SynGap Missense Server

Table of SynGAP1 Isoform α2 (UniProt Q96PV0-1) Missense Variants.

c.dna Variant SGM Consensus Domain ClinVar gnomAD ESM1b AlphaMissense REVEL FoldX Rosetta Foldetta PremPS PROVEAN PolyPhen-2 HumDiv PolyPhen-2 HumVar FATHMM SIFT PAM Physical SASA Normalized B-factor backbone Normalized B-factor sidechain SynGAP Structural Annotation DOI
Clinical Status Review Subm. ID Allele count Allele freq. LLR score Prediction Pathogenicity Class Optimized Score Prediction Average ΔΔG Prediction StdDev ΔΔG Prediction ΔΔG Prediction ΔΔG Prediction Score Prediction pph2_prob Prediction pph2_prob Prediction Nervous System Score Prediction Prediction Status Conservation Sequences PAM250 PAM120 Hydropathy Δ MW Δ Average Δ Δ StdDev Δ StdDev Secondary Tertiary bonds Inside out GAP-Ras interface At membrane No effect MD Alert Verdict Description
c.3304G>CA1102PLikely BenignUncertain 1-5.120Likely Benign0.077Likely BenignLikely Benign0.118Likely Benign-0.97Neutral0.000Benign0.002Benign2.26Pathogenic0.13Tolerated3.775-11-3.426.04
c.3305C>TA1102VLikely BenignBenign 16-33443857-C-T-2.440Likely Benign0.077Likely BenignLikely Benign0.081Likely Benign-1.27Neutral0.017Benign0.028Benign2.29Pathogenic0.12Tolerated3.775002.428.05
c.3307C>TR1103CUncertain 16-33443859-C-T63.92e-6-2.440Likely Benign0.246Likely BenignLikely Benign0.140Likely Benign-3.01Deleterious0.996Probably Damaging0.787Possibly Damaging2.41Pathogenic0.01Affected3.775-3-47.0-53.05
c.3308G>TR1103LLikely BenignUncertain 16-33443860-G-T-2.330Likely Benign0.205Likely BenignLikely Benign0.173Likely Benign-2.35Neutral0.002Benign0.005Benign2.44Pathogenic0.02Affected3.775-3-28.3-43.03
c.3310C>TP1104SLikely BenignBenign 16-33443862-C-T16.54e-7-2.330Likely Benign0.073Likely BenignLikely Benign0.088Likely Benign-0.30Neutral0.770Possibly Damaging0.404Benign2.77Benign0.10Tolerated3.775-110.8-10.04
c.3313C>TR1105WUncertain 16-33443865-C-T63.93e-6-6.911Likely Benign0.488AmbiguousLikely Benign0.133Likely Benign-4.34Deleterious0.999Probably Damaging0.696Possibly Damaging2.42Pathogenic0.02Affected3.775-323.630.03
c.3323G>TS1108IUncertain 16-33443875-G-T-3.666Likely Benign0.292Likely BenignLikely Benign0.145Likely Benign-3.73Deleterious0.971Probably Damaging0.604Possibly Damaging2.44Pathogenic0.10Tolerated3.775-2-15.326.08
c.3328A>GS1110GLikely BenignLikely Benign 1-4.674Likely Benign0.079Likely BenignLikely Benign0.035Likely Benign-2.26Neutral0.036Benign0.026Benign2.19Pathogenic0.08Tolerated4.322100.4-30.03
c.3338G>AG1113DLikely BenignUncertain 16-33443890-G-A-4.638Likely Benign0.354AmbiguousLikely Benign0.061Likely Benign-0.72Neutral0.029Benign0.017Benign2.58Benign0.34Tolerated4.322-11-3.158.04
c.3354C>AS1118RLikely BenignUncertain 1-2.670Likely Benign0.553AmbiguousLikely Benign0.166Likely Benign-0.74Neutral0.034Benign0.023Benign5.17Benign0.05Affected4.322-10-3.769.11
c.3355G>AG1119RBenign 16-33443907-G-A644.23e-5-8.489Likely Pathogenic0.473AmbiguousLikely Benign0.303Likely Benign0.10Neutral0.969Probably Damaging0.462Possibly Damaging4.03Benign0.10Tolerated4.322-3-2-4.199.14
c.335G>CG112ALikely BenignUncertain 16-33432200-G-C159.30e-6-2.456Likely Benign0.119Likely BenignLikely Benign0.114Likely Benign-2.34Neutral0.231Benign0.054Benign4.07Benign0.00Affected3.615102.214.03
c.3361A>GS1121GLikely BenignUncertain 16-33443913-A-G17.00e-7-1.220Likely Benign0.054Likely BenignLikely Benign0.067Likely Benign-0.53Neutral0.003Benign0.004Benign6.63Benign0.00Affected3.775010.4-30.03
c.3368G>AG1123DUncertain 16-33443920-G-A21.33e-6-10.321Likely Pathogenic0.405AmbiguousLikely Benign0.360Likely Benign-0.78Neutral0.500Possibly Damaging0.157Benign4.34Benign0.19Tolerated3.7751-1-3.158.04
c.3374G>CG1125ALikely BenignUncertain 16-33443926-G-C16.68e-7-6.569Likely Benign0.083Likely BenignLikely Benign0.232Likely Benign-0.60Neutral0.999Probably Damaging0.995Probably Damaging4.60Benign0.11Tolerated3.775102.214.03
c.3376G>TG1126CLikely BenignUncertain 16-33443928-G-T117.35e-6-9.389Likely Pathogenic0.113Likely BenignLikely Benign0.449Likely Benign-1.40Neutral0.005Benign0.005Benign4.74Benign0.02Affected3.775-3-32.946.09
c.3377G>AG1126DUncertain 1-8.888Likely Pathogenic0.432AmbiguousLikely Benign0.376Likely Benign-0.65Neutral0.906Possibly Damaging0.473Possibly Damaging4.82Benign0.02Affected3.7751-1-3.158.04
c.3377G>TG1126VLikely BenignUncertain 16-33443929-G-T-6.536Likely Benign0.089Likely BenignLikely Benign0.357Likely Benign-1.20Neutral0.009Benign0.008Benign4.76Benign0.03Affected3.775-1-34.642.08
c.3379G>AG1127RLikely BenignUncertain 16-33443931-G-A21.34e-6-5.949Likely Benign0.629Likely PathogenicLikely Benign0.341Likely Benign-0.87Neutral0.001Benign0.001Benign4.86Benign0.12Tolerated4.324-2-3-4.199.14
c.3380G>TG1127VLikely BenignUncertain 16-33443932-G-T16.69e-7-6.097Likely Benign0.094Likely BenignLikely Benign0.230Likely Benign-1.01Neutral0.004Benign0.005Benign4.81Benign0.17Tolerated4.324-1-34.642.08
c.3395C>AS1132YLikely BenignLikely Benign 1-5.894Likely Benign0.392AmbiguousLikely Benign0.401Likely Benign-1.76Neutral0.500Possibly Damaging0.208Benign5.40Benign0.09Tolerated4.324-3-2-0.576.10
c.3397A>GI1133VLikely BenignBenign 16-33443949-A-G221.48e-5-3.362Likely Benign0.067Likely BenignLikely Benign0.180Likely Benign0.06Neutral0.007Benign0.007Benign5.47Benign0.58Tolerated4.32343-0.3-14.0310.1016/j.ajhg.2020.11.011
c.3405G>CK1135NLikely BenignUncertain 1-5.715Likely Benign0.960Likely PathogenicLikely Pathogenic0.166Likely Benign-0.97Neutral0.411Benign0.321Benign5.43Benign0.07Tolerated4.322100.4-14.07
c.3410A>CH1137PLikely BenignBenign 16-33444445-A-C127.44e-6-2.098Likely Benign0.054Likely BenignLikely Benign0.419Likely Benign-1.93Neutral0.925Possibly Damaging0.703Possibly Damaging5.29Benign0.00Affected4.324-201.6-40.02
c.3413C>AS1138YUncertain 16-33444448-C-A31.86e-6-6.610Likely Benign0.449AmbiguousLikely Benign0.391Likely Benign-2.51Deleterious0.997Probably Damaging0.996Probably Damaging5.41Benign0.05Affected4.324-2-3-0.576.10
c.3424T>CS1142PLikely BenignLikely Benign 16-33444459-T-C16.20e-7-2.713Likely Benign0.222Likely BenignLikely Benign0.107Likely Benign-2.19Neutral0.918Possibly Damaging0.761Possibly Damaging2.64Benign0.00Affected4.324-11-0.810.04
c.3434A>GN1145SLikely BenignUncertain 16-33444469-A-G21.24e-6-0.989Likely Benign0.126Likely BenignLikely Benign0.308Likely Benign-1.15Neutral0.997Probably Damaging0.989Probably Damaging5.55Benign0.89Tolerated4.324112.7-27.03
c.3442A>TM1148LLikely BenignUncertain 1-1.777Likely Benign0.093Likely BenignLikely Benign0.068Likely Benign-1.13Neutral0.016Benign0.016Benign2.62Benign0.00Affected4.322421.9-18.03
c.3449C>TA1150VLikely BenignUncertain 16-33444484-C-T31.86e-6-3.648Likely Benign0.192Likely BenignLikely Benign0.066Likely Benign-2.22Neutral0.114Benign0.055Benign2.32Pathogenic0.04Affected3.775002.428.05
c.3484C>TP1162SLikely BenignUncertain 1-2.118Likely Benign0.913Likely PathogenicAmbiguous0.215Likely Benign-1.93Neutral1.000Probably Damaging0.999Probably Damaging2.73Benign0.55Tolerated3.8831-10.8-10.04
c.3487C>GH1163DUncertain 1-2.107Likely Benign0.949Likely PathogenicAmbiguous0.476Likely Benign-2.60Deleterious0.991Probably Damaging0.991Probably Damaging5.44Benign0.31Tolerated3.8831-1-0.3-22.05
c.3502A>GI1168VLikely BenignUncertain 1-3.263Likely Benign0.524AmbiguousLikely Benign0.363Likely Benign-0.14Neutral0.876Possibly Damaging0.643Possibly Damaging5.47Benign0.84Tolerated3.88343-0.3-14.03
c.3508A>GS1170GLikely BenignCoiled-coilUncertain 1-4.288Likely Benign0.221Likely BenignLikely Benign0.349Likely Benign-0.81Neutral0.241Benign0.229Benign5.31Benign0.54Tolerated4.324100.4-30.03
c.3511G>AA1171TLikely BenignCoiled-coilUncertain 1-3.658Likely Benign0.149Likely BenignLikely Benign0.201Likely Benign-0.48Neutral0.245Benign0.138Benign5.45Benign0.07Tolerated4.32410-2.530.03
c.3511_3512delinsTGA1171CLikely BenignCoiled-coilUncertain 1-5.363Likely Benign0.496AmbiguousLikely Benign-1.16Neutral0.978Probably Damaging0.825Possibly Damaging5.32Benign0.02Affected4.324-200.732.06
c.3520G>AE1174KLikely BenignCoiled-coilUncertain 16-33444555-G-A21.24e-6-4.345Likely Benign0.898Likely PathogenicAmbiguous0.442Likely Benign-1.59Neutral0.962Probably Damaging0.367Benign5.52Benign0.03Affected4.32201-0.4-0.94
c.3529G>AE1177KLikely BenignCoiled-coilUncertain 1-3.413Likely Benign0.944Likely PathogenicAmbiguous0.560Likely Pathogenic-1.75Neutral0.905Possibly Damaging0.637Possibly Damaging5.44Benign0.11Tolerated4.32201-0.4-0.94
c.3557C>TS1186LCoiled-coilUncertain 16-33444592-C-T-4.829Likely Benign0.923Likely PathogenicAmbiguous0.177Likely Benign-2.58Deleterious0.998Probably Damaging0.992Probably Damaging2.65Benign0.04Affected3.824-3-24.626.08
c.3567G>CE1189DLikely BenignCoiled-coilLikely Benign 16-33444602-G-C31.86e-6-3.582Likely Benign0.461AmbiguousLikely Benign0.359Likely Benign-1.42Neutral0.992Probably Damaging0.989Probably Damaging5.30Benign0.25Tolerated3.824320.0-14.03
c.3574C>GL1192VLikely BenignCoiled-coilUncertain 1-4.132Likely Benign0.471AmbiguousLikely Benign0.041Likely Benign-0.89Neutral0.779Possibly Damaging0.527Possibly Damaging2.69Benign0.16Tolerated210.4-14.03
c.3595G>AE1199KCoiled-coilUncertain 16-33446587-G-A16.20e-7-10.853Likely Pathogenic0.954Likely PathogenicAmbiguous0.171Likely Benign-2.26Neutral1.000Probably Damaging0.995Probably Damaging2.52Benign0.00Affected3.77501-0.4-0.94
c.3607C>GH1203DLikely BenignCoiled-coilUncertain 1-6.729Likely Benign0.525AmbiguousLikely Benign0.403Likely Benign-1.89Neutral0.473Possibly Damaging0.265Benign5.51Benign0.24Tolerated3.7751-1-0.3-22.05
c.3607C>TH1203YLikely BenignCoiled-coilUncertain 16-33446599-C-T21.24e-6-6.834Likely Benign0.149Likely BenignLikely Benign0.233Likely Benign-1.52Neutral0.006Benign0.011Benign5.55Benign0.10Tolerated3.775201.926.03
c.3614T>CL1205PLikely PathogenicCoiled-coilUncertain 1-16.878Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.536Likely Pathogenic-5.91Deleterious1.000Probably Damaging0.999Probably Damaging1.45Pathogenic0.00Affected-3-3-5.4-16.04
c.3631A>GM1211VLikely BenignCoiled-coilBenign 16-33446623-A-G31.86e-6-2.101Likely Benign0.258Likely BenignLikely Benign0.412Likely Benign-0.29Neutral0.932Possibly Damaging0.949Probably Damaging5.43Benign0.72Tolerated3.775122.3-32.06
c.3632T>AM1211KLikely PathogenicCoiled-coilLikely Benign 1-9.013Likely Pathogenic0.662Likely PathogenicLikely Benign0.595Likely Pathogenic-2.95Deleterious0.987Probably Damaging0.979Probably Damaging5.59Benign0.01Affected3.7750-1-5.8-3.02
c.3633G>AM1211ILikely BenignCoiled-coilUncertain 16-33446625-G-A31.86e-6-1.537Likely Benign0.764Likely PathogenicLikely Benign0.298Likely Benign-0.42Neutral0.969Probably Damaging0.968Probably Damaging5.40Benign1.00Tolerated3.775122.6-18.03
c.3638A>GN1213SLikely BenignCoiled-coilBenign 16-33446630-A-G138.05e-6-4.086Likely Benign0.081Likely BenignLikely Benign0.094Likely Benign-0.56Neutral0.906Possibly Damaging0.551Possibly Damaging2.82Benign0.68Tolerated3.775112.7-27.0310.1016/j.ajhg.2020.11.011
c.3640C>TR1214WLikely PathogenicCoiled-coilUncertain 16-33446632-C-T21.24e-6-8.799Likely Pathogenic0.710Likely PathogenicLikely Benign0.143Likely Benign-4.95Deleterious1.000Probably Damaging0.983Probably Damaging2.45Pathogenic0.00Affected3.7752-33.630.03
c.3655T>CY1219HLikely PathogenicCoiled-coilUncertain 1-9.511Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.363Likely Benign-3.62Deleterious1.000Probably Damaging0.999Probably Damaging2.15Pathogenic0.00Affected3.77502-1.9-26.03
c.3686A>CQ1229PLikely PathogenicCoiled-coilUncertain 1-10.397Likely Pathogenic0.980Likely PathogenicLikely Pathogenic0.422Likely Benign-3.69Deleterious0.998Probably Damaging0.995Probably Damaging1.75Pathogenic0.12Tolerated3.7750-11.9-31.01
c.36C>GS12RLikely BenignUncertain 16-33420300-C-G42.59e-6-4.033Likely Benign0.500AmbiguousLikely Benign0.097Likely Benign-0.30Neutral0.000Benign0.000Benign4.09Benign0.00Affected4.3210-1-3.769.11
c.3705G>AM1235ILikely BenignCoiled-coilUncertain 1-4.312Likely Benign0.310Likely BenignLikely Benign0.027Likely Benign-1.44Neutral0.139Benign0.056Benign2.69Benign0.04Affected3.775122.6-18.03
c.3721C>AL1241MCoiled-coilUncertain 1-5.881Likely Benign0.782Likely PathogenicLikely Benign0.167Likely Benign-1.43Neutral1.000Probably Damaging0.999Probably Damaging1.65Pathogenic0.00Affected42-1.918.03
c.3731G>AS1244NLikely PathogenicCoiled-coilUncertain 1-9.008Likely Pathogenic0.751Likely PathogenicLikely Benign0.154Likely Benign-1.87Neutral0.997Probably Damaging0.992Probably Damaging2.10Pathogenic0.15Tolerated3.77511-2.727.03
c.373C>TP125SLikely BenignUncertain 1-3.769Likely Benign0.238Likely BenignLikely Benign0.121Likely Benign-3.57Deleterious0.580Possibly Damaging0.140Benign2.86Benign0.02Affected3.6151-10.8-10.04
c.3773A>GQ1258RLikely PathogenicCoiled-coilUncertain 1-10.971Likely Pathogenic0.931Likely PathogenicAmbiguous0.316Likely Benign-3.19Deleterious0.994Probably Damaging0.988Probably Damaging2.00Pathogenic0.00Affected11-1.028.06
c.3788T>CI1263TLikely PathogenicCoiled-coilUncertain 16-33446780-T-C21.24e-6-6.564Likely Benign0.962Likely PathogenicLikely Pathogenic0.529Likely Pathogenic-4.15Deleterious0.946Possibly Damaging0.673Possibly Damaging1.81Pathogenic0.00Affected3.7750-1-5.2-12.05
c.3794G>CR1265TLikely PathogenicCoiled-coilLikely Pathogenic 1-10.129Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.529Likely Pathogenic-4.97Deleterious0.997Probably Damaging0.994Probably Damaging2.29Pathogenic0.00Affected3.775-1-13.8-55.08
c.379C>TR127WUncertain 1-4.776Likely Benign0.806Likely PathogenicAmbiguous0.118Likely Benign-2.98Deleterious0.989Probably Damaging0.420Benign3.88Benign0.00Affected2-33.630.03
c.37A>GI13VLikely BenignUncertain 1-2.497Likely Benign0.105Likely BenignLikely Benign0.110Likely Benign0.01Neutral0.000Benign0.000Benign4.25Benign0.00Affected43-0.3-14.03
c.3806T>AV1269ELikely PathogenicCoiled-coilUncertain 1-11.418Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.403Likely Benign-5.05Deleterious0.999Probably Damaging0.995Probably Damaging2.09Pathogenic0.00Affected3.775-2-2-7.729.98
c.380G>AR127QLikely BenignUncertain 16-33432245-G-A63.72e-6-1.711Likely Benign0.320Likely BenignLikely Benign0.037Likely Benign-1.04Neutral0.006Benign0.001Benign4.04Benign0.02Affected3.744111.0-28.06
c.3820C>TR1274CUncertain 16-33447868-C-T-6.467Likely Benign0.439AmbiguousLikely Benign0.170Likely Benign-5.22Deleterious1.000Probably Damaging0.996Probably Damaging2.46Pathogenic0.00Affected3.775-4-37.0-53.05
c.3821G>AR1274HLikely Benign 16-33447869-G-A42.58e-6-5.259Likely Benign0.256Likely BenignLikely Benign0.149Likely Benign-3.20Deleterious1.000Probably Damaging0.995Probably Damaging2.49Pathogenic0.01Affected3.775021.3-19.05
c.3824G>AR1275QLikely BenignUncertain 16-33447872-G-A21.29e-6-4.928Likely Benign0.121Likely BenignLikely Benign0.103Likely Benign-1.72Neutral0.898Possibly Damaging0.147Benign2.59Benign0.03Affected3.775111.0-28.06
c.3824G>TR1275LLikely Benign 16-33447872-G-T16.45e-7-6.052Likely Benign0.446AmbiguousLikely Benign0.117Likely Benign-4.04Deleterious0.800Possibly Damaging0.277Benign2.55Benign0.01Affected3.775-3-28.3-43.03
c.382C>AP128TLikely BenignUncertain 16-33432247-C-A16.20e-7-4.217Likely Benign0.267Likely BenignLikely Benign0.075Likely Benign-0.96Neutral0.952Possibly Damaging0.500Possibly Damaging4.19Benign0.35Tolerated3.744-100.93.99
c.3846G>CE1282DLikely BenignUncertain 16-33447894-G-C16.44e-7-3.879Likely Benign0.074Likely BenignLikely Benign0.104Likely Benign-1.26Neutral0.112Benign0.036Benign2.70Benign0.39Tolerated3.775320.0-14.03
c.3848C>TP1283LLikely BenignBenign 16-33447896-C-T322.06e-5-3.740Likely Benign0.093Likely BenignLikely Benign0.047Likely Benign-1.04Neutral0.005Benign0.003Benign2.76Benign0.06Tolerated3.775-3-35.416.04
c.3859C>AP1287TLikely BenignUncertain 16-33447907-C-A-3.940Likely Benign0.077Likely BenignLikely Benign0.044Likely Benign-0.22Neutral0.126Benign0.041Benign2.78Benign0.04Affected3.775-100.93.99
c.3862A>GK1288EUncertain 16-33447910-A-G53.22e-6-2.751Likely Benign0.407AmbiguousLikely Benign0.185Likely Benign-3.27Deleterious0.979Probably Damaging0.973Probably Damaging2.13Pathogenic0.00Affected3.775100.40.94
c.3902C>GP1301RLikely BenignUncertain 16-33451776-C-G159.30e-6-4.753Likely Benign0.162Likely BenignLikely Benign0.076Likely Benign-1.13Neutral0.077Benign0.059Benign2.81Benign0.10Tolerated3.7750-2-2.959.07
c.3906G>CL1302FUncertain 1-5.674Likely Benign0.148Likely BenignLikely Benign0.211Likely Benign-2.70Deleterious0.960Probably Damaging0.657Possibly Damaging1.53Pathogenic0.00Affected20-1.034.02
c.3907G>AG1303SLikely BenignUncertain 1-2.271Likely Benign0.125Likely BenignLikely Benign0.155Likely Benign-0.19Neutral0.649Possibly Damaging0.433Benign2.84Benign0.18Tolerated10-0.430.03
c.391G>CG131RUncertain 1-6.564Likely Benign0.983Likely PathogenicLikely Pathogenic0.099Likely Benign-3.82Deleterious0.983Probably Damaging0.656Possibly Damaging3.92Benign0.00Affected3.615-2-3-4.199.14
c.3920C>AP1307QLikely BenignUncertain 16-33451794-C-A-4.227Likely Benign0.114Likely BenignLikely Benign0.192Likely Benign-0.88Neutral0.988Probably Damaging0.765Possibly Damaging2.82Benign0.03Affected3.7750-1-1.931.01
c.3920C>TP1307LLikely BenignBenign 16-33451794-C-T116.82e-6-4.044Likely Benign0.144Likely BenignLikely Benign0.292Likely Benign-1.49Neutral0.779Possibly Damaging0.220Benign2.82Benign0.04Affected3.775-3-35.416.04
c.3923G>AR1308HUncertain 16-33451797-G-A31.86e-6-3.586Likely Benign0.201Likely BenignLikely Benign0.319Likely Benign-3.12Deleterious0.998Probably Damaging0.991Probably Damaging2.33Pathogenic0.00Affected3.775201.3-19.05
c.3929C>TT1310MLikely BenignBenign 16-33451803-C-T171.05e-5-4.822Likely Benign0.117Likely BenignLikely Benign0.069Likely Benign2.19Neutral0.021Benign0.005Benign2.98Benign0.93Tolerated3.775-1-12.630.09
c.3932T>CL1311PLikely BenignLikely Benign 16-33451806-T-C16.21e-7-1.831Likely Benign0.079Likely BenignLikely Benign0.123Likely Benign-0.52Neutral0.579Possibly Damaging0.335Benign2.72Benign0.18Tolerated3.775-3-3-5.4-16.04
c.3941C>TP1314LLikely BenignLikely Benign 16-33451815-C-T21.24e-6-4.040Likely Benign0.118Likely BenignLikely Benign0.049Likely Benign-0.20Neutral0.421Benign0.066Benign4.19Benign0.05Affected3.775-3-35.416.04
c.3943T>CW1315RLikely BenignUncertain 10.205Likely Benign0.660Likely PathogenicLikely Benign0.114Likely Benign1.31Neutral0.000Benign0.001Benign4.37Benign0.91Tolerated3.7752-3-3.6-30.03
c.3958C>TP1320SLikely BenignUncertain 16-33451832-C-T21.28e-6-4.928Likely Benign0.073Likely BenignLikely Benign0.097Likely Benign-0.69Neutral0.980Probably Damaging0.968Probably Damaging4.25Benign0.00Affected3.7751-10.8-10.04
c.3962C>AP1321QLikely BenignBenign 16-33451836-C-A16.58e-7-5.594Likely Benign0.079Likely BenignLikely Benign0.055Likely Benign-0.74Neutral0.659Possibly Damaging0.034Benign4.24Benign0.09Tolerated3.7750-1-1.931.01
c.3964G>CA1322PLikely BenignBenign 16-33451838-G-C-1.153Likely Benign0.063Likely BenignLikely Benign0.090Likely Benign0.03Neutral0.000Benign0.000Benign4.15Benign0.23Tolerated3.7751-1-3.426.04
c.3970C>TP1324SLikely BenignLikely Benign 16-33451844-C-T53.26e-6-5.451Likely Benign0.068Likely BenignLikely Benign0.049Likely Benign0.35Neutral0.225Benign0.092Benign4.33Benign0.00Affected4.3211-10.8-10.04
c.3974C>TP1325LLikely BenignUncertain 16-33451848-C-T-5.256Likely Benign0.085Likely BenignLikely Benign0.146Likely Benign-1.05Neutral0.000Benign0.000Benign4.05Benign0.00Affected4.321-3-35.416.04
c.3977C>AP1326QLikely BenignUncertain 16-33451851-C-A16.40e-7-5.422Likely Benign0.128Likely BenignLikely Benign0.138Likely Benign-0.86Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.775-10-1.931.01
c.3977C>GP1326RLikely BenignUncertain 1-5.097Likely Benign0.240Likely BenignLikely Benign0.133Likely Benign-0.82Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.7750-2-2.959.07
c.3977C>TP1326LLikely BenignUncertain 1-5.541Likely Benign0.115Likely BenignLikely Benign0.117Likely Benign-1.06Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.775-3-35.416.04
c.3979C>TP1327SLikely BenignUncertain 16-33451853-C-T-4.744Likely Benign0.131Likely BenignLikely Benign0.092Likely Benign0.28Neutral0.980Probably Damaging0.857Possibly Damaging4.25Benign0.71Tolerated3.7751-10.8-10.04
c.3980C>TP1327LLikely BenignUncertain 16-33451854-C-T21.28e-6-5.264Likely Benign0.242Likely BenignLikely Benign0.142Likely Benign-1.24Neutral0.994Probably Damaging0.908Possibly Damaging4.12Benign0.10Tolerated3.775-3-35.416.04
c.3983G>CR1328PLikely BenignBenign 16-33451857-G-C-1.220Likely Benign0.466AmbiguousLikely Benign0.060Likely Benign-2.01Neutral0.927Possibly Damaging0.452Possibly Damaging4.06Benign0.01Affected3.7750-22.9-59.07
c.3995C>TT1332MLikely Benign 16-33451869-C-T201.86e-5-4.107Likely Benign0.948Likely PathogenicAmbiguous0.252Likely Benign-3.63Deleterious1.000Probably Damaging0.991Probably Damaging2.95Benign0.00Affected3.775-1-12.630.09
c.4000A>GN1334DUncertain 16-33451874-A-G-4.584Likely Benign0.674Likely PathogenicLikely Benign0.126Likely Benign-3.06Deleterious0.886Possibly Damaging0.522Possibly Damaging3.55Benign0.00Affected3.775120.00.98
c.4008G>CE1336DLikely BenignLikely Benign 1-3.344Likely Benign0.596Likely PathogenicLikely Benign0.062Likely Benign-1.92Neutral0.001Benign0.003Benign3.30Benign0.00Affected3.775230.0-14.03
c.401G>AS134NLikely BenignUncertain 1-5.534Likely Benign0.813Likely PathogenicAmbiguous0.075Likely Benign-1.62Neutral0.001Benign0.002Benign3.90Benign0.00Affected3.61511-2.727.03
c.4021G>TA1341SLikely BenignUncertain 16-33451895-G-T-2.867Likely Benign0.078Likely BenignLikely Benign0.099Likely Benign0.80Neutral0.000Benign0.001Benign4.40Benign1.00Tolerated3.77511-2.616.00
c.404G>AR135QUncertain 16-33432701-G-A53.84e-6-8.011Likely Pathogenic0.853Likely PathogenicAmbiguous0.087Likely Benign-1.94Neutral0.327Benign0.100Benign3.76Benign0.02Affected3.615111.0-28.06
c.407G>AR136QBenign 16-33432704-G-A139.17e-6-11.146Likely Pathogenic0.950Likely PathogenicAmbiguous0.190Likely Benign-2.26Neutral0.957Probably Damaging0.342Benign3.52Benign0.01Affected3.615111.0-28.06
c.407G>CR136PLikely PathogenicUncertain 1-11.952Likely Pathogenic0.981Likely PathogenicLikely Pathogenic0.277Likely Benign-3.72Deleterious0.910Possibly Damaging0.578Possibly Damaging3.47Benign0.00Affected3.6150-22.9-59.07
c.416G>AS139NLikely BenignUncertain 16-33432713-G-A32.22e-6-4.584Likely Benign0.688Likely PathogenicLikely Benign0.109Likely Benign-0.75Neutral0.149Benign0.047Benign4.14Benign0.24Tolerated3.61511-2.727.03
c.43G>AA15TLikely BenignUncertain 16-33420307-G-A42.60e-6-3.720Likely Benign0.125Likely BenignLikely Benign0.086Likely Benign-0.08Neutral0.602Possibly Damaging0.017Benign4.16Benign0.00Affected4.32110-2.530.03
c.43G>CA15PLikely BenignUncertain 1-3.436Likely Benign0.097Likely BenignLikely Benign0.146Likely Benign-0.23Neutral0.880Possibly Damaging0.123Benign4.09Benign0.00Affected1-1-3.426.04
c.44C>TA15VLikely BenignUncertain 16-33420308-C-T16.49e-7-3.560Likely Benign0.161Likely BenignLikely Benign0.105Likely Benign0.20Neutral0.602Possibly Damaging0.015Benign4.19Benign0.00Affected4.321002.428.05
c.451G>CD151HLikely PathogenicUncertain 16-33432748-G-C21.26e-6-11.747Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.335Likely Benign-3.90Deleterious0.999Probably Damaging0.995Probably Damaging3.86Benign0.00Affected3.615-110.322.05
c.453C>AD151ELikely BenignUncertain 1-5.662Likely Benign0.886Likely PathogenicAmbiguous0.142Likely Benign-2.02Neutral0.984Probably Damaging0.967Probably Damaging3.99Benign0.11Tolerated3.615320.014.03
c.455G>AR152QUncertain 16-33432752-G-A53.14e-6-10.336Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.181Likely Benign-2.34Neutral0.997Probably Damaging0.968Probably Damaging3.89Benign0.00Affected3.615111.0-28.06
c.467T>GF156CLikely PathogenicUncertain 1-13.658Likely Pathogenic0.988Likely PathogenicLikely Pathogenic0.297Likely Benign-3.54Deleterious0.999Probably Damaging0.990Probably Damaging3.92Benign0.00Affected-4-2-0.3-44.04
c.470G>AR157HUncertain 16-33432767-G-A16.20e-7-10.235Likely Pathogenic0.604Likely PathogenicLikely Benign0.254Likely Benign-2.23Neutral0.999Probably Damaging0.987Probably Damaging3.80Benign0.00Affected3.744201.3-19.05
c.484C>GR162GLikely BenignUncertain 1-6.985Likely Benign0.664Likely PathogenicLikely Benign0.190Likely Benign-0.73Neutral0.487Possibly Damaging0.272Benign4.09Benign0.78Tolerated3.744-2-34.1-99.14
c.485G>AR162HUncertain 16-33432782-G-A21.24e-6-9.730Likely Pathogenic0.480AmbiguousLikely Benign0.167Likely Benign-1.13Neutral0.957Probably Damaging0.513Possibly Damaging4.03Benign0.12Tolerated3.744201.3-19.05
c.48G>AM16ILikely BenignUncertain 16-33420312-G-A16.49e-7-2.198Likely Benign0.722Likely PathogenicLikely Benign0.057Likely Benign-0.15Neutral0.000Benign0.000Benign4.28Benign0.00Affected4.321212.6-18.03
c.491G>AR164QUncertain 16-33432788-G-A21.24e-6-11.208Likely Pathogenic0.600Likely PathogenicLikely Benign0.184Likely Benign-1.86Neutral0.957Probably Damaging0.342Benign3.82Benign0.00Affected3.744111.0-28.06
c.502C>TH168YLikely BenignBenign 1-8.914Likely Pathogenic0.264Likely BenignLikely Benign0.065Likely Benign-1.53Neutral0.192Benign0.062Benign4.18Benign0.01Affected4.323021.926.03
c.505G>AD169NUncertain 1-10.713Likely Pathogenic0.761Likely PathogenicLikely Benign0.110Likely Benign-2.04Neutral0.079Benign0.052Benign4.07Benign0.01Affected3.744210.0-0.98
c.50C>TS17FLikely BenignUncertain 16-33420314-C-T106.49e-6-3.888Likely Benign0.637Likely PathogenicLikely Benign0.048Likely Benign-0.99Neutral0.486Possibly Damaging0.032Benign3.99Benign0.00Affected4.321-2-33.660.10
c.515G>AR172QUncertain 16-33435157-G-A31.86e-6-7.245In-Between0.465AmbiguousLikely Benign0.135Likely Benign-1.72Neutral0.804Possibly Damaging0.091Benign4.04Benign0.04Affected3.615111.0-28.06
c.526A>CS176RLikely BenignUncertain 1-6.492Likely Benign0.987Likely PathogenicLikely Pathogenic0.247Likely Benign0.94Neutral0.718Possibly Damaging0.168Benign4.16Benign0.87Tolerated0-1-3.769.11
c.526A>GS176GUncertain 16-33435168-A-G16.20e-7-7.541In-Between0.360AmbiguousLikely Benign0.066Likely Benign-1.08Neutral0.131Benign0.039Benign4.08Benign0.22Tolerated3.546010.4-30.03
c.53A>GY18CLikely BenignUncertain 16-33420317-A-G442.88e-5-2.658Likely Benign0.251Likely BenignLikely Benign0.102Likely Benign-0.56Neutral0.872Possibly Damaging0.206Benign4.04Benign0.00Affected4.3210-23.8-60.04
c.558G>CL186FLikely PathogenicUncertain 1-11.861Likely Pathogenic0.993Likely PathogenicLikely Pathogenic0.132Likely Benign-3.03Deleterious0.009Benign0.012Benign3.50Benign0.00Affected20-1.034.02
c.583G>CA195PLikely PathogenicLikely Pathogenic 1-9.715Likely Pathogenic0.978Likely PathogenicLikely Pathogenic0.152Likely Benign-3.03Deleterious0.997Probably Damaging0.916Probably Damaging4.00Benign0.04Affected3.5461-1-3.426.04
c.597C>AN199K
(3D Viewer)
PHUncertain 1-8.198Likely Pathogenic0.686Likely PathogenicLikely Benign0.024Likely Benign-0.19Likely Benign0.10.03Likely Benign-0.08Likely Benign0.33Likely Benign-1.48Neutral0.276Benign0.083Benign4.27Benign0.13Tolerated3.47910-0.414.07207.821.5-0.11.50.10.0XUncertainAsn199, located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by a positively charged lysine. On the protein surface, both the carboxamide group of Asn199 and the amino group of Lys199 side chains can form hydrogen bonds with the backbone carbonyl groups of residues (e.g., Ala249) at the end of an α helix (res. Ala236-Lys251). However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.59C>GP20RLikely BenignUncertain 1-3.548Likely Benign0.434AmbiguousLikely Benign0.146Likely Benign-0.15Neutral0.972Probably Damaging0.804Possibly Damaging4.33Benign0.00Affected4.3210-2-2.959.07
c.600G>CL200F
(3D Viewer)
PHUncertain 16-33435242-G-C21.24e-6-7.606In-Between0.592Likely PathogenicLikely Benign0.094Likely Benign1.00Ambiguous0.51.45Ambiguous1.23Ambiguous0.43Likely Benign-1.97Neutral0.997Probably Damaging0.916Probably Damaging4.02Benign0.17Tolerated3.46920-1.034.02250.4-15.10.60.20.50.0XUncertainLeu200, a hydrophobic residue located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by another hydrophobic residue, phenylalanine. Both the phenyl group of Phe200 and the branched iso-butyl hydrocarbon sidechain of Leu200 occupy an inward hydrophobic niche (e.g., Leu246, Val222, Phe231) during the simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.603T>AD201E
(3D Viewer)
Likely BenignPHBenign 1-2.640Likely Benign0.406AmbiguousLikely Benign0.165Likely Benign0.42Likely Benign0.21.99Ambiguous1.21Ambiguous0.23Likely Benign-0.69Neutral0.633Possibly Damaging0.108Benign4.30Benign1.00Tolerated3.469320.014.03258.7-24.80.90.1-0.30.2XUncertainAsp201, an acidic residue located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by another acidic residue, glutamate. The carboxylate groups of both Asp201 and Glu201 side chains form hydrogen bonds with the hydroxyl group of Ser221 in the simulations. Due to its shorter side chain, Asp201 can also hydrogen bond with the backbone amide groups of neighboring loop residues Ser204 and Asp203. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.662A>GE221G
(3D Viewer)
Likely PathogenicPHUncertain 1-12.221Likely Pathogenic0.992Likely PathogenicLikely Pathogenic0.863Likely Pathogenic1.40Ambiguous0.11.74Ambiguous1.57Ambiguous0.71Ambiguous-5.56Deleterious0.596Possibly Damaging0.201Benign5.79Benign0.00Affected0-23.1-72.06
c.68A>GD23GLikely BenignUncertain 1-2.622Likely Benign0.684Likely PathogenicLikely Benign0.100Likely Benign-2.45Neutral0.805Possibly Damaging0.539Possibly Damaging3.50Benign0.00Affected1-13.1-58.04
c.70G>AV24ILikely BenignUncertain 16-33423479-G-A95.58e-6-3.701Likely Benign0.137Likely BenignLikely Benign0.069Likely Benign-0.25Neutral0.043Benign0.031Benign3.96Benign0.00Affected4.321340.314.03
c.718G>AD240NLikely PathogenicPHUncertain 1-12.942Likely Pathogenic0.755Likely PathogenicLikely Benign0.701Likely Pathogenic0.22Likely Benign0.90.47Likely Benign0.35Likely Benign0.37Likely Benign-4.37Deleterious0.993Probably Damaging0.984Probably Damaging5.88Benign0.01Affected210.0-0.98
c.719A>GD240GLikely PathogenicPHUncertain 1-12.825Likely Pathogenic0.951Likely PathogenicAmbiguous0.912Likely Pathogenic1.85Ambiguous0.12.72Destabilizing2.29Destabilizing0.24Likely Benign-6.19Deleterious0.993Probably Damaging0.984Probably Damaging5.79Benign0.01Affected1-13.1-58.04
c.74G>AR25QLikely BenignUncertain 16-33423483-G-A159.29e-6-4.126Likely Benign0.212Likely BenignLikely Benign0.038Likely Benign-0.70Neutral0.829Possibly Damaging0.614Possibly Damaging4.01Benign0.00Affected4.321111.0-28.06
c.611C>GS204C
(3D Viewer)
Likely BenignPHUncertain 1-6.613Likely Benign0.127Likely BenignLikely Benign0.148Likely Benign0.65Ambiguous0.4-1.13Ambiguous-0.24Likely Benign0.10Likely Benign-0.64Neutral0.978Probably Damaging0.753Possibly Damaging4.13Benign0.05Affected3.44100-13.316.06223.6-13.80.60.30.00.2XUncertainThe hydroxyl-containing Ser204, located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by the thiol-containing cysteine. In the WT simulations, Ser204 simultaneously forms hydrogen bonds with the backbone carbonyl of Asp201 and the hydroxyl group of Thr224, helping to stabilize the two anti-parallel β strands (res. Ile205-Lys207 and Cys219-Thr223) at the end of the β sheet. Since the thiol group of cysteine forms weaker hydrogen bonds than the hydroxyl group of serine, Cys204 does not maintain the hydrogen bond network as stably as Ser204 in the variant simulations. However, because the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.662A>TE221V
(3D Viewer)
Likely PathogenicPHLikely Pathogenic 1-14.954Likely Pathogenic0.987Likely PathogenicLikely Pathogenic0.875Likely Pathogenic-0.66Ambiguous0.2-0.89Ambiguous-0.78Ambiguous0.49Likely Benign-5.54Deleterious0.596Possibly Damaging0.203Benign5.86Benign0.00Affected3.4113-2-27.7-29.98234.550.60.00.0-0.40.2XUncertainThe introduced residue Val221 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the carboxylate group of Glu221, Val221 cannot form hydrogen bonds with Thr223 or a salt bridge with the amino group of the Lys207 side chain. Despite this, the WT simulations containing Glu221 do not show significant differences compared to the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.667A>GT223A
(3D Viewer)
PHUncertain 16-33435518-A-G31.86e-6-7.076In-Between0.316Likely BenignLikely Benign0.574Likely Pathogenic0.30Likely Benign0.10.77Ambiguous0.54Ambiguous0.74Ambiguous-3.36Deleterious0.231Benign0.058Benign5.74Benign0.09Tolerated3.4113102.5-30.03186.444.00.00.00.00.0XXUncertainThe introduced residue Ala223 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr223 side chain in the WT protein, the methyl side chain of Ala223 cannot form hydrogen bonds with nearby residues Thr228 and Lys207. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and partially unfolds in the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.767A>GN256S
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-10.640Likely Pathogenic0.950Likely PathogenicAmbiguous0.707Likely Pathogenic0.31Likely Benign0.20.36Likely Benign0.34Likely Benign0.48Likely Benign-4.33Deleterious0.997Probably Damaging0.970Probably Damaging5.87Benign0.02Affected3.3915112.7-27.03
c.76G>AG26RLikely BenignBenign 16-33423485-G-A31.86e-6-2.946Likely Benign0.678Likely PathogenicLikely Benign0.189Likely Benign-2.22Neutral0.994Probably Damaging0.990Probably Damaging3.87Benign0.00Affected4.321-3-2-4.199.14
c.772C>TR258C
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437677-C-T16.20e-7-10.285Likely Pathogenic0.790Likely PathogenicAmbiguous0.771Likely Pathogenic1.17Ambiguous0.41.76Ambiguous1.47Ambiguous0.87Ambiguous-6.79Deleterious1.000Probably Damaging0.993Probably Damaging5.77Benign0.00Affected3.3915-3-47.0-53.05
c.791T>CL264P
(3D Viewer)
Likely PathogenicC2Uncertain 1-12.285Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.767Likely Pathogenic5.73Destabilizing0.36.57Destabilizing6.15Destabilizing2.65Destabilizing-6.43Deleterious1.000Probably Damaging0.999Probably Damaging0.49Pathogenic0.00Affected-3-3-5.4-16.04
c.82T>CS28PLikely BenignUncertain 1-3.309Likely Benign0.051Likely BenignLikely Benign0.047Likely Benign1.37Neutral0.000Benign0.000Benign4.53Benign0.00Affected4.3211-1-0.810.04
c.851T>CL284PLikely PathogenicC2Likely Pathogenic1-15.588Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.794Likely Pathogenic5.83Destabilizing0.25.81Destabilizing5.82Destabilizing1.89Destabilizing-6.17Deleterious1.000Probably Damaging0.999Probably Damaging1.64Pathogenic0.00Affected-3-3-5.4-16.04
c.860A>CD287A
(3D Viewer)
Likely PathogenicC2Uncertain 1-14.686Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.484Likely Benign0.30Likely Benign0.1-0.04Likely Benign0.13Likely Benign0.40Likely Benign-7.35Deleterious1.000Probably Damaging0.998Probably Damaging1.58Pathogenic0.01Affected3.3823-205.3-44.01
c.694G>AA232T
(3D Viewer)
PHBenign 16-33435545-G-A16.20e-7-7.655In-Between0.874Likely PathogenicAmbiguous0.469Likely Benign0.47Likely Benign0.1-0.04Likely Benign0.22Likely Benign0.61Ambiguous-1.42Neutral0.608Possibly Damaging0.240Benign5.80Benign0.09Tolerated3.401410-2.530.03210.8-42.00.50.10.40.5XUncertainThe hydroxyl group of Thr232, located at the end of an anti-parallel β sheet strand (res. Thr228-Ala232), forms hydrogen bonds with nearby residues Glu217, Cys233, and Cys219 in the variant simulations. These hydrogen-bonding interactions at the β sheet surface contribute to the stability of the secondary structure element and prevent it from unfolding. The new hydrogen bond interactions may be more favorable for structural stability than the steric interactions of the methyl side chain of Ala with the side chains of Gln216 and Cys219 in the WT. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.700C>TR234W
(3D Viewer)
Likely PathogenicPHUncertain 16-33435551-C-T31.86e-6-12.625Likely Pathogenic0.947Likely PathogenicAmbiguous0.805Likely Pathogenic0.96Ambiguous0.30.69Ambiguous0.83Ambiguous0.13Likely Benign-5.52Deleterious0.997Probably Damaging0.803Possibly Damaging5.76Benign0.01Affected3.40142-33.630.03262.839.6-0.10.0-0.20.2XPotentially PathogenicThe guanidinium group of Arg234, located in a β-α loop between an anti-parallel β sheet strand (residues Gly227-Phe231) and an α helix (res. Ala236-Val250), forms a salt bridge with the carboxylate group of Glu238 in the α helix. Occasionally, it also bonds with the GAP domain residues Ser678 and Glu680. Thus, the positively charged Arg234 could contribute to the tertiary structure assembly between the PH and GAP domains. In contrast, the indole side chain of Trp234 in the variant is located on the protein surface in the variant simulations and is unable to form any interactions.
c.703T>CS235P
(3D Viewer)
Likely PathogenicPHLikely Pathogenic 1-14.857Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.870Likely Pathogenic4.02Destabilizing0.16.91Destabilizing5.47Destabilizing1.23Destabilizing-4.24Deleterious0.917Possibly Damaging0.446Benign5.47Benign0.01Affected3.40141-1-0.810.04201.517.00.10.0-0.60.0XPotentially PathogenicIn the WT, the hydroxyl group of Ser235, located in a β-α loop between an anti-parallel β sheet strand (res. Gly227-Phe231) and an α helix (residues Ala236-Val250), forms hydrogen bonds with the GAP domain loop residue Glu680 and with the backbone amide groups of Ala237 and Glu238 from the α helix. In the variant simulations, the pyrrolidine ring of Pro235 cannot stabilize the α helix end or maintain tertiary bonding interactions between the PH and GAP domains via hydrogen bonding as effectively as serine.
c.742C>TR248W
(3D Viewer)
Likely PathogenicPHUncertain 1-11.647Likely Pathogenic0.991Likely PathogenicLikely Pathogenic0.699Likely Pathogenic1.17Ambiguous0.3-0.20Likely Benign0.49Likely Benign0.89Ambiguous-6.98Deleterious1.000Probably Damaging0.948Probably Damaging5.62Benign0.00Affected3.41142-33.630.03266.442.30.00.00.30.1XPotentially PathogenicThe guanidinium group of Arg248, located on an α helix (res. Ala236-Val250), forms two very stable salt bridges with Asp255 (from a short α helical section, res. Lys254-Asn256) and Glu244 (from a nearby loop) in the WT simulations. In the variant simulations, the indole group of Trp248 cannot form any salt bridges, which could negatively affect the tertiary structure assembly of the PH domain. Instead, in the variant simulations, the indole ring of Trp248 stacks against Pro252, which makes a turn after the α helix.
c.743G>CR248P
(3D Viewer)
Likely PathogenicPHLikely Pathogenic 1-10.751Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.848Likely Pathogenic3.09Destabilizing0.68.87Destabilizing5.98Destabilizing1.21Destabilizing-5.97Deleterious0.998Probably Damaging0.878Possibly Damaging5.64Benign0.00Affected3.41140-22.9-59.07223.8126.60.00.0-0.20.1XXPotentially PathogenicThe guanidinium group of Arg248, located on an α helix (residues Ala236-Val250), forms two very stable salt bridges with Asp255 (from a short α helical section, res. Lys254-Asn256) and Glu244 (from a nearby loop) in the WT simulations. In the variant simulations, the pyrrolidine side chain of Pro248 cannot form any salt bridges, which could negatively affect the tertiary structure assembly of the PH domain. Additionally, Pro248 lacks a free amide group needed for hydrogen bonding with the backbone carbonyl group of Asn245, disrupting the continuity of the α helix.
c.862G>AD288N
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437767-G-A21.24e-6-10.535Likely Pathogenic0.521AmbiguousLikely Benign0.321Likely Benign-0.39Likely Benign0.10.01Likely Benign-0.19Likely Benign-0.03Likely Benign-3.73Deleterious0.999Probably Damaging0.997Probably Damaging1.78Pathogenic0.05Affected3.3823120.0-0.98
c.866T>CM289TLikely BenignC2Uncertain1-4.668Likely Benign0.238Likely BenignLikely Benign0.222Likely Benign0.73Ambiguous0.10.17Likely Benign0.45Likely Benign-0.01Likely Benign-0.47Neutral0.801Possibly Damaging0.315Benign1.83Pathogenic0.57Tolerated-1-1-2.6-30.09
c.86T>CM29TLikely BenignUncertain 1-2.167Likely Benign0.122Likely BenignLikely Benign0.199Likely Benign-0.37Neutral0.018Benign0.184Benign4.33Benign0.00Affected4.321-1-1-2.6-30.09
c.878G>AR293HLikely PathogenicC2Uncertain 1-13.009Likely Pathogenic0.973Likely PathogenicLikely Pathogenic0.438Likely Benign4.45Destabilizing2.32.12Destabilizing3.29Destabilizing0.32Likely Benign-4.60Deleterious1.000Probably Damaging0.998Probably Damaging1.45Pathogenic0.04Affected201.3-19.05
c.88C>TH30YLikely BenignUncertain 1-3.047Likely Benign0.115Likely BenignLikely Benign0.082Likely Benign-1.84Neutral0.273Benign0.478Possibly Damaging3.99Benign0.00Affected4.321021.926.03
c.892C>TP298S
(3D Viewer)
Likely BenignC2Benign 16-33437797-C-T53.10e-6-6.342Likely Benign0.144Likely BenignLikely Benign0.189Likely Benign1.38Ambiguous0.21.41Ambiguous1.40Ambiguous0.58Ambiguous-1.20Neutral0.991Probably Damaging0.898Possibly Damaging2.03Pathogenic0.85Tolerated3.3920-110.8-10.04
c.910G>AD304N
(3D Viewer)
C2Uncertain 1-6.194Likely Benign0.391AmbiguousLikely Benign0.345Likely Benign0.30Likely Benign0.1-0.08Likely Benign0.11Likely Benign0.21Likely Benign-4.18Deleterious0.999Probably Damaging0.997Probably Damaging1.81Pathogenic0.03Affected3.3823120.0-0.98
c.745G>AA249T
(3D Viewer)
Likely BenignPHUncertain 1-3.564Likely Benign0.805Likely PathogenicAmbiguous0.487Likely Benign1.50Ambiguous0.61.39Ambiguous1.45Ambiguous0.30Likely Benign-0.96Neutral0.990Probably Damaging0.815Possibly Damaging5.65Benign0.40Tolerated3.391510-2.530.03214.5-43.30.00.00.50.2XPotentially BenignThe methyl group of Ala249, located on the surface of an α helix (res. Ala236-Val250) facing an anti-parallel β sheet strand (res. Ile205-Val209), packs against nearby hydrophobic residues such as Leu200, Leu246, and Val250. In the variant simulations, the hydroxyl group of Thr249, which is not suitable for hydrophobic packing, forms a stable hydrogen bond with the backbone carbonyl of Asn245 in the same helix. Although this interaction could theoretically weaken the structural integrity of the α helix, this destabilizing effect is not observed in the variant simulations.
c.762G>CK254N
(3D Viewer)
Likely PathogenicPHUncertain 1-13.306Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.757Likely Pathogenic0.73Ambiguous0.21.87Ambiguous1.30Ambiguous1.19Destabilizing-4.23Deleterious0.384Benign0.070Benign5.93Benign0.01Affected3.3915100.4-14.07215.3-21.0-1.01.70.20.3XPotentially PathogenicThe amino group of Lys254, located in an α-β loop connecting the PH and C2 domains (res. Lys251-Arg258), forms salt bridges with the carboxylate groups of Glu244 and Asp684. Since the neutral carboxamide group of the Asn254 side chain cannot form salt bridges with acidic residues, the residue swap potentially weakens the tertiary structure assembly and/or influences the loop positioning. Regardless, in both the variant and WT simulations, all hydrogen bonds formed by the residue’s side chain were broken, and the residue rotated outwards. The partially α helical conformation of the loop, which extends to a nearby α helix (res. Met414-Asn426), is dynamic, making it unclear if the mutation affects it.
c.775C>TR259W
(3D Viewer)
Likely PathogenicC2Uncertain 1-12.186Likely Pathogenic0.985Likely PathogenicLikely Pathogenic0.691Likely Pathogenic1.95Ambiguous0.80.51Ambiguous1.23Ambiguous0.51Ambiguous-7.35Deleterious1.000Probably Damaging0.993Probably Damaging5.76Benign0.00Affected3.39152-33.630.03254.040.00.20.20.20.4XXXPotentially PathogenicThe guanidinium group of Arg259, located at the beginning of an anti-parallel β sheet strand (res. Arg259-Arg272), forms salt bridges with the carboxylate groups of Asp684 at the end of an α helix (res. Ile683-Gln702, GAP domain) and Asp261 on the same β strand. The Arg259 side chain also frequently forms hydrogen bonds with the backbone carbonyl groups of Ser257, Asn256, and Asp255. In the variant simulations, the indole ring of the Trp259 side chain cannot form salt bridges or maintain hydrogen bonding with the carboxylate group of Asp684 or other nearby residues. Notably, the amino group of the Lys254 side chain maintains a salt bridge with Asp684 and Glu244 throughout the variant simulations, while it forms a cation-π bond with the indole ring of Trp259 in the variant. This salt bridge is not maintained in the WT simulations. Additionally, the partially or loosely α helical conformation of a lysine-containing loop (res. Lys251-Ser257), which extends to a nearby α helix (res. Met414-Asn426), could be stabilized due to the residue swap. Moreover, the bulky size of the Trp259 side chain requires nearby residues to adjust their positioning to accommodate the introduced residue, weakening the tertiary structure assembly between the C2, PH, and GAP domains. The residue swap potentially causes more severe effects during protein folding or for the SynGAP-membrane interaction than the solvent-only simulations imply.
c.791T>AL264Q
(3D Viewer)
Likely PathogenicC2Uncertain 1-15.729Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.678Likely Pathogenic3.43Destabilizing0.12.41Destabilizing2.92Destabilizing2.48Destabilizing-5.52Deleterious1.000Probably Damaging0.999Probably Damaging0.49Pathogenic0.00Affected3.3818-2-2-7.314.97254.7-7.60.00.00.00.3XXXPotentially PathogenicThe iso-butyl branched hydrocarbon side chain of Leu264, located at the end of an anti-parallel β sheet strand (res. Arg259-Arg272), packs against multiple hydrophobic residues such as Leu266, Phe314, Leu317, and Leu323 in the WT simulations. In the variant simulations, the hydrophilic carboxamide group of the Gln264 side chain is not suitable for the hydrophobic niche, causing the hydrophobic residues to make room for the swapped residue. Additionally, the carboxamide group of Gln264 forms hydrogen bonds with the backbone amide groups of Arg405 and Lys256 in the β sheet and the carbonyl group of Val350 in an α helical section of a nearby loop (res. Pro359-Phe358). The residue swap disrupts the packing of the C2 domain, which could adversely affect the C2 domain structure during folding. This disruption could potentially weaken the stability of the SynGAP-membrane association.
c.929A>GE310G
(3D Viewer)
Likely PathogenicC2Pathogenic 1-14.132Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.848Likely Pathogenic2.38Destabilizing0.73.56Destabilizing2.97Destabilizing0.36Likely Benign-6.43Deleterious1.000Probably Damaging0.996Probably Damaging1.12Pathogenic0.00Affected3.3819-203.1-72.06
c.92G>AR31QLikely BenignUncertain 16-33423501-G-A74.34e-6-4.434Likely Benign0.136Likely BenignLikely Benign0.051Likely Benign-0.92Neutral0.829Possibly Damaging0.614Possibly Damaging4.01Benign0.00Affected4.321111.0-28.06
c.937G>AE313K
(3D Viewer)
Likely PathogenicC2Likely Benign 1-12.902Likely Pathogenic0.959Likely PathogenicLikely Pathogenic0.575Likely Pathogenic0.64Ambiguous0.61.40Ambiguous1.02Ambiguous0.75Ambiguous-3.31Deleterious1.000Probably Damaging0.995Probably Damaging1.90Pathogenic0.02Affected01-0.4-0.94
c.958G>AV320I
(3D Viewer)
Likely BenignC2Uncertain 1-5.220Likely Benign0.111Likely BenignLikely Benign0.027Likely Benign-0.27Likely Benign0.20.66Ambiguous0.20Likely Benign0.01Likely Benign-0.21Neutral0.198Benign0.114Benign1.77Pathogenic0.45Tolerated3.3823340.314.03
c.958G>CV320L
(3D Viewer)
C2Uncertain 16-33437863-G-C63.72e-6-6.207Likely Benign0.362AmbiguousLikely Benign0.096Likely Benign-0.26Likely Benign0.21.33Ambiguous0.54Ambiguous0.51Ambiguous-1.02Neutral0.900Possibly Damaging0.373Benign1.78Pathogenic0.92Tolerated3.382321-0.414.03245.8-10.20.30.90.10.3XPotentially BenignThe isopropyl side chain of Val310, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Thr305-Asn315, res. Ala322-Asp330), hydrophobically packs with the side chains of nearby residues (e.g., Leu286, Val350, Pro318). The hydrophobic Leu320 side chain mostly forms the same interactions; hence, the residue swap does not seem to negatively affect the protein structure based on the variant simulations.
c.812C>AA271D
(3D Viewer)
Likely PathogenicC2Pathogenic 1-18.590Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.706Likely Pathogenic4.71Destabilizing0.42.67Destabilizing3.69Destabilizing1.59Destabilizing-5.52Deleterious1.000Probably Damaging0.999Probably Damaging0.62Pathogenic0.00Affected3.38190-2-5.344.01226.2-63.40.00.00.90.1XXXXPotentially PathogenicThe methyl group of Ala271, located near the end of an anti-parallel β sheet strand (res. Arg259-Arg272), packs against multiple hydrophobic residues such as Val400, Val306, and Leu274 in the WT simulations. In the variant simulations, the carboxylate group of Asp271 is not suitable for the hydrophobic niche, causing the hydrophobic residues to make room for the swapped residue. Additionally, the carboxylate group of the Asp271 side chain forms hydrogen bonds with the backbone amide groups of Arg272 and Ala399 in the β sheet, or even forms a salt bridge with the amino group of the Lys394 side chain. This directly affects the integrity of the anti-parallel β sheet at the end. In short, the residue swap disrupts the C2 domain packing during folding, which could weaken the stability of the SynGAP-membrane association.
c.819G>TE273D
(3D Viewer)
Likely BenignC2Benign 16-33437724-G-T21.24e-6-1.811Likely Benign0.058Likely BenignLikely Benign0.092Likely Benign0.26Likely Benign0.1-0.48Likely Benign-0.11Likely Benign-0.63Ambiguous1.99Neutral0.004Benign0.010Benign2.00Pathogenic1.00Tolerated3.3818320.0-14.03223.122.10.20.00.00.1XPotentially BenignThe negatively charged residue Glu273, located in a β hairpin loop (res. Glu273-Lys278) that connects two anti-parallel β sheet strands, is replaced with another negatively charged residue, aspartate. Because the C2 domain loop faces the membrane surface, the potentially crucial role of the carboxylate group of Glu273 or Asp273 on SynGAP-membrane association cannot be fully explored via solvent-only simulations.As a minor note, the neighboring residue Arg272, which stacks with the indole ring of the Trp362 side chain and directly faces RasGTPase, forms a salt bridge more often with Asp273 than with the non-mutated Glu273 in the simulations. Regardless, due to the similar physicochemical properties of the WT and variant residues at the membrane interface, the residue swap is likely to be well tolerated.
c.821T>AL274Q
(3D Viewer)
Likely PathogenicC2Uncertain 1-15.518Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.774Likely Pathogenic2.54Destabilizing0.31.74Ambiguous2.14Destabilizing1.97Destabilizing-5.42Deleterious1.000Probably Damaging0.999Probably Damaging0.00Pathogenic0.00Affected3.3819-2-2-7.314.97245.91.80.00.00.10.2XXXPotentially PathogenicThe aliphatic side chain of Leu274, located in a β hairpin loop (res. Glu273-Lys278) connecting two anti-parallel β sheet strands, packs against multiple hydrophobic residues facing the β sheet (e.g., Ala271, Leu327, Tyr280, Val306). The hydrophilic carboxamide group of the Gln274 side chain is not suitable for this hydrophobic niche, causing nearby residues to adjust to make room for the hydrophilic glutamine. Additionally, a new hydrogen bond forms with the backbone carboxyl group of Arg272 in another β strand (res. Glu273-Arg259).As a result, the backbone amide group of Ala399 and the carbonyl group of Arg272, which connect two β strands at the β sheet end, form fewer hydrogen bonds in the variant than in the WT simulations. Although no major secondary structure disruption is observed in the variant simulations, the residue swap could profoundly affect the C2 domain folding, as the hydrophobic packing of Leu274 is crucial for maintaining the loop's contact with the rest of the C2 domain. Lastly, because the Leu274-containing loop faces the membrane surface, the residue swap could also negatively impact the SynGAP-membrane association.
c.835C>TR279W
(3D Viewer)
Likely PathogenicC2Uncertain 1-11.417Likely Pathogenic0.942Likely PathogenicAmbiguous0.485Likely Benign2.00Destabilizing0.81.47Ambiguous1.74Ambiguous0.80Ambiguous-6.29Deleterious1.000Probably Damaging0.998Probably Damaging1.88Pathogenic0.00Affected3.39182-33.630.03270.038.30.10.00.30.0UncertainThe guanidinium group of Arg279, located at the beginning of an anti-parallel β sheet strand (res. Arg279-Leu286), can form hydrogen bond with the backbone carbonyl groups of nearby loop residues (e.g., Ser296, Ser331, and As332) and form salt bridges with the carboxylate groups of Asp330 and Asp332. In the WT simulations, Arg279 sporadically forms a salt bridge even with the carboxylate group of Glu613, loosely connecting the C2 domain and GAP domain. Meanwhile, the indole ring of the Trp279 side chain is unable to hydrogen bond with the loop residues in the variant simulations. The lack of hydrogen bond or salt bridge formation with the loop residues could be significant, as Arg279 and the loops face the polar head group region of the membrane. Thus, although Trp279 could interact with the membrane surface as a “lipid anchor,” any changes to the wider loop dynamics could still adversely affect the formation of a stable SynGAP-membrane association. However, no definite conclusions on the effect of the residue swap on the SynGAP-membrane association can be drawn from solvent-only simulations.
c.844T>AC282S
(3D Viewer)
Likely PathogenicC2Uncertain 1-11.846Likely Pathogenic0.958Likely PathogenicLikely Pathogenic0.460Likely Benign1.55Ambiguous0.11.23Ambiguous1.39Ambiguous1.62Destabilizing-9.19Deleterious0.997Probably Damaging0.994Probably Damaging1.64Pathogenic0.03Affected3.39180-1-3.3-16.06233.214.8-0.10.0-0.20.3XPotentially BenignThe thiol-containing side chain of Cys282, located at the beginning of an anti-parallel β sheet strand (res. Arg279-Leu286), packs against multiple hydrophobic residues (e.g., Ile268, Leu284, Trp308, Leu327). In the variant simulations, the hydroxyl-containing side chain of Ser282 is more hydrophilic and, hence, not as favorable as Cys282 for this hydrophobic niche. Due to this polarity difference, the residue swap could potentially weaken the hydrophobic packing of the C2 domain during the folding process.Moreover, because the C2 domain interacts with the membrane, there could also be a negative effect on the stability of the SynGAP-membrane association. However, no large-scale structural changes were observed during the variant simulations. The hydroxyl group of Ser282 forms a hydrogen bond with the backbone carbonyl group of His326 in another β strand (res. Ala322-Arg329), which competes directly with the backbone amide group of Glu283 within the secondary structure element.
c.859G>CD287H
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-14.518Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.589Likely Pathogenic0.48Likely Benign0.30.32Likely Benign0.40Likely Benign0.63Ambiguous-6.43Deleterious1.000Probably Damaging0.999Probably Damaging1.51Pathogenic0.00Affected3.38231-10.322.05235.63.80.11.20.10.1XXPotentially PathogenicThe carboxylate group of Asp287, located at the beginning of a β hairpin loop connecting two anti-parallel β sheet strands (res. Arg279-Leu286, res. Met289-Pro298), maintains a salt bridge with the guanidinium group of Arg324 in the β sheet during the WT simulations. In the variant simulations, the imidazole ring of the His287 side chain is unable to form a salt bridge with Arg324 or establish any other stable compensatory interactions, which could weaken the beta sandwich assembly of the C2 domain. This destabilization of the C2 domain could adversely affect the stability of the SynGAP-membrane association.
c.859G>TD287Y
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-12.877Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.663Likely Pathogenic0.21Likely Benign0.20.48Likely Benign0.35Likely Benign0.27Likely Benign-8.27Deleterious1.000Probably Damaging0.999Probably Damaging1.51Pathogenic0.00Affected3.3823-4-32.248.09257.8-44.4-0.61.60.20.3XXPotentially PathogenicThe carboxylate group of Asp287, located at the beginning of a β hairpin loop linking two anti-parallel β sheet strands (res. Arg279-Leu286, res. Met289-Pro298), maintains a salt bridge with the guanidinium group of Arg324 in the β sheet during the WT simulations. In the variant simulations, the phenol group of the Tyr287 side chain is unable to form a salt bridge with the guanidinium group of Arg324, which could weaken the tertiary structure assembly of the C2 domain. However, the phenol group of Tyr287 frequently stacks with the Arg324 guanidinium side chain, which could help maintain the tertiary structure, especially compared to the D287H variant. The destabilization of the C2 domain could adversely affect the stability of the SynGAP-membrane association.
c.865A>GM289V
(3D Viewer)
Likely BenignC2Benign 1-4.239Likely Benign0.117Likely BenignLikely Benign0.150Likely Benign1.09Ambiguous0.1-0.27Likely Benign0.41Likely Benign0.24Likely Benign-0.36Neutral0.136Benign0.054Benign1.80Pathogenic1.00Tolerated3.3823212.3-32.06204.251.00.00.00.20.0XPotentially BenignThe hydrophobic residue Met289, located in a β hairpin linking two anti-parallel β sheet strands (res. Met289-Arg299, res. Arg272-Leu286), is swapped for another hydrophobic residue, valine. In the variant simulations, the branched hydrocarbon side chain of Val289 packs against the phenol group of the Tyr291 side chain but is unable to form methionine-aromatic interactions. β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. However, based on the simulations, the residue swap does not cause adverse effects on the structure.
c.872A>GY291C
(3D Viewer)
Likely PathogenicC2Uncertain 1-8.997Likely Pathogenic0.967Likely PathogenicLikely Pathogenic0.505Likely Pathogenic2.90Destabilizing0.43.51Destabilizing3.21Destabilizing1.35Destabilizing-7.37Deleterious1.000Probably Damaging0.999Probably Damaging1.76Pathogenic0.01Affected3.38230-23.8-60.04205.266.10.10.0-0.40.4XXPotentially PathogenicThe phenol group of the Tyr291 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), packs against hydrophobic residues of the C2 and PH domains (e.g., Leu317, Leu286, Leu284, Pro208, Val209). The phenol ring of Tyr291 also forms favorable Met-aromatic stacking with the methyl group of Met289. In the variant simulation, the thiol group of the Cys291 side chain is not as suitable for the hydrophobic inter-domain space as the phenol ring of Tyr291. Consequently, the structural unity of the PH domain is weakened and ultimately unfolds in the second simulation. Moreover, the residue swap might result in severe detrimental effects on the C2 domain structure and the C2-PH domain tertiary structure assembly during folding.
c.877C>TR293C
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437782-C-T31.86e-6-12.844Likely Pathogenic0.985Likely PathogenicLikely Pathogenic0.579Likely Pathogenic1.38Ambiguous0.10.62Ambiguous1.00Ambiguous0.02Likely Benign-7.35Deleterious1.000Probably Damaging0.998Probably Damaging1.46Pathogenic0.00Affected3.3823-4-37.0-53.05226.096.50.00.00.10.1XXXPotentially PathogenicThe guanidinium group of the Arg293 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), packs against the phenol ring of the Tyr281 side chain or forms a salt bridge with the carboxylate group of Glu283 on the outer side of the C2 domain. The positively charged guanidinium side chain of arginine is on the outside surface of the hydrophobic C2 domain, resulting in a twist in the β strand. Although this twist is maintained in the variant simulations, replacing the positively charged residue with a more hydrophobic one, such as cysteine, could remove the twist during protein folding.Because Arg293 is positioned at the C2 and PH domain interface, the residue swap could significantly impact the tertiary structure assembly. Notably, Arg293 is located at the SynGAP-Ras interface, and its role in complex formation cannot be fully understood through solvent-only simulations.
c.878G>CR293P
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-16.275Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.497Likely Benign3.62Destabilizing0.49.06Destabilizing6.34Destabilizing0.47Likely Benign-6.43Deleterious1.000Probably Damaging0.999Probably Damaging1.45Pathogenic0.01Affected3.38230-22.9-59.07202.3132.00.10.00.10.1XXXPotentially PathogenicThe guanidinium group of the Arg293 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), packs against the phenol ring of the Tyr281 side chain or forms a salt bridge with the carboxylate group of Glu283 on the outer side of the C2 domain. In the WT simulations, the positively charged side chain of arginine remains outside the hydrophobic C2 domain, resulting in a twist in the β strand. The backbone amide bond of Arg293 potentially maintains this twist by forming a hydrogen bond with the carbonyl group of His210 or the hydroxyl group of Ser211 in the anti-parallel β sheet.Although this twist is also maintained in the variant simulations, replacing the positively charged residue with proline, which lacks the backbone amide group altogether, causes the β strand to unfold. Because Arg293 is positioned at the C2 and PH domain interface, the residue swap could significantly impact the tertiary structure assembly. Notably, Arg293 is located at the SynGAP-Ras interface, and its role in complex formation cannot be fully understood through solvent-only simulations.
c.886T>GS296A
(3D Viewer)
Likely BenignC2Uncertain 1-6.847Likely Benign0.247Likely BenignLikely Benign0.209Likely Benign0.50Ambiguous0.3-0.26Likely Benign0.12Likely Benign0.35Likely Benign-1.79Neutral0.992Probably Damaging0.987Probably Damaging1.97Pathogenic0.65Tolerated3.4016112.6-16.00182.526.6-0.20.1-0.50.0XPotentially PathogenicThe hydroxyl group of the Ser296 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), stably hydrogen bonds with the carboxylate group of Asp330 in a neighboring β strand (res. Ala322-Asp332). The backbone carbonyl group of Ser296 also hydrogen bonds with the guanidinium group of Arg279 in another nearby β strand (res. Arg279-Cys285). In the variant simulations, the methyl group of the Ala296 side chain cannot hydrogen bond with Asp330, causing the carboxylate group positioning to fluctuate more than in the WT simulations.Although the residue swap does not seem to affect the anti-parallel β sheet assembly during the simulations, it is possible that the Ser296-Asp330 hydrogen bond plays a crucial role in maintaining the C2 domain fold. Notably, because Ser296 is located near the membrane interface, the potential effect of the residue swap on the SynGAP-membrane association cannot be addressed by solvent-only simulations.
c.899C>TS300F
(3D Viewer)
Likely PathogenicC2Uncertain 1-10.222Likely Pathogenic0.353AmbiguousLikely Benign0.117Likely Benign-0.29Likely Benign0.40.16Likely Benign-0.07Likely Benign0.04Likely Benign-2.66Deleterious0.975Probably Damaging0.596Possibly Damaging1.52Pathogenic0.01Affected3.4719-3-23.660.10233.6-67.6-0.10.00.40.2XXPotentially PathogenicThe hydroxyl group of the Ser300 side chain, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), hydrogen bonds with the guanidinium group of Arg299 and the backbone amide group and side chain of Ser302. Thus, in the WT simulations, it contributes to the β hairpin stability. In the variant simulations, the phenol ring of Phe300 cannot form any side chain-related hydrogen bonds, and Arg299 is moved away from its central hairpin loop position.β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Due to its location near the membrane surface, the residue swap could also affect the C2 loop dynamics and SynGAP-membrane association. However, this is beyond the scope of the solvent-only simulations to unravel.
c.917T>AV306D
(3D Viewer)
Likely PathogenicC2Uncertain 1-18.289Likely Pathogenic0.986Likely PathogenicLikely Pathogenic0.530Likely Pathogenic4.40Destabilizing0.34.29Destabilizing4.35Destabilizing2.44Destabilizing-5.44Deleterious1.000Probably Damaging0.999Probably Damaging1.74Pathogenic0.00Affected3.3819-2-3-7.715.96212.3-18.3-0.20.40.00.2XXXPotentially PathogenicThe isopropyl group of Val396, located at the beginning of an anti-parallel β sheet strand (res. Thr305-Asn315), packs against multiple hydrophobic residues (e.g., Leu274, Trp308, Ala271) in the WT simulations. However, in the variant simulations, the negatively charged carboxylate group of the Asp306 side chain is not suitable for this hydrophobic niche. Consequently, the side chain moves out to interact with Ser300 in the β strand (res. Met289-Arg299) and the guanidinium group of Arg299 in the β hairpin loop.In the third simulation, the residue swap disrupts the C2 domain secondary structure and tertiary assembly to a large degree when the amino group of the Lys297 side chain rotates to form a salt bridge with Asp306. This drastic effect could potentially reflect the challenge presented by the residue swap during the C2 domain folding. Because the residue swap affects the C2 domain structure, the SynGAP-membrane association could also be impacted. However, this is beyond the scope of the solvent-only simulations to unravel.
c.922T>CW308R
(3D Viewer)
Likely PathogenicC2Pathogenic 1-12.264Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.868Likely Pathogenic5.40Destabilizing0.54.27Destabilizing4.84Destabilizing1.88Destabilizing-12.87Deleterious1.000Probably Damaging0.999Probably Damaging0.48Pathogenic0.00Affected3.38192-3-3.6-30.03290.4-26.7-0.10.10.00.2XXXPotentially PathogenicThe indole ring of Trp308, located in an anti-parallel β sheet strand (res. Thr305-Asn315), packs against multiple hydrophobic residues (e.g., Ile268, Val306, Cys282). The indole group of Trp308 also hydrogen bonds with the backbone atoms of the C2 domain residues forming the anti-parallel β sheet (e.g., Tyr280, Thr294). The guanidinium group of Arg308 is comparably sized to the tryptophan it replaced; however, it is also positively charged.In the variant simulations, the charged side chain remains buried deep in the hydrophobic part of the C2 domain, where it forms new hydrogen bonds with the backbone carbonyl atoms of surrounding residues (e.g., Val306, Ile268). However, the residue swap is likely to disrupt the hydrophobic packing during folding. At a minimum, the residue swap could affect the C2 domain stability and membrane association.
c.930G>CE310D
(3D Viewer)
Likely PathogenicC2Likely Pathogenic1-11.218Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.666Likely Pathogenic1.87Ambiguous0.52.39Destabilizing2.13Destabilizing1.04Destabilizing-2.76Deleterious0.997Probably Damaging0.992Probably Damaging1.19Pathogenic0.02Affected3.3819320.0-14.03232.627.20.10.00.10.1XPotentially BenignThe carboxylate group of Glu310, located in an anti-parallel β sheet strand (res. Thr305-Asn315), is ideally positioned to interact with the hydroxyl and backbone amide groups of Thr295 on a twisted anti-parallel β strand. Because the carboxylate group can also interact with the GAP domain residues (e.g., Gln612, Tyr614), Glu310 potentially plays a key role in maintaining the tertiary assembly between the C2 and GAP domains. In the variant simulations, the carboxylate group of Asp310 can form the same interactions as glutamate; however, due to its one hydrocarbon shorter length, the connections are less stable or less optimal.
c.962G>AR321H
(3D Viewer)
C2Uncertain 16-33437867-G-A84.96e-6-8.751Likely Pathogenic0.136Likely BenignLikely Benign0.323Likely Benign0.48Likely Benign0.1-0.36Likely Benign0.06Likely Benign0.59Ambiguous-1.43Neutral1.000Probably Damaging0.998Probably Damaging1.92Pathogenic0.25Tolerated3.3823201.3-19.05218.586.91.10.00.30.0XPotentially BenignThe guanidinium group of Arg321, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Thr305-Asn315, res. Ala322-Asp330), faces outward without forming any stable interactions in the WT simulations. Similarly, in the variant simulations, the imidazole ring of His321 also points outward without making any stable intra-protein interactions. Thus, the residue swap does not seem to cause adverse effects on the protein structure based on the simulations. However, β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant.
c.968T>CL323P
(3D Viewer)
Likely PathogenicC2Uncertain 1-12.507Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.762Likely Pathogenic3.39Destabilizing0.68.46Destabilizing5.93Destabilizing2.20Destabilizing-4.80Deleterious0.999Probably Damaging0.977Probably Damaging0.59Pathogenic0.01Affected4.29398-3-3-5.4-16.04201.968.20.00.10.60.3XPotentially PathogenicThe iso-butyl side chain of Leu323, located at the beginning of an anti-parallel β sheet strand (res. Ala322-Asp330), packs against multiple hydrophobic leucine residues (e.g., Leu264, Leu266, Leu284, Leu286). In contrast, in the variant simulations, the less bulky cyclic five-membered pyrrolidine ring of Pro323 cannot fill the hydrophobic space as effectively as the branched hydrocarbon side chain of leucine. Notably, the backbone amide group of Leu323 forms a hydrogen bond with the backbone carbonyl group of Cys285. Pro323 cannot form this bond due to the absence of the backbone amide group, resulting in partial unfolding of the anti-parallel β sheet end in the variant simulations.
c.968T>GL323R
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-14.568Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.692Likely Pathogenic3.75Destabilizing0.44.47Destabilizing4.11Destabilizing2.15Destabilizing-4.70Deleterious0.999Probably Damaging0.969Probably Damaging0.59Pathogenic0.01Affected3.3922-3-2-8.343.03261.8-61.6-0.40.20.80.2XXXPotentially PathogenicThe iso-butyl side chain of Leu323, located at the beginning of an anti-parallel β sheet strand (res. Ala322-Asp330), packs against multiple hydrophobic leucine residues (e.g., Leu264, Leu266, Leu284, Leu286). In contrast, in the variant simulations, the positively charged guanidinium group of the Arg323 side chain is unsuitable for the hydrophobic niche. Consequently, the side chain either rotates away from the center of the C2 domain or, if it remains within the C2 domain core, it reorients nearby residues to form hydrogen bonds. Regardless, the residue swap extensively disrupts the C2 domain structure.
c.970C>TR324W
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437875-C-T21.24e-6-12.906Likely Pathogenic0.694Likely PathogenicLikely Benign0.481Likely Benign1.49Ambiguous0.30.56Ambiguous1.03Ambiguous0.66Ambiguous-3.12Deleterious1.000Probably Damaging0.998Probably Damaging1.82Pathogenic0.16Tolerated3.39222-33.630.03256.639.10.00.10.30.2XPotentially PathogenicThe guanidinium group of Arg324, located at the end of an anti-parallel β sheet strand (res. Ala322-Asp330), faces outward and frequently forms a salt bridge with the carboxylate group of the Asp288 side chain, which is part of a β strand end (res. Met289-Pro298). In the variant simulations, the indole ring of the Trp324 side chain cannot maintain a similar interaction with the negatively charged carboxylate side chain of Asp288, potentially compromising the folding of the anti-parallel β sheet assembly. However, the residue swap does not appear to negatively impact the protein structure or its integrity based on the simulations.
c.986G>AR329H
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437891-G-A21.24e-6-10.154Likely Pathogenic0.769Likely PathogenicLikely Benign0.155Likely Benign2.53Destabilizing0.70.71Ambiguous1.62Ambiguous0.82Ambiguous-3.17Deleterious0.995Probably Damaging0.778Possibly Damaging4.04Benign0.05Affected3.4115201.3-19.05220.481.40.10.10.20.3UncertainThe guanidinium group of Arg329, located at the end of an anti-parallel β sheet strand (res. Ala322-Asp330), faces the negatively charged lipid bilayer surface. While the residue swap does not cause any apparent negative effects on the protein structure in the variant simulations, it could adversely affect the SynGAP-membrane association in reality. The positively charged Arg329 side chain forms hydrogen bonds with other loop residues (e.g., Ser371, Asp338) that are expected to dynamically interact with the membrane head group region. However, this phenomenon is beyond the scope of the solvent-only simulations to unravel. Notably, histidine can also be double protonated and positively charged, but this alternative protonation state was not considered in the variant simulations.
c.1025A>CY342S
(3D Viewer)
Likely PathogenicC2Uncertain 2-7.996In-Between0.925Likely PathogenicAmbiguous0.407Likely Benign3.03Destabilizing0.12.87Destabilizing2.95Destabilizing0.93Ambiguous-6.60Deleterious1.000Probably Damaging0.998Probably Damaging1.75Pathogenic0.04Affected3.3725-3-20.5-76.10200.177.80.00.0-0.20.1Potentially PathogenicThe phenol ring of Tyr342, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), faces outward in the C2 domain. In the WT simulations, the phenol ring of Tyr342 contributes to a triple tyrosine stack (Tyr342, Tyr328, and Tyr281) that links together three anti-parallel β sheet strands. Additionally, it shields Gly344 from the solvent, reducing its exposure and providing stability for the β-sandwich. This motif also contributes to a twist formation in the β sheet.In the variant simulations, the Ser342 side chain cannot participate in the stack formation. Instead, the hydroxyl group of the Ser342 side chain forms a hydrogen bond with the imidazole ring of His326 in a neighboring β strand (res. Ala322-Asp330). This disrupts the formation of a hydrogen bond between His326 and the carboxylate group of the Glu283 side chain from another β strand (res. Arg279-Cys285). Although these changes in surface interactions could weaken the characteristic twist that strengthens the β sheet fold, no major structural effects are observed in the variant simulations. The residue swap could also affect the SynGAP-membrane association, as the hydroxyl group of Ser342 could form hydrogen bonds with membrane-facing loop residues. However, this phenomenon cannot be addressed using solvent-only simulations.
c.1025A>GY342C
(3D Viewer)
Likely PathogenicC2Benign/Likely benign 26-33437930-A-G211.30e-5-7.596In-Between0.682Likely PathogenicLikely Benign0.404Likely Benign2.48Destabilizing0.12.73Destabilizing2.61Destabilizing0.92Ambiguous-6.67Deleterious1.000Probably Damaging0.999Probably Damaging1.72Pathogenic0.02Affected3.37250-23.8-60.04242.462.80.10.0-0.10.2Potentially PathogenicThe phenol ring of Tyr342, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), faces outward in the C2 domain. This phenol ring contributes to a triple tyrosine stack (Tyr342, Tyr328, and Tyr281) that links together three anti-parallel β sheet strands. Additionally, it shields Gly344 from the solvent, reducing its exposure and providing stability for the β-sandwich. This motif also contributes to a twist formation in the β sheet.In the variant simulations, the Cys342 side chain cannot participate in the stack formation. Instead, its thiol group forms a hydrogen bond with the backbone carbonyl group of Leu327. Although these changes in surface interactions could weaken the characteristic twist that strengthens the β sheet fold, no major structural effects are observed in the variant simulations. The residue swap could also affect the SynGAP-membrane association; however, this phenomenon cannot be addressed using solvent-only simulations. Notably, the thiol group of cysteine is not a particularly strong hydrogen-bonding partner, which could mitigate the negative effects of the residue swap.
c.1027G>AV343I
(3D Viewer)
Likely BenignC2Uncertain 26-33437932-G-A16.20e-7-6.020Likely Benign0.117Likely BenignLikely Benign0.020Likely Benign-0.27Likely Benign0.0-0.04Likely Benign-0.16Likely Benign-0.39Likely Benign-0.14Neutral0.159Benign0.084Benign1.98Pathogenic0.27Tolerated3.3725430.314.03240.2-26.9-0.20.2-0.20.2XPotentially BenignThe iso-propyl side chain of Val343, located in an anti-parallel β sheet strand (res. Gly341-Pro349), is packing against multiple hydrophobic residues of the C2 domain (e.g., Leu327, Leu274, Val365). In the variant simulations, the sec-butyl side chain of Ile343 is basically able to form the same interactions as valine due to its similar hydrophobic profile. The residue swap also does not seem to cause negative effects on the protein structure based on the simulations.
c.1084T>CW362R
(3D Viewer)
Likely PathogenicC2Pathogenic 2-14.004Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.706Likely Pathogenic2.64Destabilizing0.33.90Destabilizing3.27Destabilizing1.10Destabilizing-12.87Deleterious0.999Probably Damaging0.996Probably Damaging1.28Pathogenic0.00Affected3.39242-3-3.6-30.03287.5-34.1-0.20.1-0.60.2XXXPotentially PathogenicThe indole ring of Trp362, located on the surface of an anti-parallel β sheet (res. Thr359-Pro364) in the C2 domain, stacks with nearby residues (e.g., Arg401, Arg272). In the variant simulations, the guanidinium group of the introduced residue Arg362 forms a salt bridge with the carboxylate group of Glu273 and, like Trp362, stacks with other arginine residues (e.g., Arg401, Arg272). This residue is at both the C2-membrane interface and the C2-RasGTPase interface, so the residue swap could potentially affect both interactions. However, these phenomena cannot be addressed using solvent-only simulations. Notably, Arg272, which stacks with both the non-mutated Trp362 and the mutated Arg362, forms a salt bridge directly with Asp105 of Ras in the WT simulations. Therefore, the residue swap could affect the C2 domain stability, the SynGAP-membrane association, and the SynGAP-Ras association.10.1016/j.ajhg.2020.11.011
c.127G>AG43SLikely BenignUncertain 26-33423536-G-A16.20e-7-3.301Likely Benign0.078Likely BenignLikely Benign0.057Likely Benign-0.30Neutral0.162Benign0.096Benign4.29Benign0.00Affected4.32110-0.430.03
c.1154C>TS385L
(3D Viewer)
Likely BenignC2Uncertain 26-33438059-C-T94.60e-5-6.018Likely Benign0.167Likely BenignLikely Benign0.304Likely Benign0.16Likely Benign0.10.08Likely Benign0.12Likely Benign-0.26Likely Benign-0.68Neutral0.829Possibly Damaging0.706Possibly Damaging4.63Benign0.01Affected4.323-3-24.626.08244.6-50.10.00.6-0.10.1UncertainSer385 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like leucine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Leu385 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effects on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1447A>GI483V
(3D Viewer)
GAPConflicting 2-10.121Likely Pathogenic0.523AmbiguousLikely Benign0.228Likely Benign1.00Ambiguous0.00.27Likely Benign0.64Ambiguous1.02Destabilizing-0.86Neutral0.914Possibly Damaging0.921Probably Damaging3.23Benign0.03Affected3.373234-0.3-14.03
c.1213C>TR405C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33438118-C-T63.72e-6-9.206Likely Pathogenic0.713Likely PathogenicLikely Benign0.427Likely Benign0.72Ambiguous0.11.51Ambiguous1.12Ambiguous1.21Destabilizing-7.27Deleterious1.000Probably Damaging1.000Probably Damaging3.61Benign0.02Affected3.3828-4-37.0-53.05221.382.6-0.10.0-0.20.3XXPotentially PathogenicThe guanidinium group of Arg405, located in an anti-parallel β sheet strand of the C2 domain (res. Ala399-Ile411), forms a salt bridge with the carboxylate group of the Glu446 side chain from an opposing α helix (res. Val441-Ser457) in the GAP domain. The positively charged Arg405 side chain also stacks with the aromatic ring of the Phe358 side chain from a loop preceding the β strand (res. Thr359-Thr366), which could assist in maintaining the anti-parallel strand arrangement.In the variant simulations, the thiol-containing side chain of Cys405 is neutral and smaller compared to the arginine side chain. The lack of Arg405-Phe358 stacking affects the loop structure, causing it to assume a β strand form—an effect that could be exacerbated during protein folding. Moreover, the inability of Cys405 to form a salt bridge with Glu446 could affect the tertiary structure assembly, although this is not apparent based on the variant simulations.
c.1474A>GK492E
(3D Viewer)
Likely PathogenicGAPConflicting 2-16.175Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.510Likely Pathogenic1.53Ambiguous0.11.90Ambiguous1.72Ambiguous1.42Destabilizing-3.98Deleterious1.000Probably Damaging0.998Probably Damaging2.99Benign0.01Affected3.3735100.40.94
c.1214G>AR405H
(3D Viewer)
Likely PathogenicC2Conflicting 26-33438119-G-A42.48e-6-9.081Likely Pathogenic0.706Likely PathogenicLikely Benign0.371Likely Benign2.79Destabilizing0.61.85Ambiguous2.32Destabilizing1.26Destabilizing-4.54Deleterious1.000Probably Damaging0.991Probably Damaging3.65Benign0.01Affected3.3828201.3-19.05214.0102.2-0.10.0-0.70.1XPotentially PathogenicThe guanidinium group of Arg405, located in an anti-parallel β sheet strand of the C2 domain (res. Pro398-Ile411), forms a salt bridge with the carboxylate group of the Glu446 side chain from an opposing α helix (res. Val441-Ser457) in the GAP domain. The positively charged Arg405 side chain also stacks with the aromatic ring of the Phe358 side chain from a loop preceding the β strand (res. Thr359-Thr366), which could assist in maintaining the anti-parallel strand arrangement.In the variant simulations, the imidazole ring of His405 does not stack with the aromatic ring of Phe358 nor form any lasting H-bonds with the loop residues. The imidazole ring of His405 (neutral and epsilon protonated in the simulations) is unable to form a salt bridge with Glu446, which could affect the tertiary structure assembly, although this is not apparent based on the variant simulations.
c.1286G>AR429Q
(3D Viewer)
Likely BenignGAPUncertain 26-33438191-G-A106.20e-6-8.227Likely Pathogenic0.143Likely BenignLikely Benign0.156Likely Benign0.45Likely Benign0.10.36Likely Benign0.41Likely Benign0.98Ambiguous-1.25Neutral1.000Probably Damaging0.979Probably Damaging3.47Benign0.58Tolerated3.3825111.0-28.06235.859.50.00.0-0.30.4XPotentially PathogenicThe guanidinium group of the Arg429 side chain, located in an α helix (res. Met414-Glu436), either forms a salt bridge with the carboxylate group of an acidic residue (Asp474, Asp467) or an H-bond with the hydroxyl group of Ser471 in an opposing α helix (res. Ala461-Phe476). In the variant simulations, Gln429 cannot form ionic interactions with the acidic residues; however, the carboxamide group can form multiple H-bonds. The H-bonding coordination of the Asn429 side chain varied between the replica simulations. In one simulation, three H-bonds were formed simultaneously with the Asp467 side chain, the backbone carbonyl group of Asn426, and the amide group of Met430 at the end of the same α helix. The residue swap could affect the tertiary structure assembly during folding due to weaker bond formation, but no large-scale negative effects were seen during the simulations.
c.1322T>CV441A
(3D Viewer)
GAPConflicting 26-33438227-T-C31.86e-6-9.439Likely Pathogenic0.359AmbiguousLikely Benign0.053Likely Benign-0.14Likely Benign0.00.33Likely Benign0.10Likely Benign0.95Ambiguous-2.92Deleterious0.513Possibly Damaging0.214Benign3.44Benign0.93Tolerated3.372900-2.4-28.05195.044.60.00.10.50.0XXUncertainThe iso-propyl side chain of Val441, located on the outer surface of an α helix (res. Asn440-Thr458), does not interact with other residues in the WT simulations. In the variant simulations, the methyl side chain of Ala441 is similarly hydrophobic and does not form any interactions on the outer helix surface. Although the residue swap does not negatively affect the protein structure based on the simulations, it is noteworthy that the residue faces the RasGTPase interface. Thus, the effect of the residue swap on the SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.163C>AQ55KLikely BenignUncertain 26-33423572-C-A241.49e-5-5.840Likely Benign0.612Likely PathogenicLikely Benign0.085Likely Benign-1.21Neutral0.140Benign0.184Benign3.91Benign0.00Affected4.32111-0.40.04
c.1403T>CM468T
(3D Viewer)
Likely PathogenicGAPUncertain 26-33438435-T-C16.20e-7-12.399Likely Pathogenic0.862Likely PathogenicAmbiguous0.801Likely Pathogenic3.47Destabilizing0.13.10Destabilizing3.29Destabilizing1.84Destabilizing-3.85Deleterious0.994Probably Damaging0.985Probably Damaging-1.31Pathogenic0.01Affected3.3731-1-1-2.6-30.09214.647.10.00.00.10.0XPotentially PathogenicThe thioether group of Met468, located in the middle of an α helix (res. Ala461–Phe476), interacts with hydrophobic residues (e.g., Phe464, Leu465, Leu489) in an inter-helix space formed by two other α helices (res. Ala461–Phe476, res. Thr488–Gly502). In the variant simulations, the hydrophilic side chain of Thr468 does not pack favorably in the hydrophobic niche, and the methionine-aromatic stacking is lost. Although the hydroxyl group of Thr468 forms an H-bond with the backbone carbonyl group of Phe464, the integrity of the α helix is not affected in the simulations. No large-scale structural changes are observed during the variant simulations; however, due to the importance of hydrophobic packing, the effects could be more pronounced during protein folding.

Found 757 rows. Show 200 rows per page. Page 3/4 |