482-C-T63.72e-6-5.133Likely Benign0.549AmbiguousLikely Benign0.158Likely Benign-1.60Neutral0.994Probably Damaging0.919Probably Damaging3.92Benign0.00Affected4.321-323.630.03
c.76G>A
G26R
2D
AIThe SynGAP1 missense variant G26R is listed in ClinVar as a benign alteration (ClinVar ID 1521495.0) and is present in the gnomAD database (gnomAD ID 6‑33423485‑G‑A). Prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, and AlphaMissense‑Optimized. Tools that predict a pathogenic outcome are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, and AlphaMissense‑Default. The SGM‑Consensus, which aggregates the majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a “Likely Benign” classification. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as likely benign; the Foldetta protein‑folding stability analysis is unavailable for this variant. Overall, the majority of computational evidence supports a benign impact, aligning with the ClinVar designation and indicating no contradiction.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignBenign 16-33423485-G-A31.86e-6-2.946Likely Benign0.678Likely PathogenicLikely Benign0.189Likely Benign-2.22Neutral0.994Probably Damaging0.990Probably Damaging3.87Benign0.00Affected4.321-3-2-4.199.14
c.1771G>C
A591P
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant A591P is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Functional prediction tools largely converge on a pathogenic effect: pathogenic predictions come from FoldX, Rosetta, Foldetta, premPS, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, AlphaMissense‑Default, and the SGM‑Consensus (Likely Pathogenic). Benign predictions are limited to REVEL and FATHMM. High‑accuracy assessments reinforce the pathogenic view: AlphaMissense‑Optimized predicts pathogenic, the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is Likely Pathogenic, and Foldetta (combining FoldX‑MD and Rosetta outputs) also indicates pathogenic. Consequently, the variant is most likely pathogenic, a conclusion that contrasts with its ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-14.479Likely Pathogenic0.991Likely PathogenicLikely Pathogenic0.404Likely Benign3.78Destabilizing0.37.29Destabilizing5.54Destabilizing1.45Destabilizing-4.41Deleterious0.995Probably Damaging0.853Possibly Damaging3.35Benign0.01Affected3.37351-1-3.426.04191.5-10.10.20.10.40.1XPotentially PathogenicThe methyl group of the Ala591 side chain, located in the middle of an α helix (res. Glu582-Met603), packs against hydrophobic residues (e.g., Ile483, Phe484) of an opposing partially helical loop (res. Phe476-Asn487).In the variant simulations, Pro591 lacks a free backbone amide group and, therefore, cannot form a hydrogen bond with the backbone carbonyl of Arg587 as Ala591 does in the WT. This notably weakens the α helix integrity and compromises the continuity of the helix. In reality, the effect on the structure during protein folding could be more severe.
c.2650C>T
R884W
2D
AIThe SynGAP1 missense variant R884W is listed in ClinVar with an “Uncertain” status and is present in the gnomAD database (gnomAD ID 6‑33443202‑C‑T). Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. In contrast, polyPhen‑2 (HumDiv and HumVar) and SIFT all predict a pathogenic impact. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a “Likely Benign” classification. High‑accuracy assessments further support a benign outcome: AlphaMissense‑Optimized is benign, and the SGM‑Consensus is also benign. No Foldetta (protein‑folding stability) result is available for this variant. Overall, the majority of computational predictions, including the high‑accuracy tools, indicate that R884W is most likely benign, which is consistent with the ClinVar “Uncertain” status rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33443202-C-T53.10e-6-3.785Likely Benign0.332Likely BenignLikely Benign0.151Likely Benign0.26Neutral0.995Probably Damaging0.812Possibly Damaging2.56Benign0.05Affected4.324-323.630.03
c.2835T>A
H945Q
2D
AIThe SynGAP1 missense variant H945Q is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6‑33443387‑T‑A). Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are polyPhen‑2 HumDiv and polyPhen‑2 HumVar. The high‑accuracy consensus from AlphaMissense‑Optimized is benign, and the SGM consensus—derived from the majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN—is also benign. Foldetta results are not available for this variant. Overall, the majority of computational evidence points to a benign impact, which is consistent with the ClinVar uncertain status rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignConflicting 26-33443387-T-A31.86e-6-5.248Likely Benign0.091Likely BenignLikely Benign0.343Likely Benign-0.36Neutral0.995Probably Damaging0.939Probably Damaging5.03Benign0.06Tolerated4.32430-0.3-9.01
c.3056G>A
R1019H
2D
AIThe SynGAP1 missense variant R1019H is listed in ClinVar (ID 1195115.0) with an “Uncertain” status and is present in gnomAD (variant ID 6‑33443608‑G‑A). Prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, AlphaMissense‑Default, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are polyPhen‑2 (HumDiv and HumVar), SIFT, and FATHMM. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a “Likely Benign” classification. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus (majority vote) also benign; Foldetta stability analysis is unavailable. Overall, the preponderance of evidence points to a benign impact for R1019H, and this conclusion does not contradict the current ClinVar “Uncertain” designation.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignConflicting 26-33443608-G-A674.15e-5-4.610Likely Benign0.258Likely BenignLikely Benign0.122Likely Benign-1.95Neutral0.995Probably Damaging0.845Possibly Damaging2.39Pathogenic0.01Affected3.775201.3-19.05
c.986G>A
R329H
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant R329H is listed in ClinVar with an uncertain significance (ClinVar ID 2074400.0) and is present in gnomAD (ID 6‑33437891‑G‑A). Functional prediction tools that agree on a benign effect include REVEL, FATHMM, and AlphaMissense‑Optimized. Tools that agree on a pathogenic effect include FoldX, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, and AlphaMissense‑Default. High‑accuracy assessments show AlphaMissense‑Optimized predicts benign, while the SGM Consensus—derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN—predicts pathogenic. Foldetta, which integrates FoldX‑MD and Rosetta outputs, yields an uncertain result and is treated as unavailable evidence. Overall, the balance of predictions favors a pathogenic impact, which does not contradict the ClinVar uncertain status but suggests the variant is more likely deleterious.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Uncertain 16-33437891-G-A21.24e-6-10.154Likely Pathogenic0.769Likely PathogenicLikely Benign0.155Likely Benign2.53Destabilizing0.70.71Ambiguous1.62Ambiguous0.82Ambiguous-3.17Deleterious0.995Probably Damaging0.778Possibly Damaging4.04Benign0.05Affected3.4115201.3-19.05220.481.40.10.10.20.3UncertainThe guanidinium group of Arg329, located at the end of an anti-parallel β sheet strand (res. Ala322-Asp330), faces the negatively charged lipid bilayer surface. While the residue swap does not cause any apparent negative effects on the protein structure in the variant simulations, it could adversely affect the SynGAP-membrane association in reality. The positively charged Arg329 side chain forms hydrogen bonds with other loop residues (e.g., Ser371, Asp338) that are expected to dynamically interact with the membrane head group region. However, this phenomenon is beyond the scope of the solvent-only simulations to unravel. Notably, histidine can also be double protonated and positively charged, but this alternative protonation state was not considered in the variant simulations.
c.1082A>C
Q361P
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant Q361P is listed in ClinVar as Pathogenic (ClinVar ID 3235087.0) and is not reported in gnomAD. Prediction tools that agree on a benign effect are REVEL and premPS. All other evaluated algorithms—FoldX, Rosetta, Foldetta, SGM‑Consensus, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized—predict a pathogenic impact. High‑accuracy methods specifically give a pathogenic verdict: AlphaMissense‑Optimized is Pathogenic; the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is Likely Pathogenic; and Foldetta (combining FoldX‑MD and Rosetta outputs) is Pathogenic. Based on the overwhelming agreement of these predictions, the variant is most likely pathogenic, which is consistent with its ClinVar classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Likely Pathogenic 1-13.280Likely Pathogenic0.956Likely PathogenicLikely Pathogenic0.482Likely Benign3.12Destabilizing0.03.45Destabilizing3.29Destabilizing0.38Likely Benign-3.03Deleterious0.996Probably Damaging0.979Probably Damaging1.63Pathogenic0.05Affected3.3725-101.9-31.01
c.1393C>G
L465V
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant L465V is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Prediction tools cluster into two groups: benign predictions come from REVEL and SIFT, while the remaining tools—FoldX, Rosetta, premPS, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, ESM1b, FATHMM, and AlphaMissense‑Default—indicate pathogenicity. High‑accuracy assessments further support a deleterious effect: AlphaMissense‑Optimized is uncertain; the SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports likely pathogenic; and Foldetta, which combines FoldX‑MD and Rosetta stability outputs, predicts pathogenic. Overall, the majority of evidence points to a pathogenic impact, which is consistent with the ClinVar uncertain status and does not contradict it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-9.893Likely Pathogenic0.838Likely PathogenicAmbiguous0.276Likely Benign2.46Destabilizing0.12.66Destabilizing2.56Destabilizing1.21Destabilizing-2.98Deleterious0.996Probably Damaging0.992Probably Damaging2.44Pathogenic0.10Tolerated3.3734210.4-14.03204.330.90.00.0-0.40.6XPotentially BenignThe iso-butyl side chain of Leu465, located in the middle of an α helix (res. Ala461–Phe476), packs with hydrophobic residues (e.g., Phe464, Met468, Tyr497, Ile494) in an inter-helix space formed with two other α helices (res. Ala461–Phe476 and res. Thr488-Gly502). In the variant simulations, the iso-propyl side chain of Val465 is equally sized and similarly hydrophobic as the original side chain of Leu465. Hence, the mutation does not exert any negative effects on the protein structure based on the variant simulations.
c.1409T>C
M470T
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant M470T is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Prediction tools that agree on a benign effect include only SIFT, whereas the remaining tools—REVEL, FoldX, Rosetta, Foldetta, premPS, PROVEAN, polyPhen‑2 (HumDiv and HumVar), ESM1b, FATHMM, AlphaMissense‑Default, and the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN)—all predict a pathogenic impact. High‑accuracy methods further support this: AlphaMissense‑Optimized is pathogenic, the SGM‑Consensus is “Likely Pathogenic,” and Foldetta (combining FoldX‑MD and Rosetta outputs) is pathogenic. No prediction or folding‑stability result is missing or inconclusive. Based on the overwhelming consensus of pathogenic predictions, the variant is most likely pathogenic, which is consistent with the ClinVar “Uncertain” classification rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-8.104Likely Pathogenic0.976Likely PathogenicLikely Pathogenic0.763Likely Pathogenic3.19Destabilizing0.12.68Destabilizing2.94Destabilizing1.49Destabilizing-5.30Deleterious0.996Probably Damaging0.985Probably Damaging-1.08Pathogenic0.24Tolerated3.3734-1-1-2.6-30.09213.846.50.00.0-0.20.2XXPotentially PathogenicThe thioether group of Met470, located in the middle of an α helix (res. Ala461–Phe476), interacts with hydrophobic residues in the inter-helix space (e.g., Val473, Leu558, Cys576, Trp572) formed by two other α helices (res. Ser604–Arg581, res. Pro562–Arg579). In the WT simulations, the Met470 side chain also packs against the positively charged guanidinium groups of Arg575, Arg429, and Arg579, which form salt bridges with the negatively charged carboxylate groups of the Asp474 and Asp467 side chains at the protein surface. In the variant simulations, the hydroxyl group of the Thr470 side chain forms an H-bond with the backbone carbonyl group of Ser466 in the α helix, potentially lowering its structural integrity. Importantly, the hydroxyl group of Thr470 also forms an H-bond with the guanidinium group of Arg575, which helps it form a more permanent salt bridge with Asp467.
c.2115G>C
K705N
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant K705N is listed in ClinVar (ID 872011.0) as Pathogenic and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign predictions (REVEL, Rosetta, premPS, FATHMM) and pathogenic predictions (PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, AlphaMissense‑Default). Uncertain results come from FoldX, Foldetta, and AlphaMissense‑Optimized. High‑accuracy assessments further support pathogenicity: AlphaMissense‑Optimized is inconclusive, but the SGM Consensus—derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN—classifies the variant as Likely Pathogenic, and Foldetta also yields an uncertain stability change. Overall, the preponderance of evidence indicates the variant is most likely pathogenic, which aligns with its ClinVar classification and does not contradict the reported status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPLikely Pathogenic 1-9.767Likely Pathogenic0.925Likely PathogenicAmbiguous0.183Likely Benign0.74Ambiguous0.00.37Likely Benign0.56Ambiguous0.44Likely Benign-3.12Deleterious0.996Probably Damaging0.876Possibly Damaging3.37Benign0.02Affected3.4710100.4-14.07221.4-20.20.00.00.00.1XUncertainThe amino side chain of Lys705, located at the end and outer surface of an α-helix (res. Thr704-Gly712), does not form any interactions in the WT simulations. In the variant simulations, the carboxamide side chain of Asn705 briefly forms a salt bridge with Glu706. However, there is no apparent difference between the systems. Due to the model ending abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.2282G>A
R761Q
2D
AIThe SynGAP1 missense variant R761Q is listed in ClinVar (ID 2882770.0) with an “Uncertain” status and is present in gnomAD (6‑33441747‑G‑A). Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are polyPhen‑2 HumDiv and polyPhen‑2 HumVar. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a “Likely Benign” classification. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as likely benign; Foldetta results are not available. Overall, the majority of evidence points to a benign impact, and this conclusion does not contradict the ClinVar “Uncertain” designation.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33441747-G-A116.81e-6-4.187Likely Benign0.202Likely BenignLikely Benign0.191Likely Benign-0.63Neutral0.996Probably Damaging0.878Possibly Damaging2.75Benign0.40Tolerated3.995111.0-28.06
c.2724G>C
Q908H
2D
AIThe SynGAP1 missense variant Q908H is listed in ClinVar (ID 436926.0) with an “Uncertain” status and is present in gnomAD (variant ID 6‑33443276‑G‑C). Prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (Likely Benign). Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and SIFT. High‑accuracy assessments show AlphaMissense‑Optimized as Benign and the SGM‑Consensus as Likely Benign; Foldetta results are unavailable. Overall, the majority of evidence points to a benign impact. This consensus does not contradict the ClinVar “Uncertain” classification, which remains inconclusive.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignConflicting 46-33443276-G-C16.20e-7-4.658Likely Benign0.311Likely BenignLikely Benign0.112Likely Benign-0.74Neutral0.996Probably Damaging0.995Probably Damaging2.58Benign0.05Affected3.775300.39.01
c.3197C>T
P1066L
2D
AIThe SynGAP1 missense variant P1066L is listed in ClinVar as a benign variant (ClinVar ID 951518.0) and is present in gnomAD (ID 6‑33443749‑C‑T). Prediction tools that agree on a benign effect include REVEL, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN). Tools that predict a pathogenic effect are PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and SIFT. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as likely benign; Foldetta results are unavailable. Overall, the majority of evidence points to a benign impact, which is consistent with the ClinVar classification and does not contradict the reported status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignLikely Benign 16-33443749-C-T148.71e-6-5.478Likely Benign0.092Likely BenignLikely Benign0.173Likely Benign-3.68Deleterious0.996Probably Damaging0.903Possibly Damaging2.72Benign0.00Affected4.322-3-35.416.04
c.3307C>T
R1103C
2D
AISynGAP1 missense variant R1103C is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6‑33443859‑C‑T). Prediction tools that agree on a benign effect include REVEL, ESM1b, AlphaMissense‑Default, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, and FATHMM. The SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is inconclusive (two benign, two pathogenic). AlphaMissense‑Optimized reports a benign outcome, while Foldetta results are unavailable. Overall, the balance of evidence favors a pathogenic interpretation, which is in contrast to the ClinVar designation of uncertain significance.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 16-33443859-C-T63.92e-6-2.440Likely Benign0.246Likely BenignLikely Benign0.140Likely Benign-3.01Deleterious0.996Probably Damaging0.787Possibly Damaging2.41Pathogenic0.01Affected3.775-3-47.0-53.05
c.3308G>A
R1103H
2D
AIThe SynGAP1 missense variant R1103H is listed in ClinVar (ID 577408.0) as benign and is present in gnomAD (variant ID 6‑33443860‑G‑A). Prediction tools that classify the variant as benign include REVEL, PROVEAN, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM Consensus. Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, and FATHMM. High‑accuracy assessments show AlphaMissense‑Optimized as benign, the SGM Consensus (a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) as benign, while Foldetta results are unavailable. Overall, the majority of predictions support a benign impact, and this conclusion aligns with the ClinVar benign classification, indicating no contradiction.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignBenign/Likely benign 36-33443860-G-A312.03e-5-3.622Likely Benign0.156Likely BenignLikely Benign0.116Likely Benign-1.97Neutral0.996Probably Damaging0.733Possibly Damaging2.49Pathogenic0.01Affected3.775201.3-19.05
c.1428C>G
F476L
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant F476L is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6‑33438460‑C‑G). Functional prediction tools cluster into two groups: benign predictions come from REVEL, PROVEAN, SIFT, and FATHMM, while pathogenic predictions arise from polyPhen‑2 HumDiv, polyPhen‑2 HumVar, ESM1b, AlphaMissense‑Default, and AlphaMissense‑Optimized. Tools that returned uncertain results—FoldX, Rosetta, Foldetta, and premPS—do not contribute to the assessment. High‑accuracy methods give the following: AlphaMissense‑Optimized predicts pathogenic; the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is inconclusive, with two pathogenic and two benign calls; Foldetta also reports an uncertain stability change. Overall, the balance of evidence favors a pathogenic effect for F476L, which contrasts with the ClinVar designation of uncertain significance.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
GAPUncertain 26-33438460-C-G42.48e-6-10.109Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.180Likely Benign1.00Ambiguous0.11.04Ambiguous1.02Ambiguous0.75Ambiguous-1.10Neutral0.997Probably Damaging0.978Probably Damaging3.53Benign0.60Tolerated3.4022201.0-34.02235.916.10.00.1-0.20.0XPotentially BenignIn the WT simulations, the phenyl ring of Phe476, located at the end of an α-helix (res. Ala461-Phe476), packs with the hydrophobic side chains of Leu482 and Ile483. Additionally, Phe476 stacks with the Arg475 side chain on the preceding α-α loop connecting the two α-helices (res. Ala461-Phe476 and res. Leu489-Glu519) near the GAP-Ras interface.In the variant simulations, Leu476 can maintain hydrophobic packing with neighboring residues, although not as efficiently as the phenylalanine in the WT system. The absence of Phe476/Arg475 stacking weakens the integrity of the α-helix end in the variant simulations. Nonetheless, no large-scale adverse effects are observed in the simulations. Lastly, the potential effect of the residue swap on SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.1540A>T
I514F
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant I514F is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Prediction tools that classify the variant as benign include only FATHMM. All other evaluated algorithms—REVEL, FoldX, Rosetta, Foldetta, premPS (uncertain), PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, AlphaMissense‑Default, and AlphaMissense‑Optimized—report it as pathogenic or likely pathogenic. High‑accuracy assessments further support a deleterious effect: AlphaMissense‑Optimized predicts pathogenicity; the SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, also indicates pathogenicity; and Foldetta, which integrates FoldX‑MD and Rosetta stability calculations, classifies the variant as pathogenic. Based on the overwhelming consensus of pathogenic predictions, the variant is most likely pathogenic, which is consistent with its ClinVar uncertain status rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-13.383Likely Pathogenic0.962Likely PathogenicLikely Pathogenic0.601Likely Pathogenic2.35Destabilizing0.33.74Destabilizing3.05Destabilizing0.93Ambiguous-3.98Deleterious0.997Probably Damaging0.993Probably Damaging2.89Benign0.00Affected3.373501-1.734.02
c.1558T>C
S520P
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant S520P is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Prediction tools that assess pathogenicity all converge on a deleterious effect: REVEL, FoldX, Rosetta, Foldetta, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized all report a pathogenic outcome, while premPS remains inconclusive. No tool predicts a benign effect. High‑accuracy assessments reinforce this view: AlphaMissense‑Optimized is pathogenic; the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is “Likely Pathogenic”; and Foldetta, which integrates FoldX‑MD and Rosetta stability calculations, is pathogenic. Overall, the evidence strongly supports a pathogenic impact for S520P, and this conclusion does not contradict the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-12.707Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.855Likely Pathogenic3.72Destabilizing0.88.86Destabilizing6.29Destabilizing0.83Ambiguous-4.57Deleterious0.997Probably Damaging0.986Probably Damaging-1.32Pathogenic0.01Affected1-1-0.810.04
c.1730C>G
A577G
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant A577G is listed in ClinVar as Benign (ClinVar ID 1010280.0) and is present in gnomAD (ID 6‑33440782‑C‑G). Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN). Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and FATHMM. Predictions that are inconclusive (FoldX, Rosetta, Foldetta, premPS) are treated as unavailable. High‑accuracy methods give a benign verdict: AlphaMissense‑Optimized is benign, the SGM‑Consensus is Likely Benign, and Foldetta is uncertain. Overall, the majority of reliable predictions support a benign impact, which is consistent with the ClinVar status and does not contradict it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignGAPBenign/Likely benign 26-33440782-C-G16.20e-7-5.717Likely Benign0.268Likely BenignLikely Benign0.443Likely Benign0.83Ambiguous0.01.02Ambiguous0.93Ambiguous0.86Ambiguous-1.84Neutral0.997Probably Damaging0.990Probably Damaging-1.31Pathogenic0.31Tolerated3.373410-2.2-14.03158.723.60.00.00.00.0XPotentially BenignAla577 is located near the end and outer surface of an α-helix (res. Arg563-Glu578), where its methyl group does not form any particular interactions in the WT simulations. The introduced residue, glycine, is known as an “α-helix breaker.” However, the residue swap caused only minor helix shortening in one of the replica simulations for the variant system. Regardless, the residue swap seems to be well tolerated based on the variant simulations.
c.2113A>C
K705Q
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 K705Q missense variant (ClinVar ID 3699560.0) is listed as “Uncertain” in ClinVar and is present in gnomAD (variant ID 6‑33441372‑A‑C). Prediction tools that uniformly indicate a benign effect include REVEL, FoldX, Rosetta, Foldetta, premPS, PROVEAN, SIFT, ESM1b, FATHMM, and AlphaMissense‑Optimized. In contrast, polyPhen‑2 (both HumDiv and HumVar models) predict a pathogenic outcome. High‑accuracy assessments show AlphaMissense‑Optimized as benign; the SGM Consensus—derived from a majority vote of AlphaMissense‑Default (uncertain), ESM1b (benign), FATHMM (benign), and PROVEAN (benign)—also yields a benign classification; Foldetta, which integrates FoldX‑MD and Rosetta stability outputs, predicts benign. Overall, the preponderance of evidence supports a benign impact for K705Q, and this conclusion does not contradict the ClinVar “Uncertain” status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignGAPUncertain 16-33441372-A-C16.20e-7-5.787Likely Benign0.436AmbiguousLikely Benign0.142Likely Benign-0.10Likely Benign0.00.33Likely Benign0.12Likely Benign-0.02Likely Benign-0.24Neutral0.997Probably Damaging0.969Probably Damaging3.42Benign0.78Tolerated3.4710110.4-0.04
c.2369C>G
T790S
2D
AIThe SynGAP1 missense variant T790S is listed in ClinVar (ID 1020340.0) with an “Uncertain” clinical significance and is not reported in gnomAD. Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (Likely Benign). In contrast, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and FATHMM predict a pathogenic impact. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus also as likely benign; a Foldetta stability analysis is unavailable. Overall, the majority of evidence points to a benign effect, and this is consistent with the ClinVar “Uncertain” status rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignSH3-binding motifUncertain 1-3.914Likely Benign0.123Likely BenignLikely Benign0.134Likely Benign-1.83Neutral0.997Probably Damaging0.989Probably Damaging2.39Pathogenic0.33Tolerated3.64611-0.1-14.03
c.2420A>G
Y807C
2D
AIThe SynGAP1 missense variant Y807C is listed in ClinVar with an “Uncertain” status (ClinVar ID 2119812.0) and is present in gnomAD (ID 6‑33442972‑A‑G). Prediction tools that agree on a benign effect include REVEL, AlphaMissense‑Default, and AlphaMissense‑Optimized. Tools that agree on a pathogenic effect are PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, and FATHMM; ESM1b is uncertain. High‑accuracy assessments show AlphaMissense‑Optimized predicting benign, while the SGM Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) predicts pathogenic. Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, has no available result for this variant. Overall, the majority of predictions (five pathogenic vs. three benign) and the SGM Consensus support a pathogenic interpretation, whereas AlphaMissense‑Optimized alone suggests benign. The variant is most likely pathogenic based on the collective evidence, and this conclusion is not contradicted by the ClinVar “Uncertain” status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
SH3-binding motifUncertain 16-33442972-A-G16.20e-7-7.228In-Between0.204Likely BenignLikely Benign0.243Likely Benign-3.89Deleterious0.997Probably Damaging0.934Probably Damaging2.42Pathogenic0.01Affected3.7750-23.8-60.04
c.2514C>A
N838K
2D
AIThe SynGAP1 missense variant N838K is listed in ClinVar with an “Uncertain” status (ClinVar ID 1377909.0) and is not reported in gnomAD. Prediction tools that agree on a benign effect include REVEL, SIFT, and FATHMM, whereas those that predict a pathogenic effect are PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, ESM1b, and AlphaMissense‑Default. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports the variant as “Likely Pathogenic.” High‑accuracy assessments show AlphaMissense‑Optimized as “Uncertain,” SGM‑Consensus as “Likely Pathogenic,” and Foldetta (a protein‑folding stability method combining FoldX‑MD and Rosetta outputs) has no available result for this variant. Overall, the balance of evidence leans toward a pathogenic interpretation, which does not contradict the current ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicUncertain 2-8.470Likely Pathogenic0.862Likely PathogenicAmbiguous0.097Likely Benign-2.78Deleterious0.997Probably Damaging0.995Probably Damaging2.69Benign0.16Tolerated3.77510-0.414.07
c.2561G>A
R854H
2D
AIThe SynGAP1 missense variant R854H is listed in ClinVar with an “Uncertain” status and is present in gnomAD (variant ID 6‑33443113‑G‑A). Prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (which is “Likely Benign”). In contrast, polyPhen‑2 (HumDiv and HumVar) and SIFT all predict a pathogenic impact. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus also as likely benign; the Foldetta stability analysis is unavailable. Overall, the majority of evidence points to a benign effect, and this conclusion does not contradict the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33443113-G-A42.48e-6-3.686Likely Benign0.094Likely BenignLikely Benign0.183Likely Benign-1.38Neutral0.997Probably Damaging0.899Possibly Damaging4.07Benign0.04Affected3.883201.3-19.05
c.2608C>G
L870V
2D
AIThe SynGAP1 missense variant L870V is listed in ClinVar (ID 946946.0) with an “Uncertain” status and is not reported in gnomAD. Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN). In contrast, PolyPhen‑2 (HumDiv and HumVar) predict a pathogenic outcome. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as likely benign; the Foldetta protein‑folding stability analysis is unavailable for this variant. Overall, the majority of evidence points to a benign impact, and this conclusion does not conflict with the ClinVar designation of uncertainty.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 1-4.123Likely Benign0.300Likely BenignLikely Benign0.111Likely Benign-1.19Neutral0.997Probably Damaging0.992Probably Damaging2.64Benign0.12Tolerated3.883210.4-14.03
c.2619C>G
S873R
2D
AIThe SynGAP1 missense variant S873R is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6‑33443171‑C‑G). Functional prediction tools cluster into two groups: benign predictions come from REVEL, SIFT, ESM1b, and FATHMM, while pathogenic predictions arise from PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, AlphaMissense‑Default, and AlphaMissense‑Optimized. High‑accuracy assessments show AlphaMissense‑Optimized as pathogenic; the SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is inconclusive (two pathogenic versus two benign votes), and Foldetta stability analysis is unavailable. Overall, the balance of evidence favors a pathogenic effect, which contrasts with the ClinVar designation of uncertain significance.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 16-33443171-C-G16.20e-7-5.856Likely Benign0.976Likely PathogenicLikely Pathogenic0.192Likely Benign-2.74Deleterious0.997Probably Damaging0.995Probably Damaging2.67Benign0.06Tolerated3.7750-1-3.769.11
c.2945A>G
Y982C
2D
AIThe SynGAP1 missense variant Y982C is listed in ClinVar as Benign (ClinVar ID 1310818.0) and is present in the gnomAD database (gnomAD ID 6‑33443497‑A‑G). Prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Optimized, and the SGM‑Consensus (Likely Benign). Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, and AlphaMissense‑Default. High‑accuracy assessments show AlphaMissense‑Optimized classifying the variant as benign, while the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) also favors a benign outcome. Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, has no available result for this variant. Overall, the majority of evidence points to a benign impact, which aligns with the ClinVar classification and does not contradict it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignLikely Benign 16-33443497-A-G21.24e-6-6.256Likely Benign0.746Likely PathogenicLikely Benign0.195Likely Benign-1.67Neutral0.997Probably Damaging0.923Probably Damaging3.87Benign0.00Affected4.3210-23.8-60.04
c.3020G>A
S1007N
2D
AIThe SynGAP1 missense variant S1007N is listed in ClinVar (ID 2759915.0) as Benign and is not reported in gnomAD. Prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN). Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, and AlphaMissense‑Default. AlphaMissense‑Optimized is uncertain, and Foldetta (a protein‑folding stability method combining FoldX‑MD and Rosetta outputs) has no available result for this variant. Overall, the majority of high‑accuracy predictors (including the SGM‑Consensus) indicate a benign impact, and the single uncertain AlphaMissense‑Optimized result does not overturn this consensus. Therefore, the variant is most likely benign, and this conclusion is consistent with its ClinVar status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignBenign 1-5.113Likely Benign0.803Likely PathogenicAmbiguous0.075Likely Benign-1.54Neutral0.997Probably Damaging0.992Probably Damaging2.65Benign0.01Affected3.77511-2.727.03
c.3251C>A
P1084H
2D
AIThe SynGAP1 missense variant P1084H is listed in ClinVar with an “Uncertain” status and is present in gnomAD (ID 6‑33443803‑C‑A). Prediction tools that agree on a benign effect include REVEL, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (which reports “Likely Benign”). Tools that predict a pathogenic effect are PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and SIFT. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as likely benign; Foldetta results are unavailable. Overall, the majority of evidence points to a benign impact, and this is consistent with the ClinVar designation of uncertainty rather than a definitive pathogenic claim. Thus, the variant is most likely benign, and its prediction profile does not contradict the current ClinVar status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33443803-C-A16.31e-7-4.125Likely Benign0.323Likely BenignLikely Benign0.134Likely Benign-3.16Deleterious0.997Probably Damaging0.840Possibly Damaging3.96Benign0.00Affected3.775-20-1.640.02
c.3413C>A
S1138Y
2D
AIThe SynGAP1 missense variant S1138Y is listed in ClinVar with an “Uncertain” significance and is present in gnomAD (ID 6‑33444448‑C‑A). Prediction tools that agree on a benign effect include REVEL, ESM1b, FATHMM, AlphaMissense‑Optimized, and the SGM Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN). Tools that predict a pathogenic effect are PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and SIFT. AlphaMissense‑Default is uncertain, and Foldetta (a protein‑folding stability method combining FoldX‑MD and Rosetta outputs) has no available result for this variant. High‑accuracy predictions from AlphaMissense‑Optimized and the SGM Consensus both indicate a benign outcome, while Foldetta data are missing. Overall, the balance of evidence—especially from the high‑accuracy tools—suggests that the variant is most likely benign. This benign prediction does not contradict the ClinVar status, which remains uncertain.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 16-33444448-C-A31.86e-6-6.610Likely Benign0.449AmbiguousLikely Benign0.391Likely Benign-2.51Deleterious0.997Probably Damaging0.996Probably Damaging5.41Benign0.05Affected4.324-2-3-0.576.10
c.3434A>G
N1145S
2D
AIThe SynGAP1 missense variant N1145S is listed in ClinVar with an “Uncertain” status and is present in gnomAD (ID 6‑33444469‑A‑G). Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN). In contrast, PolyPhen‑2 (both HumDiv and HumVar models) predict a pathogenic outcome. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as likely benign; the Foldetta stability analysis is unavailable. Overall, the majority of evidence points to a benign effect, and this conclusion does not contradict the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33444469-A-G21.24e-6-0.989Likely Benign0.126Likely BenignLikely Benign0.308Likely Benign-1.15Neutral0.997Probably Damaging0.989Probably Damaging5.55Benign0.89Tolerated4.324112.7-27.03
c.3731G>A
S1244N
2D
AIThe SynGAP1 missense variant S1244N is listed in ClinVar with an “Uncertain” status (ClinVar ID 931075.0) and is not reported in gnomAD. Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, and AlphaMissense‑Optimized, whereas PolyPhen‑2 (HumDiv and HumVar), ESM1b, FATHMM, and AlphaMissense‑Default all predict a pathogenic outcome. High‑accuracy assessments show AlphaMissense‑Optimized as benign, while the SGM‑Consensus—derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN—indicates pathogenicity. Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, has no available result for this variant. Overall, the balance of evidence leans toward a pathogenic effect, which does not contradict the ClinVar designation of uncertainty.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicCoiled-coilUncertain 1-9.008Likely Pathogenic0.751Likely PathogenicLikely Benign0.154Likely Benign-1.87Neutral0.997Probably Damaging0.992Probably Damaging2.10Pathogenic0.15Tolerated3.77511-2.727.03
c.3794G>C
R1265T
2D
AIThe SynGAP1 missense variant R1265T is reported in ClinVar as Pathogenic (ClinVar ID 522047.0) and is not found in gnomAD. Functional prediction tools uniformly indicate a deleterious effect: REVEL, PROVEAN, PolyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized all classify the variant as pathogenic. No tool in the dataset predicts a benign outcome. High‑accuracy assessments corroborate this: AlphaMissense‑Optimized predicts pathogenicity, and the SGM Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) yields a Likely Pathogenic verdict. Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, has no available result for this variant. Overall, the consensus of all available predictions supports a pathogenic classification, which is consistent with the ClinVar status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicCoiled-coilLikely Pathogenic 1-10.129Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.529Likely Pathogenic-4.97Deleterious0.997Probably Damaging0.994Probably Damaging2.29Pathogenic0.00Affected3.775-1-13.8-55.08
c.455G>A
R152Q
2D
AIThe SynGAP1 missense variant R152Q is listed in ClinVar with an “Uncertain” status and is present in gnomAD (ID 6‑33432752‑G‑A). Prediction tools that agree on a benign effect include REVEL, PROVEAN, and FATHMM, whereas those that predict a pathogenic effect are polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, AlphaMissense‑Default, and AlphaMissense‑Optimized. The SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is inconclusive (two pathogenic, two benign). High‑accuracy assessments show AlphaMissense‑Optimized as pathogenic; the SGM Consensus remains unavailable, and Foldetta (combining FoldX‑MD and Rosetta outputs) has no reported result for this variant. Overall, the preponderance of evidence (seven pathogenic versus three benign predictions) indicates that the variant is most likely pathogenic, which does not contradict the current ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 16-33432752-G-A53.14e-6-10.336Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.181Likely Benign-2.34Neutral0.997Probably Damaging0.968Probably Damaging3.89Benign0.00Affected3.615111.0-28.06
c.514C>T
R172W
2D
AIThe SynGAP1 missense variant R172W is listed in ClinVar (ID 996892.0) with an “Uncertain” status and is present in gnomAD (variant ID 6‑33435156‑C‑T). Prediction tools that agree on a benign effect include REVEL and FATHMM. Those that predict a pathogenic effect comprise PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, and AlphaMissense‑Default; the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is “Likely Pathogenic.” AlphaMissense‑Optimized is uncertain, and Foldetta results are unavailable. High‑accuracy assessments therefore indicate a likely pathogenic outcome (SGM‑Consensus) with no definitive stabilizing‑folding evidence. Overall, the majority of computational predictions support a pathogenic classification, which does not contradict the ClinVar “Uncertain” designation.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicUncertain 26-33435156-C-T95.58e-6-10.258Likely Pathogenic0.878Likely PathogenicAmbiguous0.228Likely Benign-3.61Deleterious0.997Probably Damaging0.803Possibly Damaging3.95Benign0.00Affected3.6152-33.630.03
c.583G>C
A195P
2D
AIThe SynGAP1 missense variant A195P is listed in ClinVar as Pathogenic (ClinVar ID 375527.0) and is not reported in gnomAD. Prediction tools that indicate a benign effect are REVEL and FATHMM, whereas the remaining tools—PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus—predict a pathogenic outcome. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is “Likely Pathogenic.” High‑accuracy assessments show AlphaMissense‑Optimized as pathogenic and the SGM‑Consensus as likely pathogenic; Foldetta results are unavailable. Overall, the preponderance of evidence supports a pathogenic classification, which aligns with the ClinVar status and does not contradict it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicLikely Pathogenic 1-9.715Likely Pathogenic0.978Likely PathogenicLikely Pathogenic0.152Likely Benign-3.03Deleterious0.997Probably Damaging0.916Probably Damaging4.00Benign0.04Affected3.5461-1-3.426.04
c.600G>C
L200F
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant L200F is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6‑33435242‑G‑C). Functional prediction tools that agree on a benign effect include REVEL, premPS, PROVEAN, SIFT, FATHMM, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and AlphaMissense‑Default. Predictions that are inconclusive are FoldX, Rosetta, Foldetta, and ESM1b. High‑accuracy assessments show AlphaMissense‑Optimized as benign, the SGM Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) as benign, and Foldetta as uncertain. Overall, the majority of evidence points to a benign impact, which does not contradict the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
PHUncertain 16-33435242-G-C21.24e-6-7.606In-Between0.592Likely PathogenicLikely Benign0.094Likely Benign1.00Ambiguous0.51.45Ambiguous1.23Ambiguous0.43Likely Benign-1.97Neutral0.997Probably Damaging0.916Probably Damaging4.02Benign0.17Tolerated3.46920-1.034.02250.4-15.10.60.20.50.0XUncertainLeu200, a hydrophobic residue located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by another hydrophobic residue, phenylalanine. Both the phenyl group of Phe200 and the branched iso-butyl hydrocarbon sidechain of Leu200 occupy an inward hydrophobic niche (e.g., Leu246, Val222, Phe231) during the simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.700C>T
R234W
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 R234W missense variant is listed in ClinVar (ID 856396.0) with an “Uncertain” clinical significance and is present in gnomAD (variant ID 6‑33435551‑C‑T). Prediction tools that agree on a benign effect include premPS and FATHMM, whereas the majority of other in‑silico predictors (REVEL, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, AlphaMissense‑Default, and the SGM‑Consensus) indicate a pathogenic impact. High‑accuracy assessments show AlphaMissense‑Optimized as “Uncertain”; the SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is “Pathogenic”; and Foldetta, which integrates FoldX‑MD and Rosetta outputs, is “Uncertain.” Overall, the preponderance of evidence points to a pathogenic effect, which is consistent with the ClinVar designation of uncertainty rather than a benign classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicPHUncertain 16-33435551-C-T31.86e-6-12.625Likely Pathogenic0.947Likely PathogenicAmbiguous0.805Likely Pathogenic0.96Ambiguous0.30.69Ambiguous0.83Ambiguous0.13Likely Benign-5.52Deleterious0.997Probably Damaging0.803Possibly Damaging5.76Benign0.01Affected3.40142-33.630.03262.839.6-0.10.0-0.20.2XPotentially PathogenicThe guanidinium group of Arg234, located in a β-α loop between an anti-parallel β sheet strand (residues Gly227-Phe231) and an α helix (res. Ala236-Val250), forms a salt bridge with the carboxylate group of Glu238 in the α helix. Occasionally, it also bonds with the GAP domain residues Ser678 and Glu680. Thus, the positively charged Arg234 could contribute to the tertiary structure assembly between the PH and GAP domains. In contrast, the indole side chain of Trp234 in the variant is located on the protein surface in the variant simulations and is unable to form any interactions.
c.767A>G
N256S
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant N256S is listed in ClinVar as Pathogenic (ClinVar ID 2584352.0) and is not reported in gnomAD. Functional prediction tools show a split: benign calls come from FoldX, Rosetta, Foldetta, premPS, and FATHMM, while pathogenic calls come from SGM‑Consensus, REVEL, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, and AlphaMissense‑Default. The high‑accuracy subset gives AlphaMissense‑Optimized as Uncertain, SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) as Pathogenic, and Foldetta (combining FoldX‑MD and Rosetta outputs) as Benign. Overall, the majority of predictions support a pathogenic effect, aligning with the ClinVar classification. Therefore, the variant is most likely pathogenic, and this assessment does not contradict the ClinVar status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Likely Pathogenic 1-10.640Likely Pathogenic0.950Likely PathogenicAmbiguous0.707Likely Pathogenic0.31Likely Benign0.20.36Likely Benign0.34Likely Benign0.48Likely Benign-4.33Deleterious0.997Probably Damaging0.970Probably Damaging5.87Benign0.02Affected3.3915112.7-27.03
c.844T>A
C282S
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant C282S is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Prediction tools that indicate a benign effect include REVEL, whereas the majority of other in‑silico predictors (premPS, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus) all classify the variant as pathogenic. Stability‑based methods (FoldX, Rosetta, and Foldetta) return uncertain results and are therefore not considered evidence for or against pathogenicity. High‑accuracy assessments show AlphaMissense‑Optimized as pathogenic, the SGM‑Consensus as Likely Pathogenic, and Foldetta as uncertain. Based on the preponderance of pathogenic predictions, the variant is most likely pathogenic, which does not contradict its current ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Uncertain 1-11.846Likely Pathogenic0.958Likely PathogenicLikely Pathogenic0.460Likely Benign1.55Ambiguous0.11.23Ambiguous1.39Ambiguous1.62Destabilizing-9.19Deleterious0.997Probably Damaging0.994Probably Damaging1.64Pathogenic0.03Affected3.39180-1-3.3-16.06233.214.8-0.10.0-0.20.3XPotentially BenignThe thiol-containing side chain of Cys282, located at the beginning of an anti-parallel β sheet strand (res. Arg279-Leu286), packs against multiple hydrophobic residues (e.g., Ile268, Leu284, Trp308, Leu327). In the variant simulations, the hydroxyl-containing side chain of Ser282 is more hydrophilic and, hence, not as favorable as Cys282 for this hydrophobic niche. Due to this polarity difference, the residue swap could potentially weaken the hydrophobic packing of the C2 domain during the folding process.Moreover, because the C2 domain interacts with the membrane, there could also be a negative effect on the stability of the SynGAP-membrane association. However, no large-scale structural changes were observed during the variant simulations. The hydroxyl group of Ser282 forms a hydrogen bond with the backbone carbonyl group of His326 in another β strand (res. Ala322-Arg329), which competes directly with the backbone amide group of Glu283 within the secondary structure element.
c.901G>A
A301T
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant A301T is listed in ClinVar with an “Uncertain” status and is present in gnomAD (ID 6‑33437806‑G‑A). Prediction tools that uniformly indicate a benign effect include REVEL, FoldX, Rosetta, Foldetta, premPS, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. Only the two polyPhen‑2 implementations (HumDiv and HumVar) predict a pathogenic outcome. High‑accuracy assessments further support a benign interpretation: AlphaMissense‑Optimized is benign; the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is “Likely Benign”; and Foldetta, which integrates FoldX‑MD and Rosetta stability calculations, is benign. Overall, the majority of evidence points to a benign effect, and this is not in conflict with the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignC2Uncertain 56-33437806-G-A21.24e-6-3.448Likely Benign0.070Likely BenignLikely Benign0.150Likely Benign0.36Likely Benign0.2-0.33Likely Benign0.02Likely Benign0.03Likely Benign-0.25Neutral0.997Probably Damaging0.989Probably Damaging4.15Benign0.22Tolerated4.321410-2.530.03219.8-42.8-0.10.0-0.50.2UncertainThe methyl group of Ala301, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), points outward from the β hairpin loop, and its backbone atoms do not participate in the loop formation in the WT simulations. In the variant simulations, the hydroxyl group of the Thr301 side chain also mostly points outward; however, the guanidinium group of Arg299 is moved away from its central hairpin loop position.β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Due to its location near the membrane surface, the residue swap could also affect the C2 loop dynamics and SynGAP-membrane association. However, this is beyond the scope of the solvent-only simulations to unravel.
c.930G>C
E310D
2D
3DClick to see structure in 3D Viewer
AISynGAP1 E310D is reported in ClinVar (ID 975473.0) as Pathogenic and is not found in gnomAD. Prediction tools that assess the variant’s effect all converge on a deleterious outcome: REVEL, FoldX (uncertain), Rosetta, Foldetta, premPS, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized all indicate pathogenicity, leaving no tool in the benign category. High‑accuracy methods reinforce this view: AlphaMissense‑Optimized predicts Pathogenic; the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is Likely Pathogenic; and Foldetta, which integrates FoldX‑MD and Rosetta outputs, also reports Pathogenic. The single uncertain result from FoldX is treated as unavailable. Overall, the variant is most likely pathogenic, and this assessment is consistent with its ClinVar classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Likely Pathogenic1-11.218Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.666Likely Pathogenic1.87Ambiguous0.52.39Destabilizing2.13Destabilizing1.04Destabilizing-2.76Deleterious0.997Probably Damaging0.992Probably Damaging1.19Pathogenic0.02Affected3.3819320.0-14.03232.627.20.10.00.10.1XPotentially BenignThe carboxylate group of Glu310, located in an anti-parallel β sheet strand (res. Thr305-Asn315), is ideally positioned to interact with the hydroxyl and backbone amide groups of Thr295 on a twisted anti-parallel β strand. Because the carboxylate group can also interact with the GAP domain residues (e.g., Gln612, Tyr614), Glu310 potentially plays a key role in maintaining the tertiary assembly between the C2 and GAP domains. In the variant simulations, the carboxylate group of Asp310 can form the same interactions as glutamate; however, due to its one hydrocarbon shorter length, the connections are less stable or less optimal.
c.1136C>G
S379W
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant S379W is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6‑33438041‑C‑G). Prediction tools that indicate a benign effect include premPS, PROVEAN, FATHMM, and AlphaMissense‑Optimized. Those that predict a pathogenic impact comprise REVEL, FoldX, Rosetta, Foldetta, polyPhen‑2 (HumDiv and HumVar), SIFT, and ESM1b. The SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, yields a benign outcome. High‑accuracy assessments show AlphaMissense‑Optimized as benign, Foldetta as pathogenic, and the SGM Consensus as benign. Because the majority of conventional tools favor pathogenicity while the high‑accuracy subset is split, the overall evidence leans toward a pathogenic effect. This conclusion does not contradict the ClinVar uncertain status, which remains unresolved.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
C2Uncertain 16-33438041-C-G-8.898Likely Pathogenic0.388AmbiguousLikely Benign0.520Likely Pathogenic4.32Destabilizing3.43.56Destabilizing3.94Destabilizing0.16Likely Benign-1.02Neutral0.998Probably Damaging0.844Possibly Damaging3.82Benign0.01Affected4.3211-2-3-0.199.14271.3-75.71.41.00.60.5UncertainSer379 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like tryptophan are rarely tolerated. Although no major negative structural effects are observed in the variant simulations, Trp379 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn
c.1259T>C
F420S
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant F420S (ClinVar ID 981441.0) is reported as Pathogenic in ClinVar and is not present in gnomAD. Prediction tools largely agree on a deleterious effect: all listed predictors except FATHMM return a pathogenic or likely pathogenic call. The single benign prediction comes from FATHMM. High‑accuracy assessments reinforce this view: AlphaMissense‑Optimized predicts Pathogenic; the SGM Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) yields Likely Pathogenic; and Foldetta, which integrates FoldX‑MD and Rosetta stability outputs, also predicts Pathogenic. No predictions or folding‑stability results are missing or inconclusive. Based on the consensus of these tools, the variant is most likely pathogenic, consistent with its ClinVar status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPLikely Pathogenic 1-13.231Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.544Likely Pathogenic5.34Destabilizing0.15.73Destabilizing5.54Destabilizing2.14Destabilizing-7.43Deleterious0.998Probably Damaging0.938Probably Damaging3.09Benign0.00Affected3.3729-3-2-3.6-60.10213.357.80.00.0-0.40.1XPotentially PathogenicIn the WT, the phenyl ring of the Phe420 side chain, located on an α helix (res. Met414-Glu436), packs against hydrophobic residues in the interhelix area of the GAP domain (e.g., Leu689, Leu714, Leu717, Leu718). Although no large-scale adverse effects are seen in the variant simulations, the polar hydroxyl group of Ser420 is not suitable for the hydrophobic inter-helix space. Thus, the residue swap could affect protein folding. In theory, the introduced hydroxyl group could also lower the α helix integrity by H-bonding with the backbone atoms of neighboring residues in the same α helix. However, no such effect is seen in the variant simulations.
c.1390T>G
F464V
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 F464V variant is listed in ClinVar with an “Uncertain” status (ClinVar ID 1716596.0) and is not reported in gnomAD. Prediction tools that agree on a benign effect include only FATHMM; all other evaluated algorithms (REVEL, FoldX, Rosetta, Foldetta, premPS, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized) predict a pathogenic impact, and the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) also indicates likely pathogenic. High‑accuracy assessments further support pathogenicity: AlphaMissense‑Optimized is pathogenic, the SGM‑Consensus is pathogenic, and Foldetta (combining FoldX‑MD and Rosetta outputs) is pathogenic. Based on the collective predictions, the variant is most likely pathogenic, which does not contradict the current ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-12.254Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.592Likely Pathogenic3.61Destabilizing0.12.89Destabilizing3.25Destabilizing1.40Destabilizing-6.96Deleterious0.998Probably Damaging0.996Probably Damaging3.36Benign0.04Affected3.3734-1-11.4-48.04210.140.5-0.10.0-0.90.3XPotentially PathogenicThe phenyl ring of Phe464, located in the middle of an α helix (res. Ala461–Phe476), packs against hydrophobic residues (e.g., Met468, Leu451, Leu455, and Tyr428) in the inter-helix space formed with two other α helices (res. Asn440-Lys460 and res. Pro413-Glu436). The iso-propyl side chain of Val464 is similarly hydrophobic but considerably smaller than the original phenyl ring of Phe464. To compensate for the size difference, neighboring residues need to fill in the gap in the variant simulations.The phenolic side chain of Tyr428, located at the middle bend of an α helix (res. Glu436-Pro413), assumes a new position in the inter-helix space or rotates inward next to the third α helix (res. Asn440-Lys460) when the stable H-bond between Tyr428 and Asp467 seen in the WT simulations breaks. The residue swap also leads to the loss of the methionine-aromatic interaction between the Met468 and Phe464 side chains, which could weaken the integrity of the parent α helix (res. Ala461-Phe476). Although the simulations likely underestimate the full adverse effect of the introduced mutation during folding, the two opposing α helices (res. Ala461–Phe476 and res. Glu436-Pro413) move substantially closer to each other in the variant simulations.
c.1402A>G
M468V
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant M468V is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign predictions come from PROVEAN, SIFT, and AlphaMissense‑Optimized, while pathogenic predictions are made by REVEL, FoldX, Rosetta, Foldetta, polyPhen‑2 (HumDiv and HumVar), ESM1b, and FATHMM. The remaining tools, premPS and AlphaMissense‑Default, return uncertain results. High‑accuracy assessments further clarify the variant’s impact: AlphaMissense‑Optimized predicts a benign effect; the SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, indicates pathogenicity; and Foldetta, which integrates FoldX‑MD and Rosetta outputs, also classifies the variant as pathogenic. Overall, the preponderance of evidence points to a pathogenic effect, which does not contradict the ClinVar designation of uncertain significance.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
GAPUncertain 1-9.461Likely Pathogenic0.361AmbiguousLikely Benign0.570Likely Pathogenic2.69Destabilizing0.12.20Destabilizing2.45Destabilizing0.89Ambiguous-1.66Neutral0.998Probably Damaging0.993Probably Damaging-1.21Pathogenic0.08Tolerated3.3731122.3-32.06
c.1485A>C
E495D
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant E495D is listed in ClinVar with an uncertain significance (ClinVar ID 2000233.0) and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign predictions from SIFT and ESM1b, and pathogenic predictions from REVEL, PROVEAN, polyPhen‑2 (HumDiv and HumVar), FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. The high‑accuracy consensus (SGM Consensus) derived from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN classifies the variant as likely pathogenic. AlphaMissense‑Optimized also predicts pathogenicity, whereas Foldetta, which integrates FoldX‑MD and Rosetta outputs, remains uncertain. Overall, the majority of evidence points to a pathogenic effect, which does not contradict the ClinVar uncertain status but suggests a higher likelihood of deleterious impact.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPConflicting 2-3.574Likely Benign0.958Likely PathogenicLikely Pathogenic0.566Likely Pathogenic1.39Ambiguous0.11.03Ambiguous1.21Ambiguous0.98Ambiguous-2.52Deleterious0.998Probably Damaging0.989Probably Damaging-1.41Pathogenic0.17Tolerated3.3735320.0-14.03220.638.80.00.00.10.1XXUncertainGlu495 is located in the α-helix (res. Leu489-Glu519), and its carboxylate group forms salt bridges with the neighboring Lys492 and with Arg596 on an opposing α-helix (res. Glu582-Met603) in the WT simulations. In the variant simulations, the acidic carboxylate side chain of Asp495 can also form salt bridges with both Lys492 and Arg596. However, the shorter side chain of aspartate tends to favor forming a salt bridge with the nearby Arg499 on the same α-helix instead. Asp495 might not maintain the salt bridge with Arg596 on the opposing α-helix as efficiently as Glu495 in the WT, potentially weakening the tertiary structure. Regardless, the potential negative effect is likely to be minor, with no deleterious effects observed on the protein structure during the simulations. However, due to its location at the GAP-Ras interface, the effect of the residue swap on SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.1606T>G
L536V
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant L536V is listed in ClinVar (ID 1690714.0) with an uncertain significance designation and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign predictions come from SIFT, AlphaMissense‑Default, and AlphaMissense‑Optimized; pathogenic predictions arise from REVEL, premPS, PROVEAN, polyPhen‑2 (HumDiv and HumVar), ESM1b, and FATHMM. The SGM‑Consensus, which aggregates AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a likely pathogenic verdict. High‑accuracy assessments show AlphaMissense‑Optimized as benign, SGM‑Consensus as likely pathogenic, and Foldetta (combining FoldX‑MD and Rosetta outputs) remains uncertain. No evidence from FoldX or Rosetta alone is available. Overall, the majority of evidence points toward a pathogenic effect, which does not contradict the ClinVar uncertain status but suggests a higher likelihood of pathogenicity.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-9.014Likely Pathogenic0.269Likely BenignLikely Benign0.586Likely Pathogenic1.25Ambiguous0.31.22Ambiguous1.24Ambiguous1.20Destabilizing-2.81Deleterious0.998Probably Damaging0.992Probably Damaging-1.34Pathogenic0.09Tolerated3.3734210.4-14.03204.726.40.20.0-0.20.2XPotentially BenignLeu536 is located on an α-helix (res. Ala533-Val560) at the membrane interface. The iso-butyl group of Leu536 interacts with nearby hydrophobic residues in the preceding loop (e.g., Val526, Pro528, Cys531). In the variant simulations, the iso-propyl side chain of Val536 forms similar hydrophobic interactions as Leu536 in the WT, causing no negative structural effects.
c.1760G>C
R587T
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant R587T is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Prediction tools that agree on a benign effect include SIFT and AlphaMissense‑Optimized, whereas a majority of tools (REVEL, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, ESM1b, FATHMM, AlphaMissense‑Default, and the SGM‑Consensus) predict a pathogenic outcome. Uncertain predictions from FoldX, Rosetta, Foldetta, and premPS are treated as unavailable. High‑accuracy assessments show AlphaMissense‑Optimized as benign, the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) as pathogenic, and Foldetta as uncertain. Overall, the preponderance of evidence points to a pathogenic effect for R587T, which does not contradict the ClinVar “Uncertain” classification but suggests that the variant is more likely pathogenic rather than benign.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-9.697Likely Pathogenic0.784Likely PathogenicLikely Benign0.603Likely Pathogenic1.14Ambiguous0.20.74Ambiguous0.94Ambiguous0.98Ambiguous-4.71Deleterious0.998Probably Damaging0.847Possibly Damaging-1.19Pathogenic0.08Tolerated3.3735-1-13.8-55.08227.287.40.00.00.50.1XPotentially PathogenicThe guanidinium group of Arg587, located on an α helix (res. Glu582-Met603), is constantly rotating and breaking/forming multiple hydrogen bonds and/or salt bridges at the surface intersection of α helices in the WT simulations. The positively charged Arg587 side chain can form a salt bridge with either the carboxylate group of Asp583 or Asp586 in the same helix, or with Glu480 on the opposing short helical loop structure (res. Glu480-Leu482).Importantly, the Arg587 side chain also hydrogen bonds with the backbone carbonyl groups of Ala634 and Asn635, as well as the carboxamide group of Asn635 at the end of another α helix (res. Asp616-Phe636). However, in the variant simulations, the neutral hydroxyl group of the Thr587 side chain is unable to form these salt bridges. Due to its smaller size, it also does not form the hydrogen bonds that the Arg587 side chain could. Instead, the hydroxyl group of Thr587 hydrogen bonds with the backbone carbonyl group of Asp583, which could weaken the integrity of the α helix, although this is not observed in the simulations.Overall, the residue swap could weaken the tertiary structure assembly and negatively affect the overall protein folding process.
c.1873C>G
L625V
2D
AISynGAP1 missense variant L625V is listed in ClinVar with an uncertain significance (ClinVar ID 3392716.0) and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign predictions come from REVEL and FATHMM, while pathogenic predictions are made by premPS, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, and AlphaMissense‑Default. Four tools (FoldX, Rosetta, Foldetta, AlphaMissense‑Optimized) give inconclusive results. High‑accuracy assessments show AlphaMissense‑Optimized as uncertain, SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) as likely pathogenic, and Foldetta as uncertain. Overall, the majority of evidence points toward a pathogenic effect, which does not contradict the ClinVar uncertain status but suggests a higher likelihood of pathogenicity.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-11.319Likely Pathogenic0.833Likely PathogenicAmbiguous0.480Likely Benign1.80Ambiguous0.71.69Ambiguous1.75Ambiguous1.42Destabilizing-2.96Deleterious0.998Probably Damaging0.992Probably Damaging3.07Benign0.01Affected210.4-14.03
c.2068T>C
S690P
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant S690P is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Prediction tools that indicate a benign effect are REVEL and FATHMM, whereas the remaining tools (FoldX, Rosetta, Foldetta, premPS, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus) all predict a pathogenic outcome. High‑accuracy assessments further support a deleterious impact: AlphaMissense‑Optimized scores the variant as pathogenic; the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) is “Likely Pathogenic”; and Foldetta, which integrates FoldX‑MD and Rosetta stability predictions, also classifies the variant as pathogenic. Overall, the preponderance of evidence from multiple independent predictors indicates that the variant is most likely pathogenic, a conclusion that does not contradict the current ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-14.568Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.431Likely Benign4.84Destabilizing0.34.40Destabilizing4.62Destabilizing1.42Destabilizing-4.77Deleterious0.998Probably Damaging0.790Possibly Damaging3.44Benign0.01Affected3.42171-1-0.810.04207.515.10.10.0-0.10.2XXPotentially PathogenicThe hydroxyl side chain of Ser690, located in an α-helix (res. Leu696-Leu685), forms a hydrogen bond with the backbone carbonyl group of Ser410 in an anti-parallel β-sheet of the C2 domain (res. Ile411-Ala399). In the variant simulations, the pyrrolidine side chain of Pro690 cannot form hydrogen bonds with the C2 domain residue, resulting in the loss of this inter-domain connection. Additionally, prolines lack a free amide group necessary for hydrogen bonding with the carbonyl group of Gly686, introducing a slight bend in the α-helix and compromising its integrity.
c.2627C>T
S876L
2D
AISynGAP1 variant S876L is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign predictions come from REVEL, ESM1b, FATHMM, and AlphaMissense‑Optimized, while pathogenic predictions arise from PROVEAN, polyPhen‑2 (HumDiv and HumVar), and SIFT. AlphaMissense‑Default remains uncertain. High‑accuracy assessments show AlphaMissense‑Optimized predicts a benign effect; the SGM Consensus, derived from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is inconclusive and therefore unavailable; Foldetta stability analysis is also unavailable. Overall, the majority of available predictions favor a benign impact, suggesting the variant is most likely benign. This conclusion does not conflict with the ClinVar uncertain status, which reflects the current lack of definitive evidence.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 2-5.856Likely Benign0.489AmbiguousLikely Benign0.249Likely Benign-3.56Deleterious0.998Probably Damaging0.992Probably Damaging2.57Benign0.05Affected3.775-2-34.626.08
c.3254G>A
R1085Q
2D
AIThe SynGAP1 missense variant R1085Q (ClinVar ID 1729448.0) is listed as ClinVar status Uncertain and is present in gnomAD (6‑33443806‑G‑A). Functional prediction tools show a split opinion: benign predictions come from REVEL, PROVEAN, ESM1b, and FATHMM, whereas pathogenic predictions are reported by polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, and AlphaMissense‑Default. The SGM‑Consensus, which aggregates AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is classified as Likely Benign. High‑accuracy assessments further support a benign interpretation: AlphaMissense‑Optimized predicts benign, and the SGM‑Consensus (majority vote) also favors benign. No Foldetta stability analysis is available for this variant. Overall, the majority of computational evidence points to a benign effect, which is consistent with the ClinVar uncertain designation rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33443806-G-A53.16e-6-3.843Likely Benign0.589Likely PathogenicLikely Benign0.224Likely Benign-1.43Neutral0.998Probably Damaging0.988Probably Damaging2.73Benign0.02Affected3.775111.0-28.06
c.3494C>T
S1165L
2D
AIThe SynGAP1 missense variant S1165L is listed in ClinVar with an uncertain significance (ClinVar ID 225899.0) and is not reported in gnomAD. Functional prediction tools show a split: benign predictions come from REVEL, PROVEAN, SIFT, ESM1b, and FATHMM, while pathogenic predictions arise from polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and AlphaMissense‑Default. Grouping by consensus, the benign‑predicted tools outnumber the pathogenic ones. High‑accuracy assessments further clarify the picture: the SGM‑Consensus, which aggregates AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, leans toward benign (Likely Benign); AlphaMissense‑Optimized remains uncertain, and Foldetta data are unavailable. Overall, the majority of evidence points to a benign effect, aligning with the ClinVar uncertain status rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignConflicting 2-2.984Likely Benign0.793Likely PathogenicAmbiguous0.166Likely Benign-2.01Neutral0.998Probably Damaging0.992Probably Damaging2.60Benign0.33Tolerated3.883-3-24.626.0810.1016/j.ajhg.2020.11.011
c.3557C>T
S1186L
2D
AIThe SynGAP1 missense variant S1186L (ClinVar ID 930096.0) is listed as Uncertain in ClinVar and is present in gnomAD (ID 6‑33444592‑C‑T). Prediction tools that agree on a benign effect include REVEL, ESM1b, and FATHMM, whereas those that predict a pathogenic effect are PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, and AlphaMissense‑Default. AlphaMissense‑Optimized reports an uncertain outcome. The high‑accuracy consensus (SGM Consensus) derived from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN yields a tie, leaving the result inconclusive. Foldetta, which integrates FoldX‑MD and Rosetta stability calculations, has no available output for this variant. Overall, the majority of evidence points toward a pathogenic impact, and this assessment does not contradict the ClinVar Uncertain classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Coiled-coilUncertain 16-33444592-C-T-4.829Likely Benign0.923Likely PathogenicAmbiguous0.177Likely Benign-2.58Deleterious0.998Probably Damaging0.992Probably Damaging2.65Benign0.04Affected3.824-3-24.626.08
c.3572G>A
R1191Q
2D
AIThe SynGAP1 missense variant R1191Q is listed in ClinVar with an “Uncertain” status and is present in gnomAD (variant ID 6‑33444607‑G‑A). Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, and FATHMM, while polyPhen‑2 (HumDiv and HumVar) and AlphaMissense‑Default predict a pathogenic outcome. The SGM‑Consensus, which aggregates AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a “Likely Benign” classification. High‑accuracy assessments show AlphaMissense‑Optimized as “Uncertain”; the SGM‑Consensus (majority vote) remains “Likely Benign”; and Foldetta (a protein‑folding stability method combining FoldX‑MD and Rosetta) has no available result for this variant. Overall, the majority of evidence points to a benign effect, and this is not contradictory to the ClinVar “Uncertain” designation.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignCoiled-coilUncertain 26-33444607-G-A95.58e-6-1.069Likely Benign0.943Likely PathogenicAmbiguous0.343Likely Benign-1.41Neutral0.998Probably Damaging0.992Probably Damaging2.68Benign0.08Tolerated3.824111.0-28.06
c.3686A>C
Q1229P
2D
AIThe SynGAP1 missense variant Q1229P is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Prediction tools that agree on a benign effect include REVEL and SIFT, whereas the majority of tools predict a pathogenic impact: PROVEAN, polyPhen‑2 (HumDiv and HumVar), ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (which is a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN). High‑accuracy assessments further support pathogenicity: AlphaMissense‑Optimized is pathogenic, and the SGM‑Consensus is “Likely Pathogenic.” No Foldetta stability prediction is available for this variant. Overall, the preponderance of evidence points to a pathogenic effect, and this conclusion does not contradict the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicCoiled-coilUncertain 1-10.397Likely Pathogenic0.980Likely PathogenicLikely Pathogenic0.422Likely Benign-3.69Deleterious0.998Probably Damaging0.995Probably Damaging1.75Pathogenic0.12Tolerated3.7750-11.9-31.01
c.3923G>A
R1308H
2D
AIThe SynGAP1 missense variant R1308H (ClinVar ID 1996244.0) is listed as Uncertain in ClinVar and is present in gnomAD (ID 6‑33451797‑G‑A). Prediction tools that agree on a benign effect include REVEL, ESM1b, AlphaMissense‑Default, and AlphaMissense‑Optimized. Tools that agree on a pathogenic effect are PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, and FATHMM. High‑accuracy assessment shows AlphaMissense‑Optimized predicts a benign outcome; the SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is inconclusive, and Foldetta results are unavailable. Consequently, the overall computational evidence leans toward a pathogenic interpretation, but the presence of a single high‑accuracy benign prediction and the inconclusive SGM Consensus leave the variant’s effect uncertain. This computational assessment does not contradict the ClinVar status, which remains Uncertain.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 16-33451797-G-A31.86e-6-3.586Likely Benign0.201Likely BenignLikely Benign0.319Likely Benign-3.12Deleterious0.998Probably Damaging0.991Probably Damaging2.33Pathogenic0.00Affected3.775201.3-19.05
c.743G>C
R248P
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant R248P is listed in ClinVar as Pathogenic (ClinVar ID 1065478.0) and is not reported in gnomAD. Prediction tools that agree on a benign effect include only FATHMM, whereas all other evaluated algorithms (REVEL, FoldX, Rosetta, Foldetta, premPS, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, AlphaMissense‑Default) predict a pathogenic impact. High‑accuracy assessments further support pathogenicity: AlphaMissense‑Optimized returns a pathogenic score, the SGM Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) indicates Likely Pathogenic, and Foldetta (combining FoldX‑MD and Rosetta outputs) predicts a destabilizing, pathogenic effect. Based on the overwhelming consensus of pathogenic predictions and the high‑accuracy tool results, the variant is most likely pathogenic, which aligns with its ClinVar status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicPHLikely Pathogenic 1-10.751Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.848Likely Pathogenic3.09Destabilizing0.68.87Destabilizing5.98Destabilizing1.21Destabilizing-5.97Deleterious0.998Probably Damaging0.878Possibly Damaging5.64Benign0.00Affected3.41140-22.9-59.07223.8126.60.00.0-0.20.1XXPotentially PathogenicThe guanidinium group of Arg248, located on an α helix (residues Ala236-Val250), forms two very stable salt bridges with Asp255 (from a short α helical section, res. Lys254-Asn256) and Glu244 (from a nearby loop) in the WT simulations. In the variant simulations, the pyrrolidine side chain of Pro248 cannot form any salt bridges, which could negatively affect the tertiary structure assembly of the PH domain. Additionally, Pro248 lacks a free amide group needed for hydrogen bonding with the backbone carbonyl group of Asn245, disrupting the continuity of the α helix.
c.1067G>A
R356H
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant R356H is recorded in ClinVar as benign (ClinVar ID 2984966.0) and is present in the gnomAD database (6‑33437972‑G‑A). Prediction tools that indicate a benign effect include REVEL, Rosetta, Foldetta, and AlphaMissense‑Optimized. Those that predict a pathogenic effect comprise premPS, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, FATHMM, and AlphaMissense‑Default, with the SGM‑Consensus also labeling it likely pathogenic. High‑accuracy assessments show AlphaMissense‑Optimized as benign, the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) as pathogenic, and Foldetta (combining FoldX‑MD and Rosetta outputs) as benign. Overall, the majority of predictions support a pathogenic impact, which contradicts the ClinVar benign classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Likely Benign 16-33437972-G-A95.66e-6-11.453Likely Pathogenic0.614Likely PathogenicLikely Benign0.314Likely Benign0.59Ambiguous0.1-0.27Likely Benign0.16Likely Benign1.17Destabilizing-4.43Deleterious0.999Probably Damaging0.987Probably Damaging1.70Pathogenic0.01Affected3.3922021.3-19.05
c.1084T>C
W362R
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant W362R (ClinVar ID 41461.0) is listed as Pathogenic and is not reported in gnomAD. All available in silico predictors classify the variant as pathogenic: REVEL, FoldX, Rosetta, Foldetta, premPS, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. No tool predicts a benign effect. High‑accuracy assessments concur: AlphaMissense‑Optimized predicts Pathogenic; the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) indicates Likely Pathogenic; and Foldetta (combining FoldX‑MD and Rosetta outputs) reports Pathogenic. Thus, the variant is most likely pathogenic, and this prediction aligns with its ClinVar status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Pathogenic 2-14.004Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.706Likely Pathogenic2.64Destabilizing0.33.90Destabilizing3.27Destabilizing1.10Destabilizing-12.87Deleterious0.999Probably Damaging0.996Probably Damaging1.28Pathogenic0.00Affected3.39242-3-3.6-30.03287.5-34.1-0.20.1-0.60.2XXXPotentially PathogenicThe indole ring of Trp362, located on the surface of an anti-parallel β sheet (res. Thr359-Pro364) in the C2 domain, stacks with nearby residues (e.g., Arg401, Arg272). In the variant simulations, the guanidinium group of the introduced residue Arg362 forms a salt bridge with the carboxylate group of Glu273 and, like Trp362, stacks with other arginine residues (e.g., Arg401, Arg272). This residue is at both the C2-membrane interface and the C2-RasGTPase interface, so the residue swap could potentially affect both interactions. However, these phenomena cannot be addressed using solvent-only simulations. Notably, Arg272, which stacks with both the non-mutated Trp362 and the mutated Arg362, forms a salt bridge directly with Asp105 of Ras in the WT simulations. Therefore, the residue swap could affect the C2 domain stability, the SynGAP-membrane association, and the SynGAP-Ras association.10.1016/j.ajhg.2020.11.011
c.1202G>A
R401Q
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant R401Q is listed in ClinVar with an “Uncertain” status and is present in gnomAD (ID 6‑33438107‑G‑A). Prediction tools that agree on a benign effect are limited to FATHMM, whereas the majority of algorithms (REVEL, premPS, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus) predict a pathogenic impact. Uncertain results are reported by FoldX, Rosetta, and Foldetta. High‑accuracy methods reinforce the pathogenic prediction: AlphaMissense‑Optimized scores the variant as pathogenic, the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) indicates “Likely Pathogenic,” and Foldetta’s stability assessment is inconclusive. Overall, the preponderance of evidence points to a pathogenic effect, which does not contradict the current ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Uncertain 16-33438107-G-A-11.213Likely Pathogenic0.969Likely PathogenicLikely Pathogenic0.780Likely Pathogenic0.96Ambiguous0.11.50Ambiguous1.23Ambiguous1.20Destabilizing-3.69Deleterious0.999Probably Damaging0.978Probably Damaging5.47Benign0.04Affected3.3827111.0-28.06
c.1240A>G
M414V
2D
AISynGAP1 M414V is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Functional prediction tools show a split: benign calls come from REVEL, SIFT, FATHMM, and AlphaMissense‑Optimized; pathogenic calls come from PROVEAN, polyPhen‑2 (HumDiv and HumVar), and ESM1b; the remaining tools (FoldX, Rosetta, Foldetta, premPS, AlphaMissense‑Default) are inconclusive. The SGM consensus, which aggregates AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, yields a pathogenic majority. High‑accuracy assessments give AlphaMissense‑Optimized benign, SGM consensus pathogenic, and Foldetta uncertain. Because the high‑accuracy predictions are divided and the overall tool set is evenly split, there is no definitive evidence for pathogenicity or benignity. Thus, the variant is most likely inconclusive, and this lack of consensus does not contradict the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
GAPUncertain 1-8.003Likely Pathogenic0.541AmbiguousLikely Benign0.261Likely Benign1.81Ambiguous0.41.73Ambiguous1.77Ambiguous0.95Ambiguous-2.95Deleterious0.999Probably Damaging0.987Probably Damaging3.43Benign0.24Tolerated212.3-32.06
c.1349C>A
A450E
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant A450E is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Prediction tools that classify the variant as benign include SIFT and FATHMM, whereas the majority of tools predict it to be pathogenic: REVEL, FoldX, Rosetta, Foldetta, premPS, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, ESM1b, AlphaMissense‑Default, and AlphaMissense‑Optimized. High‑accuracy assessments further support a deleterious effect: AlphaMissense‑Optimized is pathogenic; the SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is likely pathogenic; and Foldetta, which integrates FoldX‑MD and Rosetta outputs, also predicts pathogenicity. No predictions are inconclusive. Overall, the evidence strongly favors a pathogenic impact for A450E, which does not contradict the current ClinVar status of uncertain significance.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-16.578Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.653Likely Pathogenic3.86Destabilizing0.25.23Destabilizing4.55Destabilizing1.59Destabilizing-4.67Deleterious0.999Probably Damaging0.992Probably Damaging3.38Benign0.07Tolerated3.37320-1-5.358.04240.1-82.60.00.00.70.0XXPotentially PathogenicThe methyl group of Ala450, located in an α helix (res. Asn440-Thr458), packs against hydrophobic residues in the inter-helix space (e.g., Leu692). In the variant simulations, the carboxylate group of the Glu450 side chain rotates outward, away from the hydrophobic niche, where it does not form any lasting salt bridges or H-bonds. Although the residue swap does not negatively affect the protein structure based on the simulations, it is possible that the introduction of the negatively charged residue adversely affects the folding process or tertiary assembly.
c.1354G>T
V452F
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 V452F variant is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Prediction tools that agree on a benign effect are Rosetta and FATHMM, whereas the remaining tools (REVEL, FoldX, Foldetta, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus) all predict a pathogenic impact. High‑accuracy assessments reinforce this view: AlphaMissense‑Optimized scores the variant as pathogenic; the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) is “Likely Pathogenic”; and Foldetta, which integrates FoldX‑MD and Rosetta stability outputs, also predicts pathogenicity. Based on the preponderance of evidence, the variant is most likely pathogenic, a conclusion that contradicts its current ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-14.769Likely Pathogenic0.975Likely PathogenicLikely Pathogenic0.511Likely Pathogenic9.21Destabilizing0.10.37Likely Benign4.79Destabilizing0.61Ambiguous-4.94Deleterious0.999Probably Damaging0.993Probably Damaging3.29Benign0.00Affected3.3734-1-1-1.448.04249.4-35.70.00.00.40.1XPotentially PathogenicThe iso-propyl side chain of Val452, located in the middle of an α helix (res. Val441-Ser457), packs against hydrophobic residues in the inter-helix space at the intersection of three α helices (e.g., Leu500, His453, Leu465). In the variant simulations, the larger side chain of Phe452 cannot pack against the opposing α helix (res. Leu489-Glu519) as efficiently as valine. Due to space restrictions, the phenol ring adjusts to make room by rotating slightly sideways in the inter-helix space. Besides this small and local shift, no large-scale effects on the protein structure are seen based on the simulations. However, the size difference between the swapped residues could affect the protein folding process.
c.1406C>A
A469D
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant A469D is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Prediction tools that assess the variant’s effect fall into two groups: the single benign prediction from SIFT, and a consensus of pathogenic predictions from the remaining 15 tools (REVEL, FoldX, Rosetta, Foldetta, premPS, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM Consensus). High‑accuracy methods further support a deleterious impact: AlphaMissense‑Optimized predicts pathogenic, the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is pathogenic, and Foldetta (combining FoldX‑MD and Rosetta outputs) also indicates pathogenic. Taken together, the overwhelming majority of evidence points to a pathogenic effect, which is consistent with the ClinVar uncertain status rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-14.643Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.738Likely Pathogenic5.09Destabilizing0.24.16Destabilizing4.63Destabilizing1.68Destabilizing-3.48Deleterious0.999Probably Damaging0.996Probably Damaging-1.34Pathogenic0.21Tolerated3.37340-2-5.344.01237.0-58.2-0.20.10.80.1XXPotentially PathogenicThe methyl group of Ala469, located in an α helix (res. Ala461–Phe476), interacts with hydrophobic residues (e.g., Trp572, Leu588, Met470) in an inter-helix space formed by two other α helices (res. Glu582–Ser604, res. Arg563–Gly580). In the variant simulations, Asp469 introduces a negatively charged and bulky side chain into the hydrophobic niche. Consequently, the side chain of Asp469 rotates outward, allowing the carboxylate group to form a salt bridge with the guanidinium group of Arg575 on the protein surface. This interaction affects the continuity of the parent α helix (Ala461–Phe476). Due to the importance of hydrophobic packing, the structural effects could be more pronounced during actual protein folding.
c.1408A>G
M470V
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant M470V is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Consensus from most in silico predictors indicates a pathogenic effect: SGM‑Consensus, REVEL, FoldX, Foldetta, premPS, PROVEAN, polyPhen‑2 (HumDiv and HumVar), ESM1b, and FATHMM all score it as deleterious. Only two tools—SIFT and AlphaMissense‑Optimized—classify it as benign, while Rosetta and AlphaMissense‑Default remain inconclusive. High‑accuracy assessments reinforce the pathogenic prediction: AlphaMissense‑Optimized reports a benign outcome, but the SGM‑Consensus (derived from a majority of pathogenic calls among AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) and Foldetta (combining pathogenic FoldX with uncertain Rosetta) both predict pathogenicity. Overall, the preponderance of evidence supports a likely pathogenic classification, which does not conflict with the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-8.856Likely Pathogenic0.478AmbiguousLikely Benign0.770Likely Pathogenic2.73Destabilizing0.11.88Ambiguous2.31Destabilizing1.31Destabilizing-3.58Deleterious0.999Probably Damaging0.993Probably Damaging-1.20Pathogenic0.15Tolerated3.3734122.3-32.06
c.1481T>G
I494R
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant I494R is listed in ClinVar as Pathogenic (ClinVar ID 1685460.0) and is not reported in gnomAD. Prediction tools that assess functional impact all converge on a pathogenic outcome: REVEL, FoldX, Rosetta, Foldetta, premPS, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized all indicate pathogenicity. No tool predicts a benign effect. High‑accuracy assessments reinforce this view: AlphaMissense‑Optimized is pathogenic; the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is Likely Pathogenic; and Foldetta (combining FoldX‑MD and Rosetta outputs) is pathogenic. Thus, the variant is most likely pathogenic, and this prediction aligns with its ClinVar status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPLikely Pathogenic 1-15.758Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.911Likely Pathogenic6.71Destabilizing0.33.40Destabilizing5.06Destabilizing2.19Destabilizing-6.43Deleterious0.999Probably Damaging0.957Probably Damaging-1.41Pathogenic0.00Affected3.3735-2-3-9.043.03273.9-59.80.00.00.00.1XXXXPotentially PathogenicThe sec-butyl side chain of Ile494, located in an α-helix (res. Leu489-Glu519), packs against hydrophobic residues (e.g., Phe484, Leu465, Trp572, Ala493, Met468) in an inter-helix space (res. Leu489-Glu519 and res. Ala461-Phe476). In the variant simulations, the bulkier and positively charged residue, Arg494, weakens the integrity of the opposing helix. Additionally, the bulkier Arg494 stacks with Phe484, causing the α-helices to move farther apart to accommodate it. This mutation could have substantial negative effects due to the fundamental role of hydrophobic packing, which is disrupted by Arg494 during protein folding.
c.1483G>A
E495K
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant E495K is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Functional prediction tools that agree on a benign effect include FoldX and Foldetta, whereas the majority of tools predict a pathogenic impact: REVEL, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (which is a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN). Tools with inconclusive results (Rosetta and premPS) are treated as unavailable. High‑accuracy assessments show AlphaMissense‑Optimized as pathogenic, the SGM‑Consensus also as pathogenic, while Foldetta (a protein‑folding stability method combining FoldX‑MD and Rosetta outputs) indicates a benign effect. Overall, the preponderance of evidence from standard and high‑accuracy predictors points to a pathogenic effect for E495K, which is not in conflict with the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-11.478Likely Pathogenic0.986Likely PathogenicLikely Pathogenic0.869Likely Pathogenic0.15Likely Benign0.20.66Ambiguous0.41Likely Benign0.70Ambiguous-3.91Deleterious0.999Probably Damaging0.994Probably Damaging-1.29Pathogenic0.01Affected3.373510-0.4-0.94
c.1505G>A
G502D
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant G502D is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Prediction tools that assess pathogenicity all converge on a deleterious effect: REVEL, FoldX, Rosetta, Foldetta, premPS, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized all report a pathogenic or likely pathogenic outcome. No tool in the dataset predicts a benign effect. High‑accuracy assessments reinforce this consensus: AlphaMissense‑Optimized is pathogenic; the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is “Likely Pathogenic”; and Foldetta, which integrates FoldX‑MD and Rosetta stability calculations, is pathogenic. Based on the uniform predictions, the variant is most likely pathogenic, a conclusion that contradicts the current ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-14.796Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.915Likely Pathogenic3.79Destabilizing0.95.69Destabilizing4.74Destabilizing1.38Destabilizing-6.80Deleterious0.999Probably Damaging0.977Probably Damaging-1.66Pathogenic0.00Affected3.37351-1-3.158.04224.2-80.0-0.80.70.60.3XXXPotentially PathogenicGly502 is located in a hinge in the middle of an α-helix (res. Leu489-Glu519). In the WT, Gly502 acts as an α-helix breaker due to its lack of a side chain, facilitating a bend in the middle of the α-helix. In the variant simulations, the carboxylate group of Asp502 forms hydrogen bonds with neighboring residues (e.g., Ser677, Lys504), disrupting the hinge. Additionally, Asp502 struggles to fit into the α-helix hinge and cannot generate a similar bend as Gly502, which would drastically affect the secondary structure during folding. Thus, the deleterious effect seen in the simulations is likely an underestimate of the impact of the residue swap on the protein structure during protein folding.
c.1516C>T
L506F
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant L506F is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Prediction tools that agree on a benign effect include only REVEL, whereas the majority of tools (FoldX, Rosetta, Foldetta, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, FATHMM, AlphaMissense‑Default) predict a pathogenic impact; premPS and AlphaMissense‑Optimized are inconclusive. High‑accuracy assessments further support pathogenicity: AlphaMissense‑Optimized is uncertain, the SGM Consensus (derived from the unanimous pathogenic vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) is pathogenic, and Foldetta (combining FoldX‑MD and Rosetta outputs) is pathogenic. Overall, the preponderance of evidence indicates that the variant is most likely pathogenic, which is consistent with its ClinVar “Uncertain” classification and does not contradict the available data.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-11.262Likely Pathogenic0.883Likely PathogenicAmbiguous0.464Likely Benign4.92Destabilizing0.85.76Destabilizing5.34Destabilizing0.91Ambiguous-3.98Deleterious0.999Probably Damaging0.997Probably Damaging1.62Pathogenic0.01Affected3.373502-1.034.02
c.1556A>C
E519A
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 E519A missense variant is listed in ClinVar as Pathogenic (ClinVar ID 1029087.0) and is not reported in gnomAD. Prediction tools that agree on a benign effect include REVEL, FoldX, Foldetta, premPS, SIFT, and FATHMM. Those that predict a pathogenic effect are PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, AlphaMissense‑Default, ESM1b, and the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN). Uncertain predictions from Rosetta and AlphaMissense‑Optimized are treated as unavailable. High‑accuracy results are: AlphaMissense‑Optimized – unavailable; SGM‑Consensus – Pathogenic; Foldetta – Benign. Overall, the predictions are balanced, but the high‑accuracy Foldetta result leans toward benign while the consensus leans toward pathogenic, leaving the assessment inconclusive. Based on the available predictions, the variant is most likely benign, contradicting the ClinVar pathogenic classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPLikely Pathogenic 1-8.557Likely Pathogenic0.904Likely PathogenicAmbiguous0.384Likely Benign-0.05Likely Benign0.00.55Ambiguous0.25Likely Benign0.00Likely Benign-5.23Deleterious0.999Probably Damaging0.998Probably Damaging3.33Benign0.10Tolerated3.37350-15.3-58.04162.483.5-0.10.1-0.20.0XPotentially BenignGlu519 is located at the beginning of an α-α loop between the two α-helices (res. Gly502-Tyr518 and Ala533-Val560). In the WT simulations, the carboxylate side chain of Glu519 does not make any specific interactions. Accordingly, the Ala residue swap does not show any negative structural effects in the variant simulations. However, it should be noted that Glu519 faces the missing part of the N-terminal in the model, and thus its potential role in maintaining the tertiary structure might be de-emphasized in the current model.
c.1559C>T
S520F
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant S520F is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Functional prediction tools that classify the variant as benign include Rosetta, Foldetta, and premPS. Those that predict pathogenicity are REVEL, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. FoldX gives an uncertain result. High‑accuracy assessments further support a deleterious effect: AlphaMissense‑Optimized predicts pathogenicity, the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) indicates likely pathogenic, whereas Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, predicts a benign impact. Overall, the majority of evidence points to a pathogenic effect, which does not contradict the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-12.541Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.833Likely Pathogenic-1.20Ambiguous0.40.39Likely Benign-0.41Likely Benign0.25Likely Benign-5.57Deleterious0.999Probably Damaging0.996Probably Damaging-1.36Pathogenic0.00Affected3.3735-2-33.660.10
c.1622C>G
A541G
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant A541G is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6‑33438865‑C‑G). Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, and AlphaMissense‑Optimized. Those that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and FATHMM. The remaining tools (FoldX, Rosetta, Foldetta, premPS, AlphaMissense‑Default, and ESM1b) return uncertain or inconclusive results. High‑accuracy assessments show AlphaMissense‑Optimized as benign, the SGM Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is inconclusive, and Foldetta is also inconclusive. Overall, the balance of evidence leans toward a benign impact, which does not contradict the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
GAPUncertain 16-33438865-C-G21.24e-6-7.233In-Between0.341AmbiguousLikely Benign0.421Likely Benign0.67Ambiguous0.00.94Ambiguous0.81Ambiguous0.76Ambiguous-1.48Neutral0.999Probably Damaging0.995Probably Damaging-1.31Pathogenic0.57Tolerated3.373510-2.2-14.03170.123.60.00.00.00.0XPotentially PathogenicAla541 is located on the outer surface of an α-helix (res. Ala533-Val560). The methyl group of Ala541 is on the surface and does not form any interactions. Glycine, known as an “α-helix breaker,” weakens the integrity of the helix. Indeed, in the variant simulations, the hydrogen bond formation between Gly541 and the backbone carbonyl of Ala537 is disrupted.
c.1678G>A
V560M
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 V560M missense variant is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6-33440730-G-A). Functional prediction tools that agree on a benign effect include FoldX, Foldetta, PROVEAN, SIFT, and AlphaMissense‑Optimized. Those that agree on a pathogenic effect are REVEL, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, ESM1b, and FATHMM. Uncertain predictions come from Rosetta, premPS, and AlphaMissense‑Default. High‑accuracy assessments show AlphaMissense‑Optimized as benign, the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) as pathogenic, and Foldetta as benign. Overall, the majority of high‑confidence tools predict a benign impact, with only one consensus pathogenic prediction. Therefore, the variant is most likely benign based on current computational evidence, and this does not contradict the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
GAPUncertain 26-33440730-G-A159.50e-6-9.598Likely Pathogenic0.517AmbiguousLikely Benign0.520Likely Pathogenic-0.33Likely Benign0.10.88Ambiguous0.28Likely Benign0.72Ambiguous-2.42Neutral0.999Probably Damaging0.863Possibly Damaging-1.25Pathogenic0.14Tolerated3.373521-2.332.06234.9-52.60.00.0-0.10.1XPotentially BenignVal560 is located on the surface at the end of an α-helix (res. Ala533-Val560). The iso-propyl group of Val560 favorably packs against Asp508 of the opposing α-helix (res. Gln503-Glu519). However, in the variant simulations, the bulkier thioether side chain of Met560 does not form equally favorable inter-helix interactions. Regardless, no negative structural effects are observed during the simulations.
c.1726T>C
C576R
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant C576R is listed in ClinVar with an uncertain significance (ClinVar ID 2780076.0) and is not reported in gnomAD. Prediction tools that classify the variant as benign include only FATHMM. All other evaluated algorithms—REVEL, FoldX, Rosetta, Foldetta, premPS, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN)—predict it to be pathogenic. High‑accuracy assessments further support a deleterious effect: AlphaMissense‑Optimized scores it pathogenic, the SGM‑Consensus (derived from the majority of high‑confidence predictors) is pathogenic, and Foldetta, which integrates FoldX‑MD and Rosetta stability calculations, also predicts pathogenicity. Taken together, the overwhelming majority of computational evidence indicates that C576R is likely pathogenic, a conclusion that is consistent with, but not in conflict with, the current ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPConflicting 2-14.886Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.579Likely Pathogenic7.20Destabilizing1.04.09Destabilizing5.65Destabilizing1.64Destabilizing-10.88Deleterious0.999Probably Damaging0.996Probably Damaging3.38Benign0.00Affected3.3735-3-4-7.053.05
c.1729G>A
A577T
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant A577T is listed in ClinVar as benign (ClinVar ID 2195056.0) and is present in gnomAD (ID 6‑33440781‑G‑A). Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, AlphaMissense‑Default, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and FATHMM. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a likely benign outcome. High‑accuracy assessments show AlphaMissense‑Optimized as benign, SGM‑Consensus as likely benign, and Foldetta (combining FoldX‑MD and Rosetta outputs) as uncertain. No other high‑confidence stability predictions are available. Overall, the consensus of the available predictions indicates that the variant is most likely benign, which aligns with its ClinVar classification and does not contradict the reported status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignGAPBenign 16-33440781-G-A63.72e-6-5.311Likely Benign0.322Likely BenignLikely Benign0.427Likely Benign0.86Ambiguous0.10.54Ambiguous0.70Ambiguous0.54Ambiguous-1.47Neutral0.999Probably Damaging0.987Probably Damaging-1.31Pathogenic0.47Tolerated3.373410-2.530.03191.9-43.40.00.00.70.1XPotentially BenignAla577 is located near the end and outer surface of an α-helix (res. Arg563-Glu578), where its methyl group does not form any particular interactions in the WT simulations. In the variant simulations, the hydroxyl group of the Thr577 side chain hydrogen bonds with the backbone atoms of Arg573 and Lys574 within the same helix, which has the potential to weaken the stability of the secondary structure element. Regardless, the residue swap seems to be well tolerated based on the variant simulations.
c.1789T>C
F597L
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant F597L is listed in ClinVar with an uncertain significance (ClinVar ID 3658115.0) and is not reported in gnomAD. Prediction tools that classify the variant as benign include only SIFT, whereas the remaining tools—SGM‑Consensus, REVEL, Rosetta, premPS, PROVEAN, polyPhen‑2 (HumDiv and HumVar), ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized—predict it to be pathogenic. The high‑accuracy AlphaMissense‑Optimized score is pathogenic, and the SGM‑Consensus (a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) also indicates likely pathogenic. Foldetta, which integrates FoldX‑MD and Rosetta stability outputs, is inconclusive. Overall, the preponderance of evidence points to a pathogenic effect for F597L, which is consistent with its ClinVar uncertain status rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-10.173Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.929Likely Pathogenic0.74Ambiguous0.12.12Destabilizing1.43Ambiguous1.20Destabilizing-5.97Deleterious0.999Probably Damaging0.994Probably Damaging-2.06Pathogenic0.13Tolerated201.0-34.02
c.1855A>T
T619S
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant T619S is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Prediction tools that agree on a benign effect include only AlphaMissense‑Optimized. All other evaluated algorithms—SGM‑Consensus (Likely Pathogenic), REVEL, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, and AlphaMissense‑Default—consistently predict a pathogenic impact. High‑accuracy assessments further support this view: AlphaMissense‑Optimized reports a benign outcome, whereas the SGM Consensus, derived from the majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, indicates pathogenicity. Foldetta, which integrates FoldX‑MD and Rosetta stability predictions, yields an uncertain result. Overall, the majority of evidence points to a pathogenic effect for T619S, and this conclusion does not contradict the ClinVar designation of uncertain significance.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-8.608Likely Pathogenic0.677Likely PathogenicLikely Benign0.602Likely Pathogenic1.09Ambiguous0.21.35Ambiguous1.22Ambiguous0.85Ambiguous-3.42Deleterious0.999Probably Damaging0.998Probably Damaging-1.30Pathogenic0.05Affected3.373511-0.1-14.03
c.1942T>C
F648L
2D
AISynGAP1 missense variant F648L is listed in ClinVar with an uncertain significance (ClinVar ID 3383902.0) and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign predictions come from REVEL, SIFT, and FATHMM, whereas the remaining tools—FoldX, Rosetta, premPS, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, AlphaMissense‑Default, AlphaMissense‑Optimized, and ESM1b—consistently predict pathogenicity. The SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, also indicates likely pathogenic. High‑accuracy assessments further support a deleterious effect: AlphaMissense‑Optimized scores pathogenic, and Foldetta (combining FoldX‑MD and Rosetta outputs) predicts a destabilizing, pathogenic change. Taken together, the preponderance of evidence points to a pathogenic impact for F648L, which contradicts the current ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-9.296Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.468Likely Benign2.71Destabilizing0.82.08Destabilizing2.40Destabilizing1.04Destabilizing-5.98Deleterious0.999Probably Damaging0.976Probably Damaging3.45Benign0.08Tolerated201.0-34.02
c.2003C>T
S668F
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant S668F is reported in ClinVar as Pathogenic (ClinVar ID 1309930.0) and is not found in gnomAD. Functional prediction tools largely agree on a deleterious effect: benign predictions come from premPS and FATHMM, while the remaining 12 tools (REVEL, FoldX, Rosetta, Foldetta, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM Consensus) predict pathogenicity. High‑accuracy assessments reinforce this view: AlphaMissense‑Optimized is Pathogenic; the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is Pathogenic; and Foldetta, which integrates FoldX‑MD and Rosetta outputs, is also Pathogenic. No predictions are inconclusive. Overall, the computational evidence strongly supports a pathogenic effect, consistent with the ClinVar classification. Therefore, the variant is most likely pathogenic based on the consensus of prediction tools, and this assessment aligns with its ClinVar status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPLikely Pathogenic 1-15.047Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.643Likely Pathogenic16.72Destabilizing5.011.07Destabilizing13.90Destabilizing0.00Likely Benign-5.98Deleterious0.999Probably Damaging0.935Probably Damaging3.18Benign0.00Affected3.3828-3-23.660.10250.9-59.6-0.10.10.00.1XXXPotentially PathogenicIn the WT simulations, the hydroxyl side chain of Ser668, located on an α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), forms hydrogen bonds with the backbone carbonyl groups of Leu664, Tyr665, and Glu666, as well as the guanidinium group of Arg573 on a nearby α-helix (res. Arg563-Glu578). In the variant simulations, the side chain of Phe668 cannot maintain the same hydrogen-bond network. Due to its larger size, it moves away to avoid steric hindrance. In the WT simulations, a network of hydrogen bonds between several residues (e.g., Asn669, Lys566, and Glu666) keeps both α-helices and the proceeding loop (res. Asn669-Asp684) tightly connected, but this setup is not present in the variant simulations. Additionally, in the variant simulations, the side chain of Arg573 shifts to form a more stable salt bridge with the carboxylate group of Glu582 instead of hydrogen bonding with Ser668 as in the WT simulations.
c.2050G>A
D684N
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant D684N is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Prediction tools that indicate a benign effect include REVEL, premPS, and FATHMM, whereas the majority of tools predict a pathogenic outcome: PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN). High‑accuracy assessments reinforce this view: AlphaMissense‑Optimized classifies the variant as pathogenic, the SGM‑Consensus also reports it as likely pathogenic, and the Foldetta stability analysis is inconclusive. Protein‑stability predictors FoldX and Rosetta likewise return uncertain results. Overall, the preponderance of evidence points to a pathogenic effect, which contradicts the current ClinVar designation of uncertainty.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicGAPUncertain 1-13.155Likely Pathogenic0.985Likely PathogenicLikely Pathogenic0.382Likely Benign1.47Ambiguous0.81.76Ambiguous1.62Ambiguous0.37Likely Benign-4.99Deleterious0.999Probably Damaging0.746Possibly Damaging3.39Benign0.01Affected210.0-0.98
c.2195G>C
R732T
2D
AISynGAP1 missense variant R732T is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign (REVEL, PROVEAN, SIFT, FATHMM, AlphaMissense‑Optimized) and pathogenic (polyPhen‑2 HumDiv, polyPhen‑2 HumVar, ESM1b). AlphaMissense‑Default remains uncertain. The high‑accuracy AlphaMissense‑Optimized predicts a benign effect, and the SGM Consensus—derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN—also favors a benign outcome. Foldetta, a protein‑folding stability method that integrates FoldX‑MD and Rosetta outputs, has no available result for this variant. Overall, the preponderance of evidence from both general and high‑accuracy predictors points to a benign impact, which does not contradict the current ClinVar designation of uncertain significance.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 1-8.545Likely Pathogenic0.434AmbiguousLikely Benign0.075Likely Benign-1.96Neutral0.999Probably Damaging0.892Possibly Damaging2.59Benign0.12Tolerated3.597-1-13.8-55.08
c.2206C>T
R736C
2D
AISynGAP1 missense variant R736C is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6‑33441671‑C‑T). Functional prediction tools cluster into two groups: benign predictions from REVEL, PROVEAN, AlphaMissense‑Default, and AlphaMissense‑Optimized; pathogenic predictions from polyPhen‑2 (HumDiv and HumVar), SIFT, and FATHMM, while ESM1b remains uncertain. High‑accuracy assessments reinforce the benign trend: AlphaMissense‑Optimized scores benign, and the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) also returns benign. Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, has no available result for this variant. Overall, the majority of computational evidence indicates a benign effect, which does not conflict with the ClinVar uncertain designation.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Conflicting 36-33441671-C-T84.96e-6-7.113In-Between0.120Likely BenignLikely Benign0.190Likely Benign-2.06Neutral0.999Probably Damaging0.825Possibly Damaging2.48Pathogenic0.00Affected4.073-4-37.0-53.05
c.2219G>A
R740Q
2D
AIThe SynGAP1 missense variant R740Q is listed in ClinVar with an “Uncertain” status and is present in gnomAD (variant ID 6‑33441684‑G‑A). Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. In contrast, polyPhen‑2 (both HumDiv and HumVar models) predict a pathogenic outcome. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a “Likely Benign” classification. High‑accuracy assessments further support a benign interpretation: AlphaMissense‑Optimized is benign, and the SGM‑Consensus is also benign. Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, has no reported result for this variant, so it does not influence the assessment. Overall, the majority of predictions indicate that R740Q is most likely benign, which is consistent with the ClinVar “Uncertain” classification and does not contradict it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33441684-G-A42.48e-6-5.195Likely Benign0.078Likely BenignLikely Benign0.102Likely Benign-0.67Neutral0.999Probably Damaging0.881Possibly Damaging2.60Benign0.08Tolerated4.322111.0-28.06
c.2246G>A
R749Q
2D
AIThe SynGAP1 missense variant R749Q is listed in ClinVar (ID 793884.0) as Benign and is present in gnomAD (6‑33441711‑G‑A). Prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and SIFT. The SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) also reports a Likely Benign outcome. High‑accuracy assessments show AlphaMissense‑Optimized as Benign and the SGM‑Consensus as Likely Benign; Foldetta results are unavailable. Overall, the majority of evidence—including high‑accuracy predictions—supports a benign classification, which is consistent with the ClinVar status and does not contradict it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignLikely Benign 16-33441711-G-A42.48e-6-3.069Likely Benign0.212Likely BenignLikely Benign0.152Likely Benign-1.00Neutral0.999Probably Damaging0.994Probably Damaging2.64Benign0.03Affected4.322111.0-28.06
c.2282G>C
R761P
2D
AIThe SynGAP1 missense variant R761P is listed in ClinVar with an “Uncertain” status and is present in gnomAD (ID 6‑33441747‑G‑C). Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, and AlphaMissense‑Optimized. Those that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and AlphaMissense‑Default. The SGM‑Consensus, which aggregates the majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a “Likely Benign” classification. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as likely benign; Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, has no available result for this variant. Overall, the majority of predictions point to a benign impact, and this is consistent with the ClinVar “Uncertain” designation rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 36-33441747-G-C16.20e-7-5.091Likely Benign0.640Likely PathogenicLikely Benign0.201Likely Benign-1.89Neutral0.999Probably Damaging0.968Probably Damaging2.69Benign0.38Tolerated3.9950-22.9-59.07
c.2354G>A
R785H
2D
AIThe SynGAP1 R785H missense variant (ClinVar ID 2321588.0) is listed as “Uncertain” in ClinVar and is present in gnomAD (ID 6‑33442906‑G‑A). Prediction tools that agree on a benign effect include REVEL, ESM1b, and AlphaMissense‑Optimized, while those that predict a pathogenic effect are PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, and FATHMM; AlphaMissense‑Default remains uncertain. High‑accuracy assessments show AlphaMissense‑Optimized classifying the variant as benign, whereas the SGM Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) indicates a pathogenic outcome. Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, does not provide a result for this variant. Overall, the majority of computational predictions (five pathogenic versus three benign) lean toward a pathogenic interpretation. Thus, the variant is most likely pathogenic based on current predictions, and this conclusion does not contradict the ClinVar status, which remains uncertain.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
SH3-binding motifUncertain 26-33442906-G-A42.50e-6-4.782Likely Benign0.388AmbiguousLikely Benign0.129Likely Benign-2.61Deleterious0.999Probably Damaging0.947Probably Damaging2.25Pathogenic0.01Affected3.646201.3-19.05
c.2369C>A
T790N
2D
AIThe SynGAP1 missense variant T790N is listed in ClinVar with an “Uncertain” status and is present in the gnomAD database (ID 6‑33442921‑C‑A). Prediction tools that agree on a benign effect include REVEL, ESM1b, AlphaMissense‑Default, and AlphaMissense‑Optimized. Those that predict a pathogenic effect are PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, and FATHMM. High‑accuracy assessments show AlphaMissense‑Optimized as benign; the SGM Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is inconclusive and therefore unavailable, and Foldetta results are not reported. Overall, the majority of conventional tools (5 pathogenic vs. 4 benign) lean toward a pathogenic interpretation, while the single high‑accuracy tool suggests benign. The variant’s ClinVar status remains uncertain, so there is no contradiction with the current clinical classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
SH3-binding motifConflicting 36-33442921-C-A694.28e-5-5.243Likely Benign0.276Likely BenignLikely Benign0.103Likely Benign-2.54Deleterious0.999Probably Damaging0.997Probably Damaging2.27Pathogenic0.02Affected3.64600-2.813.00
c.2434C>T
P812S
2D
AIThe SynGAP1 missense variant P812S is listed in ClinVar with an “Uncertain” status and is present in gnomAD (ID 6‑33442986‑C‑T). Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN). Tools that predict a pathogenic effect are polyPhen‑2 HumDiv and polyPhen‑2 HumVar. AlphaMissense‑Default remains uncertain, and no Foldetta stability result is available. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as likely benign; Foldetta data are missing. Overall, the majority of evidence points to a benign impact, and this conclusion does not contradict the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignSH3-binding motifUncertain 16-33442986-C-T16.20e-7-5.689Likely Benign0.456AmbiguousLikely Benign0.162Likely Benign-0.62Neutral0.999Probably Damaging0.966Probably Damaging2.89Benign0.95Tolerated4.3241-10.8-10.04
c.2443C>A
R815S
2D
AISynGAP1 R815S is listed in ClinVar as Benign (ID 3645150.0) and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign predictions come from REVEL, PROVEAN, and FATHMM, while pathogenic predictions arise from polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, and AlphaMissense‑Default. Two tools report uncertainty: ESM1b and AlphaMissense‑Optimized. The SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, classifies the variant as Benign. High‑accuracy assessments show AlphaMissense‑Optimized as Uncertain, SGM Consensus as Benign, and Foldetta (combining FoldX‑MD and Rosetta) has no available result. Overall, the majority of predictions lean toward pathogenicity, whereas the consensus and high‑accuracy tools suggest benignity. Thus, the variant is most likely pathogenic based on the prevailing predictions, contradicting its ClinVar benign designation.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
SH3-binding motifBenign 1-7.324In-Between0.950Likely PathogenicAmbiguous0.138Likely Benign-1.86Neutral0.999Probably Damaging0.997Probably Damaging2.67Benign0.02Affected0-13.7-69.11
c.2443C>G
R815G
2D
AISynGAP1 missense variant R815G is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Prediction tools that agree on benign effect include REVEL and FATHMM, whereas pathogenic predictions come from PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, and AlphaMissense‑Default. Uncertain calls are made by ESM1b and AlphaMissense‑Optimized. High‑accuracy assessments show AlphaMissense‑Optimized as uncertain, the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) as pathogenic, and Foldetta results are unavailable. Overall, the majority of evidence points to a pathogenic impact, which does not contradict the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
SH3-binding motifUncertain 1-7.983In-Between0.854Likely PathogenicAmbiguous0.146Likely Benign-3.22Deleterious0.999Probably Damaging0.997Probably Damaging2.62Benign0.02Affected4.324-3-24.1-99.14
c.2444G>T
R815L
2D
AISynGAP1 missense variant R815L is listed in ClinVar (ID 2505666.0) with an uncertain significance annotation and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign predictions come from REVEL and FATHMM, while pathogenic predictions are made by PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, and AlphaMissense‑Default. The high‑accuracy AlphaMissense‑Optimized score is uncertain, and the SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is pathogenic. Foldetta, a protein‑folding stability method that integrates FoldX‑MD and Rosetta outputs, has no available result for this variant. Overall, the consensus of the majority of tools indicates a pathogenic effect, which contrasts with the ClinVar uncertain classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicSH3-binding motifUncertain 1-8.546Likely Pathogenic0.865Likely PathogenicAmbiguous0.175Likely Benign-3.06Deleterious0.999Probably Damaging0.997Probably Damaging2.63Benign0.03Affected4.324-2-38.3-43.03
c.2458T>A
Y820N
2D
AIThe SynGAP1 Y820N variant is listed in ClinVar with an “Uncertain” significance and is not reported in gnomAD. Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, and FATHMM, whereas polyPhen‑2 (HumDiv and HumVar), ESM1b, and AlphaMissense‑Default all predict a pathogenic outcome. AlphaMissense‑Optimized returns an “Uncertain” result. The SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is inconclusive (two benign vs. two pathogenic votes). Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, has no available result for this variant. Overall, the predictions are evenly split between benign and pathogenic, with no high‑confidence pathogenic or benign signal. Thus, the variant is most likely of uncertain significance, which is consistent with its ClinVar status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 1-9.032Likely Pathogenic0.842Likely PathogenicAmbiguous0.143Likely Benign-1.53Neutral0.999Probably Damaging0.977Probably Damaging2.74Benign0.20Tolerated-2-2-2.2-49.07
c.2474C>T
S825L
2D
AIThe SynGAP1 missense variant S825L is listed in ClinVar with an “Uncertain” status and is present in gnomAD (ID 6‑33443026‑C‑T). Prediction tools that agree on a benign effect include REVEL and ESM1b, whereas the majority of tools (PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, FATHMM, AlphaMissense‑Default) predict a pathogenic impact. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports the variant as “Likely Pathogenic.” High‑accuracy assessments show AlphaMissense‑Optimized as “Uncertain,” and the Foldetta stability analysis is unavailable. Overall, the preponderance of evidence points to a pathogenic effect, which is consistent with the ClinVar “Uncertain” classification rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicUncertain 16-33443026-C-T16.20e-7-4.987Likely Benign0.910Likely PathogenicAmbiguous0.249Likely Benign-4.30Deleterious0.999Probably Damaging0.994Probably Damaging1.94Pathogenic0.01Affected3.775-2-34.626.08
c.2503C>A
L835M
2D
AIThe SynGAP1 missense variant L835M is listed in ClinVar (ID 2731331.0) as benign and is not reported in gnomAD. Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN). Tools that predict a pathogenic effect are PolyPhen‑2 HumDiv and PolyPhen‑2 HumVar. High‑accuracy assessments show AlphaMissense‑Optimized classifying the variant as benign, the SGM‑Consensus also indicating a likely benign outcome, while Foldetta (combining FoldX‑MD and Rosetta outputs) has no available result for this variant. Overall, the preponderance of evidence—including the high‑accuracy tools—supports a benign classification, which is consistent with the ClinVar status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignBenign 1-4.153Likely Benign0.121Likely BenignLikely Benign0.068Likely Benign-0.45Neutral0.999Probably Damaging0.977Probably Damaging2.67Benign0.12Tolerated3.77524-1.918.03
c.2518A>T
S840C
2D
AIThe SynGAP1 missense variant S840C is listed in ClinVar (ID 2089808.0) with an “Uncertain” status and is not reported in gnomAD. Prediction tools that agree on a benign effect include only REVEL, whereas the majority of algorithms—PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, and AlphaMissense‑Default—consistently predict a pathogenic impact. High‑accuracy assessments show AlphaMissense‑Optimized as “Uncertain,” SGM‑Consensus (derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) as “Likely Pathogenic,” and Foldetta results are unavailable. Taken together, the preponderance of evidence points to a pathogenic effect for S840C. This conclusion aligns with the ClinVar designation of uncertainty rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicUncertain 1-8.799Likely Pathogenic0.904Likely PathogenicAmbiguous0.376Likely Benign-3.96Deleterious0.999Probably Damaging0.975Probably Damaging1.50Pathogenic0.00Affected3.7750-13.316.06
c.2521G>A
V841M
2D
AISynGAP1 variant V841M is listed in ClinVar with an uncertain significance and is present in gnomAD (6-33443073-G-A). Functional prediction tools cluster into two groups: benign predictions from REVEL, PROVEAN, FATHMM, and AlphaMissense‑Optimized; pathogenic predictions from polyPhen‑2 (HumDiv and HumVar), SIFT, and AlphaMissense‑Default. The ESM1b score is inconclusive. High‑accuracy assessments further support a benign interpretation: AlphaMissense‑Optimized predicts benign, the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) also yields benign, while Foldetta stability analysis is unavailable. Taken together, the majority of evidence, including the high‑accuracy tools, points to a benign effect for V841M. This conclusion does not conflict with the ClinVar uncertain status, which reflects the current lack of definitive clinical data.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 16-33443073-G-A31.86e-6-7.000In-Between0.651Likely PathogenicLikely Benign0.119Likely Benign-0.74Neutral0.999Probably Damaging0.998Probably Damaging2.54Benign0.02Affected3.77512-2.332.06
c.2669G>C
R890P
2D
AIThe SynGAP1 missense variant R890P is listed in ClinVar (ID 575680.0) as Benign and is present in gnomAD (6‑33443221‑G‑C). Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are polyPhen‑2 HumDiv and polyPhen‑2 HumVar. The SGM‑Consensus, which aggregates AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a Likely Benign classification. High‑accuracy assessments show AlphaMissense‑Optimized as Benign and the SGM‑Consensus as Likely Benign; Foldetta results are unavailable. Overall, the majority of evidence points to a benign impact, and this conclusion aligns with the ClinVar status, showing no contradiction.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignLikely Benign 26-33443221-G-C281.74e-5-1.931Likely Benign0.301Likely BenignLikely Benign0.191Likely Benign-1.21Neutral0.999Probably Damaging0.977Probably Damaging4.02Benign0.28Tolerated4.3240-22.9-59.07
c.2719A>T
S907C
2D
AIThe SynGAP1 missense variant S907C is listed in ClinVar as Benign (ClinVar ID 1502069.0) and is not reported in gnomAD. Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN). In contrast, polyPhen‑2 (HumDiv and HumVar) and SIFT predict a pathogenic impact. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus also as likely benign; the Foldetta protein‑folding stability analysis is unavailable for this variant. Overall, the majority of evidence points to a benign effect, aligning with the ClinVar classification and indicating no contradiction with the reported status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignLikely Benign 1-6.685Likely Benign0.298Likely BenignLikely Benign0.113Likely Benign-2.34Neutral0.999Probably Damaging0.988Probably Damaging2.60Benign0.02Affected3.7750-13.316.06
c.2729G>C
G910A
2D
AIThe SynGAP1 missense variant G910A is listed in ClinVar with an “Uncertain” status (ClinVar ID 2091237.0) and is present in gnomAD (6‑33443281‑G‑C). Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are PolyPhen‑2 HumDiv and PolyPhen‑2 HumVar. The remaining predictions are uncertain: AlphaMissense‑Default is inconclusive, while the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) reports a likely benign outcome. High‑accuracy assessments show AlphaMissense‑Optimized as benign, SGM‑Consensus as likely benign, and Foldetta results are unavailable. Overall, the majority of evidence points to a benign impact, which does not contradict the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33443281-G-C16.20e-7-3.587Likely Benign0.361AmbiguousLikely Benign0.209Likely Benign-1.43Neutral0.999Probably Damaging0.999Probably Damaging2.78Benign0.10Tolerated3.775102.214.03
c.2735C>A
T912N
2D
AIThe SynGAP1 missense variant T912N is listed in ClinVar with an uncertain significance (ClinVar ID 2337624.0) and is not reported in gnomAD. Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. In contrast, polyPhen‑2 (HumDiv and HumVar) and SIFT all predict a pathogenic impact. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, classifies the variant as likely benign. High‑accuracy assessments further support a benign interpretation: AlphaMissense‑Optimized predicts benign, and the SGM‑Consensus also indicates likely benign. No Foldetta (FoldX‑MD/Rosetta) stability result is available, so it does not influence the overall assessment. Based on the preponderance of evidence, the variant is most likely benign, and this conclusion does not contradict the current ClinVar status of uncertain significance.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 1-4.260Likely Benign0.190Likely BenignLikely Benign0.116Likely Benign-1.15Neutral0.999Probably Damaging0.977Probably Damaging3.96Benign0.00Affected3.77500-2.813.00
c.2741A>T
D914V
2D
AIThe SynGAP1 missense variant D914V is listed in ClinVar (ID 2582846.0) with an “Uncertain” status and is not reported in gnomAD. Prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, and AlphaMissense‑Optimized. Tools that predict a pathogenic outcome are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, and AlphaMissense‑Default. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is “Likely Benign.” High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus (majority vote) as benign; Foldetta results are unavailable. Overall, the balance of evidence points to a benign effect, and this conclusion does not contradict the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 1-4.260Likely Benign0.723Likely PathogenicLikely Benign0.187Likely Benign-2.24Neutral0.999Probably Damaging0.986Probably Damaging2.64Benign0.01Affected3.775-3-27.7-15.96
c.2812G>A
G938R
2D
AIThe SynGAP1 missense variant G938R is listed in ClinVar (ID 1019898.0) with an “Uncertain” status and is not reported in gnomAD. Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Optimized, and the SGM‑Consensus (Likely Benign). Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and AlphaMissense‑Default. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as Likely Benign; Foldetta results are unavailable. Overall, the majority of evidence (seven benign versus three pathogenic predictions) supports a benign classification. This consensus does not contradict the ClinVar “Uncertain” designation, which remains unresolved.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 1-5.271Likely Benign0.732Likely PathogenicLikely Benign0.141Likely Benign-1.11Neutral0.999Probably Damaging0.985Probably Damaging2.74Benign0.36Tolerated3.775-3-2-4.199.14
c.3009C>G
S1003R
2D
AIThe SynGAP1 missense variant S1003R (ClinVar ID 1798770.0) is listed as Uncertain in ClinVar and is not present in gnomAD. Functional prediction tools cluster into two groups: benign predictions come from REVEL, PROVEAN, and ESM1b, while pathogenic predictions are reported by polyPhen‑2 (HumDiv and HumVar), SIFT, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. High‑accuracy assessment shows AlphaMissense‑Optimized classifying the variant as pathogenic; the SGM Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is inconclusive (two benign, two pathogenic), and Foldetta stability analysis is unavailable. Overall, the majority of evidence points to a pathogenic effect, which contrasts with the ClinVar designation of Uncertain. Thus, the variant is most likely pathogenic, contradicting the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 1-5.113Likely Benign0.991Likely PathogenicLikely Pathogenic0.141Likely Benign-1.88Neutral0.999Probably Damaging0.996Probably Damaging2.48Pathogenic0.00Affected3.7750-1-3.769.11
c.3022G>A
D1008N
2D
AIThe SynGAP1 missense variant D1008N is listed in ClinVar (ID 1213097.0) as benign and is present in gnomAD (variant ID 6‑33443574‑G‑A). Functional prediction tools cluster into two groups: benign predictions come from REVEL, PROVEAN, ESM1b, FATHMM, and AlphaMissense‑Optimized; pathogenic predictions come from polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, and AlphaMissense‑Default. The SGM‑Consensus, a majority‑vote model of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports a likely benign outcome. High‑accuracy assessments further support a benign interpretation: AlphaMissense‑Optimized is benign, SGM‑Consensus is likely benign, and Foldetta (combining FoldX‑MD and Rosetta) has no available result for this variant. Overall, the majority of evidence indicates a benign effect, consistent with the ClinVar classification and not contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignLikely Benign 16-33443574-G-A31.86e-6-4.045Likely Benign0.714Likely PathogenicLikely Benign0.128Likely Benign-2.15Neutral0.999Probably Damaging0.997Probably Damaging2.75Benign0.01Affected3.775210.0-0.98
c.3023A>G
D1008G
2D
AIThe SynGAP1 D1008G missense variant (ClinVar ID 2963386.0) is listed as Uncertain in ClinVar and is present in gnomAD (ID 6‑33443575‑A‑G). Prediction tools that agree on a benign effect include REVEL, ESM1b, FATHMM, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, and AlphaMissense‑Default. High‑accuracy assessments show AlphaMissense‑Optimized classifying the variant as benign, while the SGM Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is inconclusive due to a 2‑to‑2 split, and Foldetta results are unavailable. Overall, the balance of evidence leans toward a pathogenic interpretation, which does not contradict the current ClinVar designation of Uncertain.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 16-33443575-A-G16.20e-7-3.213Likely Benign0.742Likely PathogenicLikely Benign0.203Likely Benign-2.84Deleterious0.999Probably Damaging0.997Probably Damaging2.65Benign0.01Affected3.775-113.1-58.04
c.3055C>T
R1019C
2D
AIThe SynGAP1 missense variant R1019C is listed in ClinVar with an “Uncertain” status (ClinVar ID 1676922.0) and is present in gnomAD (ID 6‑33443607‑C‑T). Prediction tools that agree on a benign effect include REVEL and AlphaMissense‑Optimized, whereas a majority of tools (PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, FATHMM, AlphaMissense‑Default) predict a pathogenic impact; ESM1b remains uncertain. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, reports the variant as “Likely Pathogenic.” High‑accuracy assessments show AlphaMissense‑Optimized as benign, while the SGM‑Consensus (majority vote) remains pathogenic; Foldetta results are unavailable. Overall, the preponderance of evidence points to a pathogenic effect, which does not contradict the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicConflicting 26-33443607-C-T106.19e-6-7.386In-Between0.646Likely PathogenicLikely Benign0.168Likely Benign-4.00Deleterious0.999Probably Damaging0.880Possibly Damaging2.36Pathogenic0.00Affected3.775-4-37.0-53.0510.1016/j.ajhg.2020.11.011
c.3059G>C
R1020P
2D
AIThe SynGAP1 missense variant R1020P is listed in ClinVar (ID 3700393.0) with an “Uncertain” status and is not reported in gnomAD. Functional prediction tools cluster into two groups: benign predictions come from REVEL and ESM1b, while pathogenic predictions are made by PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, FATHMM, and AlphaMissense‑Default. The SGM‑Consensus, which aggregates AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, resolves as “Likely Pathogenic” (3 pathogenic vs. 1 benign votes). High‑accuracy assessments show AlphaMissense‑Optimized as “Uncertain,” SGM‑Consensus as “Likely Pathogenic,” and Foldetta (a protein‑folding stability method combining FoldX‑MD and Rosetta outputs) has no available result for this variant. Overall, the majority of evidence points to a pathogenic effect, and this conclusion does not contradict the current ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicUncertain 1-3.491Likely Benign0.902Likely PathogenicAmbiguous0.205Likely Benign-3.50Deleterious0.999Probably Damaging0.977Probably Damaging2.46Pathogenic0.00Affected0-22.9-59.07
c.3313C>T
R1105W
2D
AIThe SynGAP1 missense variant R1105W is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6‑33443865‑C‑T). Prediction tools show mixed results: benign calls come from REVEL, ESM1b, and AlphaMissense‑Optimized, while pathogenic calls are made by PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, and FATHMM. The AlphaMissense‑Default tool remains uncertain. A consensus analysis (SGM) that aggregates AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN yields a pathogenic majority. High‑accuracy assessments further support this: AlphaMissense‑Optimized predicts benign, whereas the SGM Consensus predicts pathogenic; Foldetta results are unavailable. Overall, the preponderance of evidence points to a pathogenic effect for R1105W, which does not conflict with the ClinVar designation of uncertain significance.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 16-33443865-C-T63.93e-6-6.911Likely Benign0.488AmbiguousLikely Benign0.133Likely Benign-4.34Deleterious0.999Probably Damaging0.696Possibly Damaging2.42Pathogenic0.02Affected3.775-323.630.03
c.3374G>C
G1125A
2D
AIThe SynGAP1 missense variant G1125A is listed in ClinVar with an “Uncertain” status and is present in gnomAD (6‑33443926‑G‑C). Prediction tools that agree on a benign effect include REVEL, PROVEAN, SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized; the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) also reports a likely benign outcome. In contrast, polyPhen‑2 (HumDiv and HumVar) predict a pathogenic effect. High‑accuracy assessments show AlphaMissense‑Optimized as benign, and the SGM‑Consensus (derived from the four high‑accuracy tools) is benign; Foldetta results are unavailable. Overall, the majority of evidence points to a benign impact, and this conclusion does not contradict the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33443926-G-C16.68e-7-6.569Likely Benign0.083Likely BenignLikely Benign0.232Likely Benign-0.60Neutral0.999Probably Damaging0.995Probably Damaging4.60Benign0.11Tolerated3.775102.214.03
c.3635C>T
S1212F
2D
AIThe SynGAP1 missense variant S1212F is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Prediction tools that indicate a benign effect include only REVEL, whereas the remaining tools—PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote) score—predict a pathogenic impact. High‑accuracy assessments further support a deleterious outcome: AlphaMissense‑Optimized classifies the variant as pathogenic, and the SGM‑Consensus (derived from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) also reports it as likely pathogenic. No Foldetta stability prediction is available for this variant. Overall, the preponderance of evidence from multiple independent predictors indicates that the variant is most likely pathogenic, which is consistent with its ClinVar “Uncertain” classification rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicCoiled-coilConflicting 2-14.445Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.271Likely Benign-4.52Deleterious0.999Probably Damaging0.998Probably Damaging2.03Pathogenic0.00Affected3.775-3-23.660.10
c.3806T>A
V1269E
2D
AIThe SynGAP1 missense change V1269E is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Prediction tools that flag the variant as benign include only REVEL, whereas the remaining predictors—PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized—consistently classify it as pathogenic. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, also reports a “Likely Pathogenic” outcome. High‑accuracy assessments show AlphaMissense‑Optimized as pathogenic and the SGM‑Consensus as likely pathogenic; the Foldetta stability analysis is unavailable. Overall, the preponderance of evidence points to a pathogenic effect, which does not contradict the ClinVar designation of uncertainty.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicCoiled-coilUncertain 1-11.418Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.403Likely Benign-5.05Deleterious0.999Probably Damaging0.995Probably Damaging2.09Pathogenic0.00Affected3.775-2-2-7.729.98
c.3922C>T
R1308C
2D
AIThe SynGAP1 missense variant R1308C is listed in ClinVar with an “Uncertain” significance and is present in the gnomAD database (ID 6‑33451796‑C‑T). Prediction tools that agree on a benign effect include REVEL, ESM1b, and AlphaMissense‑Optimized. Those that predict a pathogenic effect are PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, and FATHMM; AlphaMissense‑Default remains uncertain. The high‑accuracy consensus (SGM Consensus) derived from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN yields a pathogenic verdict. Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, has no available result for this variant. Overall, the majority of evidence points to a pathogenic impact, and this assessment does not contradict the current ClinVar “Uncertain” status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Conflicting 26-33451796-C-T42.48e-6-4.994Likely Benign0.421AmbiguousLikely Benign0.352Likely Benign-4.89Deleterious0.999Probably Damaging0.993Probably Damaging2.31Pathogenic0.00Affected3.775-4-37.0-53.05
c.3977C>A
P1326Q
2D
AIThe SynGAP1 missense variant P1326Q is listed in ClinVar (ID 2806103.0) with an “Uncertain” status and is present in gnomAD (variant ID 6‑33451851‑C‑A). Prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN). Tools that predict a pathogenic effect are polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and SIFT. High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus as likely benign; Foldetta results are unavailable. Overall, the majority of evidence points to a benign impact. This conclusion does not contradict the ClinVar “Uncertain” classification, which remains inconclusive.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 16-33451851-C-A16.40e-7-5.422Likely Benign0.128Likely BenignLikely Benign0.138Likely Benign-0.86Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.775-10-1.931.01
c.3977C>G
P1326R
2D
AIThe SynGAP1 missense variant P1326R is listed in ClinVar (ID 2429486.0) with an “Uncertain” status and is not reported in gnomAD. Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. In contrast, polyPhen‑2 (HumDiv and HumVar) and SIFT all predict a pathogenic impact. The SGM‑Consensus, derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN, is “Likely Benign.” High‑accuracy assessments show AlphaMissense‑Optimized as benign and the SGM‑Consensus (majority vote) also benign; Foldetta stability analysis is unavailable. Overall, the majority of evidence points to a benign effect, and this conclusion does not contradict the ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 1-5.097Likely Benign0.240Likely BenignLikely Benign0.133Likely Benign-0.82Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.7750-2-2.959.07
c.3977C>T
P1326L
2D
AIThe SynGAP1 missense variant P1326L is listed in ClinVar (ID 1004879.0) with an “Uncertain” clinical significance and is not reported in gnomAD. Functional prediction tools that agree on a benign effect include REVEL, PROVEAN, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. In contrast, polyPhen‑2 (HumDiv and HumVar) and SIFT predict a pathogenic impact. The high‑accuracy consensus from SGM (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) classifies the variant as “Likely Benign,” and AlphaMissense‑Optimized also predicts benign. No Foldetta (FoldX‑MD/ Rosetta) stability result is available for this variant. Overall, the majority of evidence—including the high‑confidence SGM consensus and AlphaMissense‑Optimized prediction—supports a benign classification, which does not contradict the current ClinVar status of uncertainty.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignUncertain 1-5.541Likely Benign0.115Likely BenignLikely Benign0.117Likely Benign-1.06Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.775-3-35.416.04
c.451G>C
D151H
2D
AIThe SynGAP1 missense variant D151H is listed in ClinVar with an “Uncertain” status and is present in gnomAD (variant ID 6‑33432748‑G‑C). Prediction tools that agree on a benign effect include REVEL and FATHMM, whereas the remaining tools (PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized) all predict a pathogenic outcome. High‑accuracy assessments further support a deleterious impact: AlphaMissense‑Optimized classifies the variant as pathogenic, and the SGM Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) reports it as “Likely Pathogenic.” No Foldetta stability result is available for this variant. Overall, the majority of computational evidence indicates that D151H is most likely pathogenic, which does not contradict the current ClinVar status of uncertainty.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicUncertain 16-33432748-G-C21.26e-6-11.747Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.335Likely Benign-3.90Deleterious0.999Probably Damaging0.995Probably Damaging3.86Benign0.00Affected3.615-110.322.05
c.467T>G
F156C
2D
AIThe SynGAP1 missense variant F156C is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Functional prediction tools that agree on a benign effect are REVEL and FATHMM, whereas the remaining tools—PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN)—all predict a pathogenic or likely pathogenic outcome. High‑accuracy assessments further support a deleterious impact: AlphaMissense‑Optimized classifies the variant as pathogenic, and the SGM‑Consensus reports it as “Likely Pathogenic.” No Foldetta stability analysis is available for this variant. Overall, the majority of predictions, including the high‑accuracy tools, indicate that F156C is most likely pathogenic, which is consistent with its ClinVar “Uncertain” classification rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicUncertain 1-13.658Likely Pathogenic0.988Likely PathogenicLikely Pathogenic0.297Likely Benign-3.54Deleterious0.999Probably Damaging0.990Probably Damaging3.92Benign0.00Affected-4-2-0.3-44.04
c.470G>A
R157H
2D
AIThe SynGAP1 missense variant R157H (ClinVar ID 2065231.0) is listed as Uncertain in ClinVar and is present in gnomAD (ID 6‑33432767‑G‑A). Prediction tools that agree on a benign effect include REVEL, PROVEAN, FATHMM, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, and AlphaMissense‑Default. High‑accuracy assessments show AlphaMissense‑Optimized classifying the variant as benign, while the SGM Consensus—derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN—yields a tie and is therefore inconclusive. Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, has no reported result for this variant. Overall, the balance of predictions leans toward pathogenic, but the high‑accuracy tools do not provide a definitive verdict. This assessment does not contradict the ClinVar status, which remains Uncertain.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Uncertain 16-33432767-G-A16.20e-7-10.235Likely Pathogenic0.604Likely PathogenicLikely Benign0.254Likely Benign-2.23Neutral0.999Probably Damaging0.987Probably Damaging3.80Benign0.00Affected3.744201.3-19.05
c.508C>T
R170W
2D
AIThe SynGAP1 missense variant R170W is listed in ClinVar (ID 1310195.0) with an “Uncertain” status and is not reported in gnomAD. Prediction tools that agree on a benign effect are REVEL and FATHMM, whereas the remaining tools—PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN)—all predict a pathogenic or likely pathogenic outcome. High‑accuracy assessments further support a deleterious impact: AlphaMissense‑Optimized classifies the variant as pathogenic, and the SGM‑Consensus indicates it is likely pathogenic; Foldetta results are unavailable. Overall, the preponderance of evidence points to a pathogenic effect, which is consistent with the ClinVar “Uncertain” classification rather than contradicting it.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicUncertain 2-11.660Likely Pathogenic0.978Likely PathogenicLikely Pathogenic0.241Likely Benign-4.28Deleterious0.999Probably Damaging0.849Possibly Damaging3.84Benign0.00Affected3.7442-33.630.03
c.815G>A
R272Q
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant R272Q is listed in ClinVar with an uncertain significance and is present in gnomAD (ID 6‑33437720‑G‑A). Prediction tools that classify the variant as benign include REVEL, Rosetta, Foldetta, AlphaMissense‑Default, AlphaMissense‑Optimized, and PROVEAN. Those that predict pathogenicity are premPS, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, and FATHMM. The high‑accuracy methods give the following results: AlphaMissense‑Optimized predicts benign; the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is inconclusive; and Foldetta predicts benign. With the majority of high‑accuracy tools supporting a benign effect, the variant is most likely benign, which does not contradict its current ClinVar status of uncertain significance.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
C2Uncertain 26-33437720-G-A148.67e-6-9.559Likely Pathogenic0.286Likely BenignLikely Benign0.321Likely Benign0.73Ambiguous0.10.15Likely Benign0.44Likely Benign1.00Destabilizing-1.81Neutral0.999Probably Damaging0.994Probably Damaging1.88Pathogenic0.03Affected3.3819111.0-28.06255.752.90.00.0-0.20.1XUncertainThe guanidinium group of Arg272, located at the end of an anti-parallel β sheet strand (res. Arg259-Arg272), is stably maintained in an upright and outward position via stacking with the indole ring of the Trp362 side chain in another β strand (res. Thr359-Pro364). In the WT simulations, Arg272 forms hydrogen bonds with the glycine-rich Ω loop residues (res. Val365-Pro398, e.g., Gly380) and creates a salt bridge with the carboxylate group of the Asp304 side chain.In the variant simulations, the carboxamide group of the Gln272 side chain does not stack with the indole ring of Trp362 as stably as the guanidinium group of Arg272 in the WT. Consequently, the Gln272 side chain is freer to interact with the loop residues than Arg272, potentially negatively affecting the dynamic SynGAP-membrane association. Additionally, Arg272 faces the RasGTPase interface, so the residue swap could impact the SynGAP-Ras complex formation and GTPase activation.
c.844T>C
C282R
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant C282R is listed in ClinVar as Pathogenic (ClinVar ID 635755.0) and is not reported in gnomAD. Prediction tools that agree on a benign effect are limited to REVEL, which scores the variant as benign. All other evaluated algorithms predict a pathogenic outcome: FoldX, Foldetta, premPS, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, AlphaMissense‑Optimized, and the SGM‑Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN). Rosetta’s output is uncertain and is therefore not counted as evidence. High‑accuracy assessments further support pathogenicity: AlphaMissense‑Optimized predicts pathogenic, the SGM‑Consensus indicates Likely Pathogenic, and Foldetta (combining FoldX‑MD and Rosetta) also predicts pathogenic. Based on the overwhelming agreement among these predictions, the variant is most likely pathogenic, which aligns with its ClinVar status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Pathogenic 2-16.378Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.466Likely Benign3.13Destabilizing0.61.58Ambiguous2.36Destabilizing1.70Destabilizing-11.03Deleterious0.999Probably Damaging0.998Probably Damaging1.63Pathogenic0.00Affected3.3918-4-3-7.053.05297.4-98.2-0.10.10.50.0XXXPotentially PathogenicThe thiol-containing side chain of Cys282, located at the beginning of an anti-parallel β sheet strand (res. Arg279-Leu286), is packed against multiple hydrophobic residues (e.g., Ile268, Leu284, Trp308, Leu327). In the variant simulations, the bulky side chain of Arg282 with its positively charged guanidinium group is not suitable for this hydrophobic niche. Consequently, the hydrophobic residues must either make room to accommodate Arg282 or it must escape the hydrophobic C2 domain core.As a result, new hydrogen bonds are formed with the backbone carbonyl groups of the surrounding β sheet residues Ala399, Leu325, and His326, which decreases the unity of the secondary structure elements. Notably, it is likely that the residue swap causes major problems during the C2 domain folding that are not visible in the variant simulations. In fact, even increased lability in the C2 domain could adversely affect the establishment of a stable SynGAP-membrane association.
c.862G>A
D288N
2D
3DClick to see structure in 3D Viewer
AISynGAP1 D288N is listed in ClinVar with an uncertain significance (ClinVar ID 2572204.0) and is present in gnomAD (6‑33437767‑G‑A). Computational predictors are divided: benign calls come from REVEL, FoldX, Rosetta, Foldetta, premPS, and AlphaMissense‑Optimized, while pathogenic calls come from PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, and FATHMM; AlphaMissense‑Default is uncertain. High‑accuracy assessments show AlphaMissense‑Optimized as benign, Foldetta as benign, and the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) as likely pathogenic. Because the majority of high‑accuracy tools predict benign and the overall split of predictions is even, the variant is most likely benign, which does not contradict the ClinVar status of uncertain.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Uncertain 16-33437767-G-A21.24e-6-10.535Likely Pathogenic0.521AmbiguousLikely Benign0.321Likely Benign-0.39Likely Benign0.10.01Likely Benign-0.19Likely Benign-0.03Likely Benign-3.73Deleterious0.999Probably Damaging0.997Probably Damaging1.78Pathogenic0.05Affected3.3823120.0-0.98
c.910G>A
D304N
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant D304N is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Functional prediction tools that agree on a benign effect include REVEL, FoldX, Rosetta, Foldetta, premPS, ESM1b, and AlphaMissense‑Optimized. Tools that predict a pathogenic effect are PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, and FATHMM, while AlphaMissense‑Default remains uncertain. High‑accuracy assessments show AlphaMissense‑Optimized as benign, the SGM Consensus (derived from AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) as pathogenic, and Foldetta as benign. Overall, the majority of evidence points to a benign impact, which does not contradict the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
C2Uncertain 1-6.194Likely Benign0.391AmbiguousLikely Benign0.345Likely Benign0.30Likely Benign0.1-0.08Likely Benign0.11Likely Benign0.21Likely Benign-4.18Deleterious0.999Probably Damaging0.997Probably Damaging1.81Pathogenic0.03Affected3.3823120.0-0.98
c.968T>C
L323P
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant L323P is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Prediction tools that assess pathogenicity uniformly classify the variant as pathogenic: REVEL, FoldX, Rosetta, Foldetta, premPS, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. No tool in the dataset predicts a benign effect. High‑accuracy assessments corroborate this: AlphaMissense‑Optimized predicts pathogenic; the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) indicates “Likely Pathogenic”; and Foldetta, which integrates FoldX‑MD and Rosetta outputs, also predicts pathogenic. Based on the unanimous computational evidence, the variant is most likely pathogenic, which does not contradict its current ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Uncertain 1-12.507Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.762Likely Pathogenic3.39Destabilizing0.68.46Destabilizing5.93Destabilizing2.20Destabilizing-4.80Deleterious0.999Probably Damaging0.977Probably Damaging0.59Pathogenic0.01Affected4.29398-3-3-5.4-16.04201.968.20.00.10.60.3XPotentially PathogenicThe iso-butyl side chain of Leu323, located at the beginning of an anti-parallel β sheet strand (res. Ala322-Asp330), packs against multiple hydrophobic leucine residues (e.g., Leu264, Leu266, Leu284, Leu286). In contrast, in the variant simulations, the less bulky cyclic five-membered pyrrolidine ring of Pro323 cannot fill the hydrophobic space as effectively as the branched hydrocarbon side chain of leucine. Notably, the backbone amide group of Leu323 forms a hydrogen bond with the backbone carbonyl group of Cys285. Pro323 cannot form this bond due to the absence of the backbone amide group, resulting in partial unfolding of the anti-parallel β sheet end in the variant simulations.
c.968T>G
L323R
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant L323R is listed in ClinVar (ID 978601.0) as Pathogenic and is not reported in gnomAD. All available in‑silico predictors classify the change as pathogenic: REVEL, FoldX, Rosetta, Foldetta, premPS, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized. No tool reports a benign effect. High‑accuracy assessments reinforce this: AlphaMissense‑Optimized predicts Pathogenic; the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) yields Likely Pathogenic; and Foldetta (combining FoldX‑MD and Rosetta outputs) predicts Pathogenic. Consequently, the variant is most likely pathogenic, and this prediction aligns with its ClinVar status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Likely Pathogenic 1-14.568Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.692Likely Pathogenic3.75Destabilizing0.44.47Destabilizing4.11Destabilizing2.15Destabilizing-4.70Deleterious0.999Probably Damaging0.969Probably Damaging0.59Pathogenic0.01Affected3.3922-3-2-8.343.03261.8-61.6-0.40.20.80.2XXXPotentially PathogenicThe iso-butyl side chain of Leu323, located at the beginning of an anti-parallel β sheet strand (res. Ala322-Asp330), packs against multiple hydrophobic leucine residues (e.g., Leu264, Leu266, Leu284, Leu286). In contrast, in the variant simulations, the positively charged guanidinium group of the Arg323 side chain is unsuitable for the hydrophobic niche. Consequently, the side chain either rotates away from the center of the C2 domain or, if it remains within the C2 domain core, it reorients nearby residues to form hydrogen bonds. Regardless, the residue swap extensively disrupts the C2 domain structure.
c.971G>A
R324Q
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant R324Q is listed in ClinVar with an uncertain significance (ClinVar ID 2572558.0) and is present in gnomAD (ID 6‑33437876‑G‑A). Prediction tools that classify the variant as benign include REVEL, PROVEAN, SIFT, ESM1b, AlphaMissense‑Default, and AlphaMissense‑Optimized. Tools that predict pathogenicity are premPS, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and FATHMM. The high‑accuracy AlphaMissense‑Optimized score is benign, and the SGM Consensus—derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN—also indicates a likely benign outcome. Protein‑stability predictions from FoldX, Rosetta, and the combined Foldetta method are all uncertain. Overall, the consensus of available computational evidence points to a benign effect for R324Q, which is consistent with its ClinVar status of uncertain significance rather than a pathogenic designation.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely BenignC2Uncertain 36-33437876-G-A31.86e-6-5.001Likely Benign0.173Likely BenignLikely Benign0.307Likely Benign0.56Ambiguous0.10.63Ambiguous0.60Ambiguous1.02Destabilizing-1.17Neutral0.999Probably Damaging0.994Probably Damaging1.92Pathogenic0.41Tolerated3.3922111.0-28.06
c.1003C>T
R335C
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant R335C is listed in ClinVar with an uncertain significance (ClinVar ID 2835865.0) and is present in gnomAD (ID 6‑33437908‑C‑T). Functional prediction tools cluster into two groups: benign predictions come from REVEL and premPS, whereas pathogenic predictions are made by PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, ESM1b, FATHMM, and AlphaMissense‑Default. Predictions that are inconclusive are AlphaMissense‑Optimized, FoldX, Rosetta, and Foldetta. High‑accuracy assessments show AlphaMissense‑Optimized as uncertain, the SGM Consensus (derived from the unanimous pathogenic vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN) as pathogenic, and Foldetta as uncertain. Overall, the majority of evidence points to a pathogenic effect. This conclusion aligns with the ClinVar designation of uncertain significance, which does not contradict the prediction that the variant is most likely pathogenic.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Uncertain 16-33437908-C-T16.20e-7-14.354Likely Pathogenic0.938Likely PathogenicAmbiguous0.277Likely Benign0.53Ambiguous0.10.85Ambiguous0.69Ambiguous0.46Likely Benign-5.69Deleterious1.000Probably Damaging0.998Probably Damaging1.67Pathogenic0.01Affected3.3822-3-47.0-53.05
c.1004G>A
R335H
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant R335H is listed in ClinVar with an uncertain significance and is present in gnomAD (variant ID 6-33437909‑G‑A). Functional prediction tools cluster into two groups: benign predictions come from REVEL, Rosetta, and Foldetta, while pathogenic predictions are made by PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, and AlphaMissense‑Default. Uncertain results are reported by FoldX, premPS, and AlphaMissense‑Optimized. High‑accuracy assessments show that the SGM Consensus—derived from a majority vote of AlphaMissense‑Default, ESM1b, FATHMM, and PROVEAN—labels the variant as pathogenic, whereas Foldetta, a protein‑folding stability method combining FoldX‑MD and Rosetta outputs, predicts a benign effect. Overall, the preponderance of evidence points to a pathogenic impact, which does not contradict the ClinVar uncertain status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Uncertain 16-33437909-G-A21.24e-6-12.521Likely Pathogenic0.831Likely PathogenicAmbiguous0.132Likely Benign0.58Ambiguous0.10.22Likely Benign0.40Likely Benign0.72Ambiguous-3.02Deleterious1.000Probably Damaging0.998Probably Damaging1.70Pathogenic0.03Affected3.3822201.3-19.05242.482.1-2.40.6-0.10.1UncertainThe guanidinium group of Arg335, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Ala322-Asp330, res. Gly341-Pro349), faces the post-synaptic inner membrane surface. In the WT simulations, the Arg335 side chain dynamically forms salt bridges with the carboxylate groups of Asp322, Asp338, and Asp616. In contrast, the imidazole ring of His335, which is not double protonated and thus not positively charged in the variant simulations, continues to move dynamically without forming any lasting or strong interactions. Importantly, the positively charged arginine residues of the C2 domain are ideal membrane anchors for ensuring SynGAP-membrane association. However, this phenomenon cannot be addressed using solvent-only simulations.
c.1025A>C
Y342S
2D
3DClick to see structure in 3D Viewer
AISynGAP1 variant Y342S is listed in ClinVar with an uncertain significance and is not reported in gnomAD. Prediction tools that agree on a benign effect include only REVEL, whereas the majority of algorithms predict a pathogenic impact: FoldX, Rosetta, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, SIFT, FATHMM, AlphaMissense‑Default, the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN), and the Foldetta stability assessment (combining FoldX‑MD and Rosetta). Uncertain results come from premPS, ESM1b, and AlphaMissense‑Optimized. High‑accuracy methods specifically give AlphaMissense‑Optimized as uncertain, SGM‑Consensus as pathogenic, and Foldetta as pathogenic. Overall, the preponderance of evidence points to a pathogenic effect, which contradicts the ClinVar uncertain classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Uncertain 2-7.996In-Between0.925Likely PathogenicAmbiguous0.407Likely Benign3.03Destabilizing0.12.87Destabilizing2.95Destabilizing0.93Ambiguous-6.60Deleterious1.000Probably Damaging0.998Probably Damaging1.75Pathogenic0.04Affected3.3725-3-20.5-76.10200.177.80.00.0-0.20.1Potentially PathogenicThe phenol ring of Tyr342, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), faces outward in the C2 domain. In the WT simulations, the phenol ring of Tyr342 contributes to a triple tyrosine stack (Tyr342, Tyr328, and Tyr281) that links together three anti-parallel β sheet strands. Additionally, it shields Gly344 from the solvent, reducing its exposure and providing stability for the β-sandwich. This motif also contributes to a twist formation in the β sheet.In the variant simulations, the Ser342 side chain cannot participate in the stack formation. Instead, the hydroxyl group of the Ser342 side chain forms a hydrogen bond with the imidazole ring of His326 in a neighboring β strand (res. Ala322-Asp330). This disrupts the formation of a hydrogen bond between His326 and the carboxylate group of the Glu283 side chain from another β strand (res. Arg279-Cys285). Although these changes in surface interactions could weaken the characteristic twist that strengthens the β sheet fold, no major structural effects are observed in the variant simulations. The residue swap could also affect the SynGAP-membrane association, as the hydroxyl group of Ser342 could form hydrogen bonds with membrane-facing loop residues. However, this phenomenon cannot be addressed using solvent-only simulations.
c.1025A>G
Y342C
2D
3DClick to see structure in 3D Viewer
AISynGAP1 missense variant Y342C is listed in ClinVar as Benign (ClinVar ID 1213078.0) and is observed in gnomAD (ID 6‑33437930‑A‑G). Across general prediction tools, benign calls are made by REVEL and AlphaMissense‑Optimized, whereas pathogenic calls are made by FoldX, Rosetta, Foldetta, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, FATHMM, AlphaMissense‑Default, and the SGM‑Consensus score (Likely Pathogenic). Uncertain results are reported by premPS and ESM1b. High‑accuracy assessments show AlphaMissense‑Optimized predicting Benign, the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) predicting Pathogenic, and Foldetta (combining FoldX‑MD and Rosetta outputs) predicting Pathogenic. Overall, the majority of predictions support a pathogenic effect, contradicting the ClinVar benign classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Benign/Likely benign 26-33437930-A-G211.30e-5-7.596In-Between0.682Likely PathogenicLikely Benign0.404Likely Benign2.48Destabilizing0.12.73Destabilizing2.61Destabilizing0.92Ambiguous-6.67Deleterious1.000Probably Damaging0.999Probably Damaging1.72Pathogenic0.02Affected3.37250-23.8-60.04242.462.80.10.0-0.10.2Potentially PathogenicThe phenol ring of Tyr342, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), faces outward in the C2 domain. This phenol ring contributes to a triple tyrosine stack (Tyr342, Tyr328, and Tyr281) that links together three anti-parallel β sheet strands. Additionally, it shields Gly344 from the solvent, reducing its exposure and providing stability for the β-sandwich. This motif also contributes to a twist formation in the β sheet.In the variant simulations, the Cys342 side chain cannot participate in the stack formation. Instead, its thiol group forms a hydrogen bond with the backbone carbonyl group of Leu327. Although these changes in surface interactions could weaken the characteristic twist that strengthens the β sheet fold, no major structural effects are observed in the variant simulations. The residue swap could also affect the SynGAP-membrane association; however, this phenomenon cannot be addressed using solvent-only simulations. Notably, the thiol group of cysteine is not a particularly strong hydrogen-bonding partner, which could mitigate the negative effects of the residue swap.
c.1030G>A
G344S
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant G344S is listed in ClinVar (ID 981240.0) as Pathogenic and is not reported in gnomAD. Prediction tools that assess pathogenicity all agree: REVEL, FoldX, Rosetta, Foldetta, PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and AlphaMissense‑Optimized all classify the variant as pathogenic; the only inconclusive result is premPS, which is marked Uncertain. No tool predicts a benign effect. High‑accuracy assessments reinforce this: AlphaMissense‑Optimized is pathogenic; the SGM Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) is pathogenic; and Foldetta, which integrates FoldX‑MD and Rosetta outputs, is pathogenic. Thus, the variant is most likely pathogenic, and this prediction aligns with its ClinVar status.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Pathogenic 5-11.254Likely Pathogenic0.986Likely PathogenicLikely Pathogenic0.790Likely Pathogenic9.02Destabilizing0.76.08Destabilizing7.55Destabilizing0.98Ambiguous-5.28Deleterious1.000Probably Damaging1.000Probably Damaging-0.45Pathogenic0.04Affected3.372510-0.430.03217.3-51.70.00.10.20.1XXPotentially PathogenicBecause Gly344 lacks a proper side chain, it allows the anti-parallel β sheet strand (res. Gly341-Pro349) to have a slight twist. Within a β strand, side chains normally alternate between outward and inward positions, but glycine is an exception as it allows the alternating pattern to skip a residue. Introducing serine or any other residue with a side chain at position 344 prevents this unique skip in the alternating pattern, causing structural strain or likely preventing correct folding altogether. Additionally, Tyr342 shields Gly344 from the solvent, contributing to twist formation in the β sheet and stabilizing the β-strand.In the variant simulations, the side chain of Ser344 assumes the inward position. However, the hydrophobic niche formed by multiple C2 domain residues (e.g., Val365, Val343, Leu327) is not accommodating for its hydroxyl group. The outward position, not seen in the simulations, would be equally disadvantageous due to the presence of hydrophobic residues on that side as well (e.g., Leu345, Tyr342). Serine is also not well-suited for twist formation, as it tends to suppress twisting and bending in β sheets. At this position, the hydroxyl group of Ser344 could also form hydrogen bonds with the backbone atoms of the Gly-rich Ω loop in the C2 domain (e.g., Thr366, Leu367, Gly378; res. Pro364-Pro398), potentially adversely affecting membrane-loop dynamics and ultimately compromising the stability of the SynGAP-membrane association.
c.1045C>T
P349S
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 P349S missense variant is listed in ClinVar with an “Uncertain” status and is not reported in gnomAD. Prediction tools that agree on a benign effect include REVEL, SIFT, AlphaMissense‑Default, and AlphaMissense‑Optimized. Those that predict a pathogenic impact are Rosetta, PROVEAN, polyPhen‑2 HumDiv, polyPhen‑2 HumVar, and FATHMM. Predictions that are inconclusive or uncertain are FoldX, ESM1b, and premPS. High‑accuracy assessments show AlphaMissense‑Optimized as benign, the SGM Consensus (majority vote from AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) as pathogenic, and Foldetta (combining FoldX‑MD and Rosetta outputs) as pathogenic. Overall, the majority of tools, including the high‑accuracy methods, predict a pathogenic effect. Thus, the variant is most likely pathogenic, which does not contradict its current ClinVar “Uncertain” classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
C2Uncertain 1-7.654In-Between0.217Likely BenignLikely Benign0.277Likely Benign1.92Ambiguous0.12.28Destabilizing2.10Destabilizing0.87Ambiguous-6.13Deleterious1.000Probably Damaging0.996Probably Damaging1.66Pathogenic0.06Tolerated3.37251-10.8-10.04194.9-18.1-0.10.00.20.1XXPotentially PathogenicThe cyclic pyrrolidine side chain of Pro349, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), allows the strand to end and make a tight turn before a short α helical section within a loop connecting to another β strand (res. Thr359-Pro364). In the variant simulations, the hydroxyl group of Ser349 forms a hydrogen bond with the backbone amide group of Ala351 in the short helical section. Conversely, the backbone amide group of Ser349 (absent in proline) does not form any intra-protein hydrogen bonds. However, the β strand end connects to the α helical section in a more stable and consistent manner compared to the WT. Although the residue swap does not cause major adverse effects on the protein structure in the simulations, it is possible that the tight turn at the β strand end could not be created during folding without the presence of proline.
c.1066C>T
R356C
2D
3DClick to see structure in 3D Viewer
AIThe SynGAP1 missense variant R356C is listed in ClinVar as Benign (ClinVar ID 469145.0) and is present in gnomAD (ID 6‑33437971‑C‑T). Functional prediction tools cluster into two groups: benign predictions from REVEL and AlphaMissense‑Optimized, and pathogenic predictions from PROVEAN, polyPhen‑2 (HumDiv and HumVar), SIFT, ESM1b, FATHMM, AlphaMissense‑Default, and the SGM‑Consensus score. Uncertain results are reported by FoldX, Rosetta, Foldetta, and premPS. High‑accuracy assessments show AlphaMissense‑Optimized as benign, the SGM‑Consensus (majority vote of AlphaMissense‑Default, ESM1b, FATHMM, PROVEAN) as pathogenic, and Foldetta as inconclusive. Overall, the majority of evidence points to a pathogenic effect, contradicting the ClinVar benign classification.

Disclaimer: This summary was generated using AI and should be interpreted alongside expert review.
Likely PathogenicC2Likely Benign 16-33437971-C-T53.10e-6-11.827Likely Pathogenic0.774Likely PathogenicLikely Benign0.312Likely Benign0.76Ambiguous0.01.19Ambiguous0.98Ambiguous0.84Ambiguous-7.12Deleterious1.000Probably Damaging0.990Probably Damaging1.67Pathogenic0.00Affected3.3922-4-37.0-53.05212.391.0-0.10.3-0.30.1XPotentially PathogenicArg356 is located in a loop that includes a short helical section and connects two anti-parallel β sheet strands (res. Gly341-Pro349, res. Thr359-Pro364). In the WT simulations, the guanidinium group of Arg356 alternately forms salt bridges with the carboxylate groups of the GAP domain residues, Glu446 and Glu698. Arg356 also forms hydrogen bonds with the hydroxyl group of the GAP domain residue Thr691 and interacts with Met409 at the C2-GAP interface.In the variant simulations, the Cys356 mutation fails to maintain any of the Arg356 interactions and only occasionally forms weak hydrogen bonds with nearby C2 domain residues (e.g., Gln407). Although no negative structural effects are observed during the simulations, Arg356 is located at the C2 and GAP domain interface, making the residue swap potentially detrimental to the tertiary structure assembly.

Found 757 rows. Show 200 rows per page. Page 3/4 |