SynGap Missense Server

Table of SynGAP1 Isoform α2 (UniProt Q96PV0-1) Missense Variants.

c.dna Variant SGM Consensus Domain ClinVar gnomAD ESM1b AlphaMissense REVEL FoldX Rosetta Foldetta PremPS PROVEAN PolyPhen-2 HumDiv PolyPhen-2 HumVar FATHMM SIFT PAM Physical SASA Normalized B-factor backbone Normalized B-factor sidechain SynGAP Structural Annotation DOI
Clinical Status Review Subm. ID Allele count Allele freq. LLR score Prediction Pathogenicity Class Optimized Score Prediction Average ΔΔG Prediction StdDev ΔΔG Prediction ΔΔG Prediction ΔΔG Prediction Score Prediction pph2_prob Prediction pph2_prob Prediction Nervous System Score Prediction Prediction Status Conservation Sequences PAM250 PAM120 Hydropathy Δ MW Δ Average Δ Δ StdDev Δ StdDev Secondary Tertiary bonds Inside out GAP-Ras interface At membrane No effect MD Alert Verdict Description
c.2215G>CE739QLikely BenignUncertain 1-2.846Likely Benign0.161Likely BenignLikely Benign0.071Likely Benign-1.06Neutral0.801Possibly Damaging0.339Benign2.57Benign0.00Affected4.322220.0-0.98
c.2216A>TE739VLikely BenignUncertain 1-3.136Likely Benign0.274Likely BenignLikely Benign0.085Likely Benign-1.86Neutral0.891Possibly Damaging0.575Possibly Damaging2.47Pathogenic0.00Affected4.322-2-27.7-29.98
c.1723C>TR575C
(3D Viewer)
Likely PathogenicGAPConflicting 36-33440775-C-T231.43e-5-11.179Likely Pathogenic0.630Likely PathogenicLikely Benign0.715Likely Pathogenic1.39Ambiguous0.20.50Ambiguous0.95Ambiguous0.73Ambiguous-5.43Deleterious1.000Probably Damaging1.000Probably Damaging-1.30Pathogenic0.02Affected3.3735-4-37.0-53.05227.799.20.00.00.00.1XPotentially PathogenicThe guanidinium group of Arg575, located in an α-helix (res. Arg563-Glu578), forms salt bridges with the carboxylate groups of Asp463 and Asp467, and it also hydrogen bonds with the hydroxyl group of Ser466 on an opposing α-helix (res. Ala461-Phe476) in the WT simulations. In the variant simulations, the thiol group of the Cys575 side chain, which is neither positively charged nor particularly hydrophilic, packs against the hydrophobic Met470 on an opposing α-helix (res. Ala461-Arg475). Additionally, although the thiol group is not an effective hydrogen bonder, the Cys575 side chain rotates to hydrogen bond with the backbone carbonyl group of Ser571 in the same α-helix, which could theoretically lower the helix integrity. Overall, the residue swap has the potential to substantially affect the tertiary structure assembly during the protein folding process.
c.1724G>AR575H
(3D Viewer)
GAPConflicting 46-33440776-G-A2041.27e-4-11.142Likely Pathogenic0.496AmbiguousLikely Benign0.707Likely Pathogenic0.81Ambiguous0.2-0.22Likely Benign0.30Likely Benign1.31Destabilizing-2.34Neutral1.000Probably Damaging0.998Probably Damaging-1.33Pathogenic0.05Affected3.3735201.3-19.05244.780.60.00.00.30.0XPotentially PathogenicThe guanidinium group of Arg575, located in an α-helix (res. Arg563-Glu578), forms salt bridges with the carboxylate groups of Asp463 and Asp467, and it also hydrogen bonds with the hydroxyl group of Ser466 on an opposing α-helix (res. Ala461-Phe476) in the WT simulations. In the variant simulations, the imidazole ring of His575 (in its neutral epsilon protonated form) cannot form the same salt bridges as the guanidinium group of the non-mutated Arg575. Instead, His575 only forms weak hydrogen bonds with the hydroxyl groups of Ser466 and Ser571. Overall, the residue swap has the potential to substantially affect the tertiary structure assembly during the protein folding process.
c.1729G>AA577T
(3D Viewer)
Likely BenignGAPBenign 16-33440781-G-A63.72e-6-5.311Likely Benign0.322Likely BenignLikely Benign0.427Likely Benign0.86Ambiguous0.10.54Ambiguous0.70Ambiguous0.54Ambiguous-1.47Neutral0.999Probably Damaging0.987Probably Damaging-1.31Pathogenic0.47Tolerated3.373410-2.530.03191.9-43.40.00.00.70.1XPotentially BenignAla577 is located near the end and outer surface of an α-helix (res. Arg563-Glu578), where its methyl group does not form any particular interactions in the WT simulations. In the variant simulations, the hydroxyl group of the Thr577 side chain hydrogen bonds with the backbone atoms of Arg573 and Lys574 within the same helix, which has the potential to weaken the stability of the secondary structure element. Regardless, the residue swap seems to be well tolerated based on the variant simulations.
c.2217G>CE739DLikely BenignUncertain 1-3.369Likely Benign0.062Likely BenignLikely Benign0.097Likely Benign-0.49Neutral0.002Benign0.005Benign2.59Benign0.00Affected320.0-14.03
c.2219G>AR740QLikely BenignUncertain 16-33441684-G-A42.48e-6-5.195Likely Benign0.078Likely BenignLikely Benign0.102Likely Benign-0.67Neutral0.999Probably Damaging0.881Possibly Damaging2.60Benign0.08Tolerated4.322111.0-28.06
c.221G>AS74NLikely BenignUncertain 16-33425829-G-A53.10e-6-5.156Likely Benign0.112Likely BenignLikely Benign0.031Likely Benign-0.89Neutral0.043Benign0.007Benign4.09Benign0.00Affected4.32111-2.727.03
c.2224C>TR742WLikely BenignUncertain 16-33441689-C-T63.72e-6-7.725In-Between0.133Likely BenignLikely Benign0.079Likely Benign-1.71Neutral0.992Probably Damaging0.684Possibly Damaging2.66Benign0.01Affected4.322-323.630.03
c.2239G>CV747LLikely BenignUncertain 16-33441704-G-C21.24e-6-2.790Likely Benign0.096Likely BenignLikely Benign0.047Likely Benign-0.52Neutral0.065Benign0.033Benign2.67Benign0.00Affected4.32221-0.414.03
c.1742G>AR581Q
(3D Viewer)
Likely PathogenicGAPBenign 16-33440794-G-A84.96e-6-7.584In-Between0.673Likely PathogenicLikely Benign0.481Likely Benign1.31Ambiguous0.1-0.42Likely Benign0.45Likely Benign0.88Ambiguous-2.77Deleterious1.000Probably Damaging0.995Probably Damaging-1.21Pathogenic0.11Tolerated3.3734111.0-28.06239.653.5-0.20.2-0.40.1XPotentially PathogenicArg581 is located on a short α-α loop between two α helices (res. Arg563-Glu578 and res. Glu582-Ser604). In the WT simulations, the guanidinium group of Arg581 forms salt bridges with the carboxylate groups of Asp583 within the same helix, as well as with Glu478 and/or Glu480 on a slightly α-helical loop (res. Glu478-Thr488) preceding another α helix (res. Ala461-Phe476).In the variant simulations, the neutral carboxamide group of the Gln581 side chain cannot form any of these salt bridges. Instead, it packs hydrophobically against Met477 and Ile587 or forms hydrogen bonds sporadically with nearby residues (e.g., Asp583, Arg587). Thus, although no drastic changes are observed in the variant simulations, the residue swap could weaken the tertiary structure assembly.
c.1760G>CR587T
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.697Likely Pathogenic0.784Likely PathogenicLikely Benign0.603Likely Pathogenic1.14Ambiguous0.20.74Ambiguous0.94Ambiguous0.98Ambiguous-4.71Deleterious0.998Probably Damaging0.847Possibly Damaging-1.19Pathogenic0.08Tolerated3.3735-1-13.8-55.08227.287.40.00.00.50.1XPotentially PathogenicThe guanidinium group of Arg587, located on an α helix (res. Glu582-Met603), is constantly rotating and breaking/forming multiple hydrogen bonds and/or salt bridges at the surface intersection of α helices in the WT simulations. The positively charged Arg587 side chain can form a salt bridge with either the carboxylate group of Asp583 or Asp586 in the same helix, or with Glu480 on the opposing short helical loop structure (res. Glu480-Leu482).Importantly, the Arg587 side chain also hydrogen bonds with the backbone carbonyl groups of Ala634 and Asn635, as well as the carboxamide group of Asn635 at the end of another α helix (res. Asp616-Phe636). However, in the variant simulations, the neutral hydroxyl group of the Thr587 side chain is unable to form these salt bridges. Due to its smaller size, it also does not form the hydrogen bonds that the Arg587 side chain could. Instead, the hydroxyl group of Thr587 hydrogen bonds with the backbone carbonyl group of Asp583, which could weaken the integrity of the α helix, although this is not observed in the simulations.Overall, the residue swap could weaken the tertiary structure assembly and negatively affect the overall protein folding process.
c.1763T>AL588H
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-16.947Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.939Likely Pathogenic4.20Destabilizing0.23.69Destabilizing3.95Destabilizing2.26Destabilizing-6.97Deleterious1.000Probably Damaging1.000Probably Damaging-1.42Pathogenic0.00Affected3.3834-2-3-7.023.98214.320.90.00.00.00.2XXXPotentially PathogenicThe isobutyl group of the Leu588 side chain, located in an α helix (res. Glu582-Met603), packs against hydrophobic residues in the inter-helix hydrophobic space (e.g., Ile584, Trp572, Phe484, Met470, Val473, Ile483).In the variant simulations, the imidazole ring of His588 is aromatic but contains polar delta and epsilon nitrogen atoms that are not suited for the hydrophobic niche. The protonated epsilon nitrogen forms a hydrogen bond with the backbone carbonyl group of Ala469, which can disrupt the continuity of the opposing α helix (res. Phe476-Lys460).While the residue swap could affect the tertiary assembly and the underlying protein folding process, it is difficult to determine if the mutation would be tolerated based solely on the variant simulations.
c.1767C>GI589M
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.225Likely Pathogenic0.926Likely PathogenicAmbiguous0.830Likely Pathogenic0.74Ambiguous0.21.54Ambiguous1.14Ambiguous1.33Destabilizing-2.99Deleterious1.000Probably Damaging1.000Probably Damaging-1.94Pathogenic0.00Affected3.373521-2.618.03267.6-24.50.00.0-0.10.1XPotentially BenignA hydrophobic residue, Ile589, located in an α helix (res. Glu582-Met603), is swapped for another hydrophobic residue, methionine. The sec-butyl hydrocarbon side chain of Ile589 packs favourably with multiple residues in the inter-helix hydrophobic space (e.g., Phe569, Ile667, and Leu664).Although the S-methyl thioether group of the Met589 side chain in the variant is longer than the branched side chain of isoleucine, it stacks favourably with the aromatic phenol ring. Additionally, the polar sulphur atom forms a weak hydrogen bond with the guanidinium group of Arg573, which in turn forms a salt bridge with the carboxylate group of Asp586.Overall, the hydrophobic packing in the inter-helix space does not appear to be disrupted in the variant simulations.
c.2243T>GL748RLikely BenignConflicting 26-33441708-T-G31.86e-6-3.331Likely Benign0.245Likely BenignLikely Benign0.055Likely Benign-0.67Neutral0.912Possibly Damaging0.448Possibly Damaging2.73Benign0.02Affected4.322-3-2-8.343.03
c.2245C>TR749WLikely Benign 16-33441710-C-T31.86e-6-7.647In-Between0.338Likely BenignLikely Benign0.173Likely Benign-2.62Deleterious1.000Probably Damaging0.998Probably Damaging2.59Benign0.00Affected4.3222-33.630.03
c.2246G>AR749QLikely BenignLikely Benign 16-33441711-G-A42.48e-6-3.069Likely Benign0.212Likely BenignLikely Benign0.152Likely Benign-1.00Neutral0.999Probably Damaging0.994Probably Damaging2.64Benign0.03Affected4.322111.0-28.06
c.2249G>AG750EUncertain 1-2.618Likely Benign0.413AmbiguousLikely Benign0.146Likely Benign-2.27Neutral1.000Probably Damaging0.982Probably Damaging2.49Pathogenic0.01Affected3.9950-2-3.172.06
c.2270G>CG757ALikely BenignUncertain 1-2.626Likely Benign0.091Likely BenignLikely Benign0.066Likely Benign-0.45Neutral0.267Benign0.127Benign2.73Benign0.35Tolerated102.214.03
c.1768A>GS590G
(3D Viewer)
Likely PathogenicGAPConflicting 26-33440820-A-G148.67e-6-14.277Likely Pathogenic0.574Likely PathogenicLikely Benign0.379Likely Benign0.67Ambiguous0.11.28Ambiguous0.98Ambiguous0.71Ambiguous-3.92Deleterious1.000Probably Damaging0.922Probably Damaging3.42Benign0.06Tolerated3.3735100.4-30.03186.749.40.00.00.10.0XPotentially PathogenicIn the WT simulations, the hydroxyl group of Ser590, located on an α helix (res. Glu582-Met603), forms hydrogen bonds with the backbone carbonyl of Ala634 and/or the carboxamide group of the Asn635 side chain at the end of the opposing α helix (res. Thr619-Ala634).The residue swap could weaken the integrity of the α helix, as glycine is known as an “α helix breaker.” However, no discernible difference was observed between the WT and variant simulations in this regard. Importantly, Gly590 cannot form hydrogen bonds with the opposing helix in the same way that serine can, which could weaken the tertiary structure assembly between the two helices.
c.1771G>AA591T
(3D Viewer)
Likely PathogenicGAPConflicting 36-33440823-G-A181.12e-5-9.572Likely Pathogenic0.704Likely PathogenicLikely Benign0.270Likely Benign1.61Ambiguous0.21.00Ambiguous1.31Ambiguous1.19Destabilizing-3.40Deleterious0.955Possibly Damaging0.209Benign3.48Benign0.01Affected3.373510-2.530.03202.9-43.40.20.00.70.1XPotentially BenignThe methyl group of the Ala591 side chain, located in the middle of an α helix (res. Glu582-Met603), packs against hydrophobic residues (e.g., Ile483, Phe484) of an opposing partially helical loop (res. Phe476-Asn487).In the variant simulations, the hydroxyl group of Thr591 can form hydrogen bonds with the backbone carbonyl of Ile843 in the opposing loop or the backbone carbonyl group of Arg587. These interactions could either reinforce the tertiary assembly or weaken the α helix unity. Additionally, the Thr591 side chain can hydrogen bond with the guanidinium group of the Arg587 side chain, potentially strengthening the α helix unity.Overall, the residue swap does not seem to cause any major negative effects on the protein structure.
c.1771G>CA591P
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.479Likely Pathogenic0.991Likely PathogenicLikely Pathogenic0.404Likely Benign3.78Destabilizing0.37.29Destabilizing5.54Destabilizing1.45Destabilizing-4.41Deleterious0.995Probably Damaging0.853Possibly Damaging3.35Benign0.01Affected3.37351-1-3.426.04191.5-10.10.20.10.40.1XPotentially PathogenicThe methyl group of the Ala591 side chain, located in the middle of an α helix (res. Glu582-Met603), packs against hydrophobic residues (e.g., Ile483, Phe484) of an opposing partially helical loop (res. Phe476-Asn487).In the variant simulations, Pro591 lacks a free backbone amide group and, therefore, cannot form a hydrogen bond with the backbone carbonyl of Arg587 as Ala591 does in the WT. This notably weakens the α helix integrity and compromises the continuity of the helix. In reality, the effect on the structure during protein folding could be more severe.
c.1778T>AL593H
(3D Viewer)
Likely PathogenicGAPUncertain 1-16.504Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.812Likely Pathogenic2.52Destabilizing0.22.32Destabilizing2.42Destabilizing2.75Destabilizing-6.77Deleterious1.000Probably Damaging1.000Probably Damaging2.77Benign0.00Affected3.3735-2-3-7.023.98222.020.70.00.00.20.0XXPotentially PathogenicThe iso-propyl side chain of Leu593, located in an α helix (res. Glu582-Met603), packs favourably with multiple hydrophobic residues in the inter-helix space (e.g., Leu598, Ile589, Phe594, Phe561).In the variant simulations, His593 retains a similar packing arrangement via its aromatic imidazole ring. However, the polar nitrogen atoms introduce hydrogen bond donors and acceptors into the previously hydrophobic space. The epsilon protonated nitrogen of His593 forms a stable hydrogen bond with the phenol group of the Tyr505 side chain in an α helix (res. Gln503-Tyr518).While the residue swap could affect the tertiary assembly and the underlying protein folding process, it is difficult to determine if the mutation would be tolerated based solely on the variant simulations.
c.1786C>TR596C
(3D Viewer)
Likely PathogenicGAPConflicting 26-33440838-C-T63.72e-6-10.805Likely Pathogenic0.972Likely PathogenicLikely Pathogenic0.633Likely Pathogenic2.94Destabilizing0.01.49Ambiguous2.22Destabilizing-0.03Likely Benign-7.96Deleterious1.000Probably Damaging1.000Probably Damaging2.41Pathogenic0.00Affected3.3735-4-37.0-53.05230.797.9-0.10.0-0.30.4XXPotentially PathogenicThe guanidinium group of Arg596, located in an α helix (res. Glu582-Met603), forms a salt bridge with the carboxylate group of Glu495 from another α helix (res. Leu489-Glu519). In the WT simulations, the side chain of Arg596 hydrogen bonds with the backbone carbonyl groups of Asn487, Glu486, Arg485, and Phe484. Additionally, Arg596 can hydrogen bond with the carboxamide group of the Asn487 side chain on an opposing loop that links two α helices (res. Ala461-Arg475, res. Leu489-Glu519).In the variant simulations, the thiol group of the Cys596 side chain is unable to form salt bridges or any of the hydrogen bonds that the Arg596 side chain can. Thus, the residue swap could affect the tertiary structure assembly more profoundly than observed in the simulations. Notably, Arg596 plays a key role in positioning the aforementioned loop, which is crucial for the placement of the “arginine finger” or the Arg485 side chain during RasGTPase activation.
c.2275A>CM759LLikely BenignUncertain 16-33441740-A-C21.24e-6-2.431Likely Benign0.093Likely BenignLikely Benign0.048Likely Benign-0.53Neutral0.002Benign0.005Benign2.84Benign1.00Tolerated3.995421.9-18.03
c.2277G>AM759ILikely BenignUncertain 16-33441742-G-A16.20e-7-4.058Likely Benign0.393AmbiguousLikely Benign0.075Likely Benign-0.88Neutral0.454Possibly Damaging0.192Benign2.83Benign0.34Tolerated3.995122.6-18.03
c.227C>GS76CLikely BenignUncertain 16-33425835-C-G21.24e-6-5.408Likely Benign0.100Likely BenignLikely Benign0.076Likely Benign-1.78Neutral0.992Probably Damaging0.869Possibly Damaging3.71Benign0.00Affected4.3210-13.316.06
c.2282G>AR761QLikely BenignUncertain 16-33441747-G-A116.81e-6-4.187Likely Benign0.202Likely BenignLikely Benign0.191Likely Benign-0.63Neutral0.996Probably Damaging0.878Possibly Damaging2.75Benign0.40Tolerated3.995111.0-28.06
c.2291A>GN764SLikely BenignBenign 1-3.149Likely Benign0.159Likely BenignLikely Benign0.058Likely Benign-0.84Neutral0.992Probably Damaging0.846Possibly Damaging2.65Benign0.61Tolerated3.646112.7-27.03
c.2294G>AS765NLikely BenignUncertain 1-5.098Likely Benign0.378AmbiguousLikely Benign0.094Likely Benign-0.94Neutral0.985Probably Damaging0.950Probably Damaging4.11Benign0.06Tolerated3.64611-2.727.03
c.2299A>GI767VLikely BenignUncertain 1-2.791Likely Benign0.064Likely BenignLikely Benign0.096Likely Benign0.10Neutral0.072Benign0.029Benign4.21Benign1.00Tolerated3.64643-0.3-14.03
c.1787G>AR596H
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33440839-G-A159.29e-6-11.128Likely Pathogenic0.950Likely PathogenicAmbiguous0.717Likely Pathogenic3.00Destabilizing0.90.43Likely Benign1.72Ambiguous1.35Destabilizing-4.97Deleterious1.000Probably Damaging0.999Probably Damaging2.43Pathogenic0.00Affected3.3735201.3-19.05223.580.5-0.10.0-0.10.3XXPotentially PathogenicThe guanidinium group of Arg596, located in an α helix (res. Glu582-Met603), forms a salt bridge with the carboxylate group of Glu495 from another α helix (res. Leu489-Glu519). In the WT simulations, the side chain of Arg596 hydrogen bonds with the backbone carbonyl groups of Asn487, Glu486, Arg485, and Phe484. Additionally, Arg596 can hydrogen bond with the carboxamide group of the Asn487 side chain on an opposing loop that links two α helices (res. Ala461-Arg475, res. Leu489-Glu519).In the variant simulations, the imidazole ring of His596 can form hydrogen bonds with the same residues as arginine; however, these interactions are not as coordinated or strong in comparison. Thus, the residue swap could affect the tertiary structure assembly more profoundly than observed in the simulations. Notably, Arg596 plays a key role in positioning the aforementioned loop, which is crucial for the placement of the “arginine finger” or the Arg485 side chain during RasGTPase activation.
c.1787G>TR596L
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.197Likely Pathogenic0.992Likely PathogenicLikely Pathogenic0.756Likely Pathogenic1.51Ambiguous0.3-0.58Ambiguous0.47Likely Benign-0.02Likely Benign-6.97Deleterious1.000Probably Damaging1.000Probably Damaging2.45Pathogenic0.00Affected3.3735-3-28.3-43.03234.263.4-0.10.0-0.50.6XXPotentially PathogenicThe guanidinium group of Arg596, located in an α helix (res. Glu582-Met603), forms a salt bridge with the carboxylate group of Glu495 from another α helix (res. Leu489-Glu519). In the WT simulations, the side chain of Arg596 hydrogen bonds with the backbone carbonyl groups of Asn487, Glu486, Arg485, and Phe484. Additionally, Arg596 can hydrogen bond with the carboxamide group of the Asn487 side chain on an opposing loop that links two α helices (res. Ala461-Arg475, res. Leu489-Glu519).However, in the variant simulations, the branched hydrocarbon side chain of Leu596 cannot form any of the hydrogen bonds or salt bridges maintained by the considerably bulkier and positively charged Arg596 side chain. Instead, Leu596 packs hydrophobically with the phenyl ring of Phe484 in the linker loop or residues from the opposing helix (e.g., Ile494, Thr491).Thus, the residue swap could affect the tertiary structure assembly more profoundly than observed in the simulations. Notably, Arg596 plays a key role in positioning the aforementioned loop, which is crucial for the placement of the “arginine finger” or the Arg485 side chain during RasGTPase activation.10.1016/j.ajhg.2020.11.011
c.1802C>AA601E
(3D Viewer)
Likely PathogenicGAPConflicting 2-16.752Likely Pathogenic0.992Likely PathogenicLikely Pathogenic0.588Likely Pathogenic6.68Destabilizing0.85.76Destabilizing6.22Destabilizing1.24Destabilizing-4.98Deleterious1.000Probably Damaging0.999Probably Damaging2.54Benign0.00Affected3.37350-1-5.358.04240.0-82.30.00.00.70.1XXXPotentially PathogenicThe methyl side chain of Ala601, located on an α helix (res. Glu582-Met603), packs hydrophobically against other hydrophobic residues in the inter-helix space (e.g., Phe597, Leu598, Leu506, Phe608).In the variant simulations, the carboxylate group of Glu601 faces the inter-helix space and is forced to shift slightly away from the hydrophobic niche. Additionally, in two of the simulations, Glu601 forms a salt bridge with Arg499, causing the otherwise stable salt bridge between Arg499 and Glu496 at the outer surface of an α helix (res. Leu489-Glu519) to break due to the residue swap.These effects suggest that the protein folding process could be seriously affected. Moreover, due to its location at the GAP-Ras interface, it could also impact the complex formation with the GTPase.
c.1802C>TA601V
(3D Viewer)
Likely PathogenicGAPUncertain 1-10.447Likely Pathogenic0.853Likely PathogenicAmbiguous0.535Likely Pathogenic1.64Ambiguous0.10.35Likely Benign1.00Ambiguous0.81Ambiguous-3.98Deleterious1.000Probably Damaging0.989Probably Damaging2.74Benign0.03Affected3.3735002.428.05228.5-45.50.00.00.40.5XPotentially BenignThe methyl side chain of Ala601, located on an α helix (res. Glu582-Met603), packs hydrophobically against other hydrophobic residues in the inter-helix space (e.g., Phe597, Leu598, Leu506, Phe608).In the variant simulations, Val601, which has similar size and physicochemical properties to alanine, resides in the inter-helix hydrophobic space in a similar manner to Ala601 in the WT, causing no apparent negative effect on the protein structure. However, the effect of the residue swap on the SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.2300T>CI767TLikely BenignUncertain 1-3.749Likely Benign0.252Likely BenignLikely Benign0.138Likely Benign-0.78Neutral0.625Possibly Damaging0.249Benign4.12Benign0.46Tolerated3.6460-1-5.2-12.05
c.2302G>AD768NLikely BenignUncertain 16-33442460-G-A22.57e-6-6.892Likely Benign0.453AmbiguousLikely Benign0.048Likely Benign-0.77Neutral0.106Benign0.009Benign4.07Benign0.96Tolerated3.646120.0-0.98
c.2302G>TD768YLikely PathogenicUncertain 16-33442460-G-T-9.866Likely Pathogenic0.824Likely PathogenicAmbiguous0.234Likely Benign-2.86Deleterious0.989Probably Damaging0.806Possibly Damaging4.01Benign0.07Tolerated3.646-4-32.248.09
c.2305C>TL769FLikely BenignUncertain 1-5.044Likely Benign0.146Likely BenignLikely Benign0.060Likely Benign-0.89Neutral0.925Possibly Damaging0.510Possibly Damaging3.94Benign0.02Affected20-1.034.02
c.2324G>AR775QLikely BenignConflicting 36-33442482-G-A111.41e-5-4.476Likely Benign0.229Likely BenignLikely Benign0.085Likely Benign-0.63Neutral0.969Probably Damaging0.863Possibly Damaging4.17Benign0.16Tolerated3.646111.0-28.0610.1016/j.ajhg.2020.11.011
c.2324G>CR775PLikely BenignBenign 1-5.072Likely Benign0.452AmbiguousLikely Benign0.168Likely Benign-0.79Neutral0.971Probably Damaging0.944Probably Damaging4.13Benign0.07Tolerated3.646-202.9-59.07
c.233G>TR78LLikely BenignUncertain 1-3.389Likely Benign0.635Likely PathogenicLikely Benign0.062Likely Benign-1.59Neutral0.385Benign0.021Benign3.84Benign0.00Affected-3-28.3-43.03
c.2343G>AM781ILikely BenignBenign 1-2.484Likely Benign0.323Likely BenignLikely Benign0.101Likely Benign0.05Neutral0.000Benign0.001Benign2.89Benign1.00Tolerated3.646122.6-18.03
c.2349G>AM783ILikely BenignBenign 16-33442901-G-A63.72e-6-3.560Likely Benign0.418AmbiguousLikely Benign0.042Likely Benign-0.54Neutral0.004Benign0.006Benign2.87Benign0.22Tolerated3.646122.6-18.03
c.2350G>AA784TLikely BenignBenign 1-3.579Likely Benign0.089Likely BenignLikely Benign0.046Likely Benign1.23Neutral0.001Benign0.006Benign2.92Benign1.00Tolerated3.64610-2.530.03
c.1811C>TS604L
(3D Viewer)
Likely PathogenicGAPUncertain 16-33440863-C-T63.72e-6-14.683Likely Pathogenic0.965Likely PathogenicLikely Pathogenic0.639Likely Pathogenic-0.94Ambiguous0.1-1.24Ambiguous-1.09Ambiguous-0.31Likely Benign-5.97Deleterious1.000Probably Damaging0.991Probably Damaging3.09Benign0.00Affected3.3735-3-24.626.08234.0-49.60.00.10.30.5XXPotentially PathogenicSer604 is located in a short turn between an α helix (res. Glu582-Met603) and a short α helical section (res. Ser606-Phe608). In the WT simulations, the hydroxyl side chain of Ser604 periodically hydrogen bonds with the backbone carbonyl groups of other α helix residues (e.g., Pro600, Met603). Serine weakens the α helix secondary structure, and thus, Ser604 along with Pro605 breaks the α helix, facilitating the turn in the WT structure.In contrast, in the variant simulations, Leu604 forms a few hydrophobic interactions (e.g., Leu607, Phe608). More importantly, the helix end is more stable than with Ser604 in the WT. The residue swap could have a more profound effect on the actual folding process, for example, by preventing the bending at the α helix end, than what the simulations suggest.Moreover, Ser604 directly hydrogen bonds with Ras residues Ser65 and Ala66 in the WT SynGAP-Ras complex. The hydrophobic leucine cannot maintain these interactions with Ras at the GAP-Ras interface. Thus, the effect of the residue swap on the complex formation with the GTPase cannot be fully explored in the solvent-only simulations.
c.1813C>TP605S
(3D Viewer)
Likely PathogenicGAPUncertain 1-10.830Likely Pathogenic0.987Likely PathogenicLikely Pathogenic0.718Likely Pathogenic3.40Destabilizing0.13.34Destabilizing3.37Destabilizing1.00Destabilizing-7.96Deleterious1.000Probably Damaging1.000Probably Damaging0.70Pathogenic0.00Affected3.37351-10.8-10.04213.8-15.4-0.30.20.20.1XXPotentially PathogenicPro605 is located in a short turn between an α helix (res. Glu582-Met603) and a short α helical section (res. Ser606-Phe608). The pyrrolidine side chain of Pro605 packs hydrophobically with nearby hydrophobic residues (e.g., Ile514, Leu623, Leu610) in the inter-helix space. Additionally, proline lacks a free backbone amide group, which breaks the α helix and facilitates the turn in the WT structure.In the variant simulations, the hydroxyl side chain of Ser605 forms hydrogen bonds with the backbone carbonyl groups of Ala601 and Ile602. Importantly, the helix end is more stable than with Pro605 in the WT. Indeed, proline is a more effective secondary structure breaker compared to serine.Thus, the residue swap could have a more profound effect on the actual folding process, for example, by preventing the bending at the α helix end, than what the simulations suggest. Moreover, due to its location at the GAP-Ras interface, the residue swap could affect the GAP-Ras association.
c.1814C>GP605R
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.745Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.845Likely Pathogenic8.71Destabilizing2.56.46Destabilizing7.59Destabilizing0.92Ambiguous-8.95Deleterious1.000Probably Damaging1.000Probably Damaging0.69Pathogenic0.00Affected3.37350-2-2.959.07281.7-118.1-0.20.00.50.1XXXXPotentially PathogenicPro605 is located in a short turn between an α helix (res. Glu582-Met603) and a short α helical section (res. Ser606-Phe608). The pyrrolidine side chain of Pro605 packs hydrophobically with nearby hydrophobic residues (e.g., Ile514, Leu623, Leu610) in the inter-helix space. Additionally, proline lacks a free backbone amide group, which breaks the α helix and facilitates the turn in the WT structure.In the variant simulations, the guanidinium side chain of Arg605 is bulkier than proline, and its positively charged guanidinium group faces mostly hydrophobic residues (e.g., Ile514, Leu623, Leu610). As a result, it needs to rotate away from the hydrophobic niche. The residue swap could have a more profound effect on the actual folding process, for example, by preventing the bending at the α helix end.Moreover, due to its location at the GAP-Ras interface, the residue swap could affect the GAP-Ras association.
c.2353C>TR785CLikely PathogenicSH3-binding motifUncertain 16-33442905-C-T291.80e-5-5.887Likely Benign0.662Likely PathogenicLikely Benign0.126Likely Benign-5.06Deleterious0.144Benign0.046Benign2.22Pathogenic0.00Affected3.646-4-37.0-53.05
c.2359C>AP787TLikely PathogenicSH3-binding motifLikely Benign 16-33442911-C-A171.05e-5-4.813Likely Benign0.603Likely PathogenicLikely Benign0.258Likely Benign-4.40Deleterious1.000Probably Damaging0.999Probably Damaging2.46Pathogenic0.01Affected3.6460-10.93.99
c.2359C>TP787SSH3-binding motifUncertain 16-33442911-C-T31.86e-6-4.203Likely Benign0.564AmbiguousLikely Benign0.221Likely Benign-3.81Deleterious1.000Probably Damaging0.999Probably Damaging2.48Pathogenic0.02Affected3.646-110.8-10.04
c.2369C>AT790NSH3-binding motifConflicting 36-33442921-C-A694.28e-5-5.243Likely Benign0.276Likely BenignLikely Benign0.103Likely Benign-2.54Deleterious0.999Probably Damaging0.997Probably Damaging2.27Pathogenic0.02Affected3.64600-2.813.00
c.2369C>GT790SLikely BenignSH3-binding motifUncertain 1-3.914Likely Benign0.123Likely BenignLikely Benign0.134Likely Benign-1.83Neutral0.997Probably Damaging0.989Probably Damaging2.39Pathogenic0.33Tolerated3.64611-0.1-14.03
c.1862G>AR621Q
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33440914-G-A191.18e-5-14.682Likely Pathogenic0.910Likely PathogenicAmbiguous0.621Likely Pathogenic0.81Ambiguous0.11.13Ambiguous0.97Ambiguous1.35Destabilizing-3.98Deleterious1.000Probably Damaging0.997Probably Damaging2.82Benign0.01Affected3.3735111.0-28.06243.754.30.00.0-0.40.2XXPotentially PathogenicThe guanidinium group of Arg621, located in an α helix (res. Glu617-Asn635), forms a salt bridge with Glu525 in a nearby loop and stacks with Leu635. In the variant simulations, the carboxamide side chain of Gln621, which can act as both a hydrogen bond acceptor and donor, also stacks with Leu635 but can only sporadically hydrogen bond with Glu525.Accordingly, the residue swap could affect the tertiary structure integrity by disrupting the salt bridge formation. Additionally, due to its location at the GAP-Ras interface, the residue swap could impact the complex formation with the GTPase, but this cannot be investigated using solvent-only simulations.
c.1904A>GN635S
(3D Viewer)
GAPConflicting 46-33440956-A-G106.20e-6-9.002Likely Pathogenic0.101Likely BenignLikely Benign0.104Likely Benign0.80Ambiguous0.10.67Ambiguous0.74Ambiguous0.95Ambiguous-4.45Deleterious0.261Benign0.044Benign3.06Benign0.05Affected3.3734112.7-27.03196.030.90.10.0-0.30.2XUncertainIn the WT simulations, the carboxamide side chain of Asn635, located on the outer surface of an α helix (res. Glu617-Asn635), forms hydrogen bonds with Gln631 on the same α helix and with the hydroxyl side chain of Ser590 on an opposing α helix (res. Glu582-Met603).In the variant simulations, the side chain of Ser635 is shorter than asparagine and thus prefers to hydrogen bond with the carbonyl group of Gln631 on the same helix and, to a lesser extent, with Ser590 compared to Asn635 in the WT. Ser635 forms hydrogen bonds with the backbone atoms of the same helix, which may destabilize the helix, although this is not clearly evident in the simulations. The weakening of the hydrogen bond between Ser635 and Ser590 in the variant may also weaken the tertiary structure assembly between the helices.Additionally, Asn635 is at the GTPase interface. However, the implication of the residue swap on the complex formation with the GTPase cannot be investigated using solvent-only simulations.
c.1925A>CK642T
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-12.823Likely Pathogenic0.948Likely PathogenicAmbiguous0.484Likely Benign0.53Ambiguous0.10.30Likely Benign0.42Likely Benign0.28Likely Benign-5.88Deleterious0.872Possibly Damaging0.839Possibly Damaging2.86Benign0.00Affected3.37310-13.2-27.07213.5-8.7-0.30.40.30.2XUncertainThe amino side chain of Lys642, located on the surface of an α helix (res. Ser641-Glu666), is not involved in any interactions in the WT simulations. In the variant simulations, the shorter side chain of Thr642 forms hydrogen bonds with Glu643 and Thr640 on the same α helix.Regardless, Lys642 is positioned directly at the GAP-Ras interface, and in the SynGAP-Ras WT simulations, its amino side chain forms salt bridges with the carboxylate groups of Ras residues Asp33 and Asp38. The shorter Thr642 is more likely to prefer hydrogen bonding with Glu643 and Thr640 on the same α helix, even in the Ras complex. Thus, the effect of the residue swap on the complex formation with the GTPase cannot be explored using solvent-only simulations.
c.2401G>AG801SLikely BenignSH3-binding motifUncertain 1-3.665Likely Benign0.087Likely BenignLikely Benign0.039Likely Benign-0.41Neutral0.009Benign0.019Benign2.76Benign0.48Tolerated4.32201-0.430.03
c.2405G>AG802DLikely BenignSH3-binding motifUncertain 16-33442957-G-A16.20e-7-5.083Likely Benign0.476AmbiguousLikely Benign0.153Likely Benign-0.38Neutral0.126Benign0.138Benign2.72Benign0.09Tolerated3.7751-1-3.158.04
c.2408A>GK803RLikely BenignSH3-binding motifUncertain 1-2.281Likely Benign0.097Likely BenignLikely Benign0.018Likely Benign-1.52Neutral0.103Benign0.038Benign2.38Pathogenic0.00Affected3.77532-0.628.01
c.2414T>CL805PSH3-binding motifUncertain 1-4.661Likely Benign0.444AmbiguousLikely Benign0.272Likely Benign-3.40Deleterious0.975Probably Damaging0.767Possibly Damaging2.36Pathogenic0.00Affected3.775-3-3-5.4-16.04
c.2420A>GY807CSH3-binding motifUncertain 16-33442972-A-G16.20e-7-7.228In-Between0.204Likely BenignLikely Benign0.243Likely Benign-3.89Deleterious0.997Probably Damaging0.934Probably Damaging2.42Pathogenic0.01Affected3.7750-23.8-60.04
c.2420A>TY807FLikely BenignSH3-binding motifUncertain 1-3.667Likely Benign0.073Likely BenignLikely Benign0.057Likely Benign0.14Neutral0.012Benign0.022Benign2.92Benign0.98Tolerated3.775734.1-16.00
c.2434C>TP812SLikely BenignSH3-binding motifUncertain 16-33442986-C-T16.20e-7-5.689Likely Benign0.456AmbiguousLikely Benign0.162Likely Benign-0.62Neutral0.999Probably Damaging0.966Probably Damaging2.89Benign0.95Tolerated4.3241-10.8-10.04
c.1947G>CM649I
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.361Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.449Likely Benign2.42Destabilizing0.21.96Ambiguous2.19Destabilizing1.01Destabilizing-3.99Deleterious0.672Possibly Damaging0.093Benign3.40Benign0.02Affected3.3827212.6-18.03243.721.50.00.10.00.1XPotentially BenignThe thioether side chain of Met649, located on an α helix (res. Ser641-Glu666), bridges Phe652, Phe648, and Phe639 in an inter-helix hydrophobic cavity in the WT simulations. In the variant simulations, the sec-butyl side chain of Ile649 maintains hydrophobic interactions with nearby residues, with no significant effects on the protein structure.However, methionine is known as a bridging motif for aromatic residues, and these Met-aromatic interactions are lost in the variant. Indeed, in the second variant simulation,the bridging of Phe652, Phe648 and Phe639 is completely lost. In reality, the effect could be more severe on the structure during the protein folding.
c.1966G>CE656Q
(3D Viewer)
GAPUncertain 16-33441225-G-C16.20e-7-9.145Likely Pathogenic0.766Likely PathogenicLikely Benign0.249Likely Benign-0.14Likely Benign0.0-0.81Ambiguous-0.48Likely Benign0.25Likely Benign-2.29Neutral0.980Probably Damaging0.528Possibly Damaging3.46Benign0.02Affected3.3924220.0-0.98224.31.70.00.10.10.0XPotentially BenignThe carboxylate side chain of Glu656, located on an α helix (res. Ser641-Glu666), frequently forms a hydrogen bond with the nearby residue Ser659 on the same α helix. In the variant simulations, the carboxamide side chain of Gln656 alternatively forms a hydrogen bond with either Ser659 or Glu548 on an opposing helix (res. Ala533-Val560).Although the frequent interaction between Gln656 and Glu548 may strengthen or stabilize the tertiary structure assembly, the effect is likely to be marginal.
c.1991T>CL664S
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33441250-T-C16.20e-7-16.498Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.543Likely Pathogenic3.75Destabilizing0.23.63Destabilizing3.69Destabilizing2.77Destabilizing-5.99Deleterious1.000Probably Damaging0.996Probably Damaging2.85Benign0.00Affected3.3828-3-2-4.6-26.08215.550.10.00.0-0.20.2XPotentially BenignThe iso-butyl side chain of L664, located on an α-helix (res. Ser641-Glu666), hydrophobically interacts with residues in the inter-helix space between three helices (res. Glu617-Asn635, res. Glu582-Met603, and res. Ser641-Glu666), such as Ile589, Phe663, and Met660. In the variant simulations, the hydroxyl group of Ser664 forms hydrogen bonds with the backbone carbonyl oxygen of another helix residue, such as Met660 or Gln661. This interaction is known to destabilize hydrogen bonding in the α-helix, but this effect was not observed in the simulations. Additionally, Ser664 occasionally forms hydrogen bonds with the carboxylate group of Asp586 on another α-helix (res. Glu582-Met603), which could minimally influence the tertiary structure assembly. Despite these interactions, no major negative effects on the protein structure were observed during the simulations.
c.1997A>GE666G
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33441256-A-G106.20e-6-12.261Likely Pathogenic0.911Likely PathogenicAmbiguous0.522Likely Pathogenic1.57Ambiguous0.11.46Ambiguous1.52Ambiguous0.93Ambiguous-6.25Deleterious1.000Probably Damaging0.970Probably Damaging3.37Benign0.02Affected3.38280-23.1-72.06173.998.50.00.0-0.70.0XPotentially PathogenicIn the WT simulations, the carboxylate group of Glu666, located on the α-helix (res. Ser641-Glu666), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), such as Lys566, Thr672, and Asn669. In the variant simulations, the carbonyl group of Gly666 occasionally forms hydrogen bonds with Lys566 and Asn669. However, Gly666 lacks a side chain and thus cannot maintain as well-coordinated a hydrogen-bond network as Glu666 in the WT, which may affect the tertiary structure assembly.
c.1998G>CE666D
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.820Likely Pathogenic0.704Likely PathogenicLikely Benign0.197Likely Benign0.88Ambiguous0.00.37Likely Benign0.63Ambiguous1.05Destabilizing-2.69Deleterious0.992Probably Damaging0.603Possibly Damaging3.43Benign0.06Tolerated3.3828320.0-14.03237.216.50.00.0-0.30.1XPotentially PathogenicThe carboxylate group of Glu666, located on the α-helix (res. Ser641-Glu666), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), such as Lys566, Thr672, and Asn669, in the WT simulations. In the variant simulations, the shorter side chain of Asp666 cannot maintain these interactions as efficiently as Glu666 in the WT, resulting in a less coordinated hydrogen-bond network.
c.2443C>AR815SSH3-binding motifBenign 1-7.324In-Between0.950Likely PathogenicAmbiguous0.138Likely Benign-1.86Neutral0.999Probably Damaging0.997Probably Damaging2.67Benign0.02Affected0-13.7-69.11
c.2443C>GR815GSH3-binding motifUncertain 1-7.983In-Between0.854Likely PathogenicAmbiguous0.146Likely Benign-3.22Deleterious0.999Probably Damaging0.997Probably Damaging2.62Benign0.02Affected4.324-3-24.1-99.14
c.2443C>TR815CLikely PathogenicSH3-binding motifUncertain 16-33442995-C-T53.10e-6-9.373Likely Pathogenic0.828Likely PathogenicAmbiguous0.174Likely Benign-3.89Deleterious1.000Probably Damaging0.998Probably Damaging2.59Benign0.00Affected4.324-4-37.0-53.05
c.2444G>AR815HSH3-binding motifLikely Benign 26-33442996-G-A241.49e-5-7.474In-Between0.553AmbiguousLikely Benign0.157Likely Benign-1.81Neutral1.000Probably Damaging0.998Probably Damaging2.61Benign0.02Affected4.324201.3-19.0510.1016/j.ajhg.2020.11.011
c.2444G>TR815LLikely PathogenicSH3-binding motifUncertain 1-8.546Likely Pathogenic0.865Likely PathogenicAmbiguous0.175Likely Benign-3.06Deleterious0.999Probably Damaging0.997Probably Damaging2.63Benign0.03Affected4.324-2-38.3-43.03
c.2458T>AY820NUncertain 1-9.032Likely Pathogenic0.842Likely PathogenicAmbiguous0.143Likely Benign-1.53Neutral0.999Probably Damaging0.977Probably Damaging2.74Benign0.20Tolerated-2-2-2.2-49.07
c.2459A>GY820CLikely PathogenicUncertain 1-8.797Likely Pathogenic0.744Likely PathogenicLikely Benign0.113Likely Benign-3.16Deleterious1.000Probably Damaging0.983Probably Damaging2.68Benign0.06Tolerated3.7750-23.8-60.04
c.2474C>TS825LLikely PathogenicUncertain 16-33443026-C-T16.20e-7-4.987Likely Benign0.910Likely PathogenicAmbiguous0.249Likely Benign-4.30Deleterious0.999Probably Damaging0.994Probably Damaging1.94Pathogenic0.01Affected3.775-2-34.626.08
c.2485G>AE829KLikely PathogenicPathogenic 1-7.527In-Between0.807Likely PathogenicAmbiguous0.194Likely Benign-2.65Deleterious0.994Probably Damaging0.900Possibly Damaging2.27Pathogenic0.00Affected3.77501-0.4-0.94
c.2493G>CE831DLikely BenignUncertain 16-33443045-G-C16.19e-7-3.055Likely Benign0.063Likely BenignLikely Benign0.073Likely Benign1.23Neutral0.002Benign0.002Benign2.64Benign0.77Tolerated3.775320.0-14.03
c.2003C>TS668F
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-15.047Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.643Likely Pathogenic16.72Destabilizing5.011.07Destabilizing13.90Destabilizing0.00Likely Benign-5.98Deleterious0.999Probably Damaging0.935Probably Damaging3.18Benign0.00Affected3.3828-3-23.660.10250.9-59.6-0.10.10.00.1XXXPotentially PathogenicIn the WT simulations, the hydroxyl side chain of Ser668, located on an α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), forms hydrogen bonds with the backbone carbonyl groups of Leu664, Tyr665, and Glu666, as well as the guanidinium group of Arg573 on a nearby α-helix (res. Arg563-Glu578). In the variant simulations, the side chain of Phe668 cannot maintain the same hydrogen-bond network. Due to its larger size, it moves away to avoid steric hindrance. In the WT simulations, a network of hydrogen bonds between several residues (e.g., Asn669, Lys566, and Glu666) keeps both α-helices and the proceeding loop (res. Asn669-Asp684) tightly connected, but this setup is not present in the variant simulations. Additionally, in the variant simulations, the side chain of Arg573 shifts to form a more stable salt bridge with the carboxylate group of Glu582 instead of hydrogen bonding with Ser668 as in the WT simulations.
c.2014A>GT672A
(3D Viewer)
Likely BenignGAPBenign 16-33441273-A-G31.86e-6-6.524Likely Benign0.109Likely BenignLikely Benign0.046Likely Benign0.51Ambiguous0.31.15Ambiguous0.83Ambiguous0.65Ambiguous-3.20Deleterious0.006Benign0.002Benign3.44Benign0.12Tolerated3.4025102.5-30.03188.542.5-0.10.30.20.0XPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. In the variant simulations, Ala672 can only form a hydrogen bond with Lys566 via its backbone carbonyl group. Consequently, it cannot maintain the Lys566-Glu666 salt bridge through hydrogen bonding, leading to a significant disruption of the intricate and stable hydrogen-bond network between the loop and the helices.
c.2015C>AT672K
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.192Likely Pathogenic0.698Likely PathogenicLikely Benign0.065Likely Benign0.20Likely Benign0.51.21Ambiguous0.71Ambiguous0.72Ambiguous-4.31Deleterious0.745Possibly Damaging0.051Benign3.40Benign0.07Tolerated3.40250-1-3.227.07195.17.00.40.70.40.1XXPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. In the variant simulations, Lys672 can only form a hydrogen bond with the amino group of the Lys566 side chain via its backbone carbonyl group. Consequently, it cannot maintain the Lys566-Glu666 salt bridge through hydrogen bonding. However, the amino group of Lys periodically forms a salt bridge with the carboxylate group of Glu666, which prevents a drastic disruption of the hydrogen-bond network that keeps the loop close to the helices.
c.2015C>TT672M
(3D Viewer)
GAPConflicting 26-33441274-C-T191.18e-5-9.472Likely Pathogenic0.174Likely BenignLikely Benign0.127Likely Benign0.31Likely Benign0.41.52Ambiguous0.92Ambiguous0.41Likely Benign-4.34Deleterious0.993Probably Damaging0.520Possibly Damaging3.39Benign0.00Affected3.4025-1-12.630.09231.9-52.91.10.10.50.0XXPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. Met672 can only form a hydrogen bond with the amino group of the Lys566 side chain via its backbone carbonyl group. Nevertheless, the Lys566-Glu666 salt bridge forms intermittently. This is possible because Asn669 keeps the carboxylate group of Glu666 in the vicinity through hydrogen bonding, and the hydrophobic side chain of Met stays mostly rotated away from the salt bridge. Consequently, no drastic disruption of the hydrogen-bond network that keeps the loop close to the helices occurs in the variant simulations.
c.2047A>GI683V
(3D Viewer)
Likely BenignGAPUncertain 16-33441306-A-G21.24e-6-7.588In-Between0.138Likely BenignLikely Benign0.112Likely Benign0.90Ambiguous0.00.60Ambiguous0.75Ambiguous0.76Ambiguous-0.78Neutral0.538Possibly Damaging0.080Benign3.35Benign0.14Tolerated3.421743-0.3-14.03215.629.10.00.0-0.70.1XPotentially BenignThe sec-butyl side chain of Ile683, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is sterically packed against His453 and Glu688. In the variant simulations, the iso-propyl side chain of Val683 has similar size and physicochemical properties as Ile630 in the WT, and thus, it is able to maintain similar interactions in the inter-helix space. Consequently, no negative structural effects are observed during the simulations due to the residue swap.
c.249A>TR83SLikely BenignUncertain 1-2.550Likely Benign0.999Likely PathogenicLikely Pathogenic0.094Likely Benign-1.87Neutral0.909Possibly Damaging0.587Possibly Damaging3.19Benign0.00Affected4.3210-13.7-69.11
c.2502G>CM834ILikely BenignUncertain 1-3.377Likely Benign0.291Likely BenignLikely Benign0.055Likely Benign-1.21Neutral0.026Benign0.009Benign2.56Benign0.00Affected4.324122.6-18.03
c.2503C>AL835MLikely BenignBenign 1-4.153Likely Benign0.121Likely BenignLikely Benign0.068Likely Benign-0.45Neutral0.999Probably Damaging0.977Probably Damaging2.67Benign0.12Tolerated3.77524-1.918.03
c.2506A>GS836GLikely BenignUncertain 16-33443058-A-G42.48e-6-4.749Likely Benign0.112Likely BenignLikely Benign0.066Likely Benign-1.65Neutral0.006Benign0.019Benign2.54Benign0.39Tolerated3.775100.4-30.03
c.250C>GR84GUncertain 1-6.627Likely Benign0.989Likely PathogenicLikely Pathogenic0.139Likely Benign-2.64Deleterious0.962Probably Damaging0.726Possibly Damaging3.68Benign0.00Affected4.321-3-24.1-99.14
c.2518A>TS840CLikely PathogenicUncertain 1-8.799Likely Pathogenic0.904Likely PathogenicAmbiguous0.376Likely Benign-3.96Deleterious0.999Probably Damaging0.975Probably Damaging1.50Pathogenic0.00Affected3.7750-13.316.06
c.2521G>AV841MUncertain 16-33443073-G-A31.86e-6-7.000In-Between0.651Likely PathogenicLikely Benign0.119Likely Benign-0.74Neutral0.999Probably Damaging0.998Probably Damaging2.54Benign0.02Affected3.77512-2.332.06
c.2068T>CS690P
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.568Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.431Likely Benign4.84Destabilizing0.34.40Destabilizing4.62Destabilizing1.42Destabilizing-4.77Deleterious0.998Probably Damaging0.790Possibly Damaging3.44Benign0.01Affected3.42171-1-0.810.04207.515.10.10.0-0.10.2XXPotentially PathogenicThe hydroxyl side chain of Ser690, located in an α-helix (res. Leu696-Leu685), forms a hydrogen bond with the backbone carbonyl group of Ser410 in an anti-parallel β-sheet of the C2 domain (res. Ile411-Ala399). In the variant simulations, the pyrrolidine side chain of Pro690 cannot form hydrogen bonds with the C2 domain residue, resulting in the loss of this inter-domain connection. Additionally, prolines lack a free amide group necessary for hydrogen bonding with the carbonyl group of Gly686, introducing a slight bend in the α-helix and compromising its integrity.
c.2071A>CT691P
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-13.801Likely Pathogenic0.905Likely PathogenicAmbiguous0.214Likely Benign5.04Destabilizing0.46.09Destabilizing5.57Destabilizing1.27Destabilizing-3.43Deleterious1.000Probably Damaging0.952Probably Damaging3.43Benign0.06Tolerated3.43140-1-0.9-3.99188.933.00.10.0-0.60.0XXPotentially PathogenicThe hydroxyl side chain of Thr691, located in an α-helix (res. Leu696-Leu685), can form hydrogen bonds with the backbone carbonyl and the side chain guanidinium group of Arg687. This interaction facilitates the simultaneous formation of salt bridges between Arg687 and Glu688 on the same α-helix. Additionally, Thr691 occasionally interacts with the thioether side chain of Met409 in an anti-parallel β-sheet of the C2 domain (res. Ile411-Ala399), although this interaction is not consistently maintained throughout the WT simulations. In the variant simulations, the pyrrolidine side chain of Pro691 lacks hydrogen bond donors, making a similar setup impossible. Moreover, proline lacks a free amide group necessary for hydrogen bonding with the carbonyl group of Arg687, introducing a slight bend in the α-helix and compromising its integrity.
c.2075T>CL692P
(3D Viewer)
Likely PathogenicGAPUncertain 1-16.447Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.668Likely Pathogenic9.19Destabilizing0.113.20Destabilizing11.20Destabilizing1.69Destabilizing-6.98Deleterious1.000Probably Damaging0.999Probably Damaging3.06Benign0.00Affected3.4217-3-3-5.4-16.04186.262.8-0.20.1-0.70.3XPotentially PathogenicThe isobutyl side chain of Leu692, located in the middle of an α-helix (res. Leu685-Gln702), engages in hydrophobic packing with nearby residues (e.g., Leu441, Leu431, Leu696) in the inter-helix space. Prolines lack a free amide group necessary for hydrogen bonding with the carbonyl group of Glu688 in the same manner as Leu692 in the WT. Consequently, the residue swap with proline disrupts the continuity of the secondary structure element in the variant simulations. Additionally, the side chain of Pro692 is not as optimal as Leu692 for hydrophobic packing in the inter-helix space.
c.2087T>CL696P
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-16.926Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.678Likely Pathogenic6.66Destabilizing0.210.84Destabilizing8.75Destabilizing2.13Destabilizing-6.58Deleterious1.000Probably Damaging1.000Probably Damaging3.00Benign0.00Affected3.4613-3-3-5.4-16.04180.665.90.10.0-0.60.1XPotentially PathogenicThe isobutyl side chain of Leu696, located in the middle of an α-helix (res. Leu685-Gln702), engages in hydrophobic packing with nearby residues (e.g., Leu441, Leu431, Leu692, Leu714) in the inter-helix space. Prolines lack a free amide group necessary for hydrogen bonding with the carbonyl group of Leu692 in the same manner as Leu696 in the WT. Consequently, the residue swap with proline disrupts the continuity of the secondary structure element in the variant simulations. Additionally, the side chain of Pro696 is not as optimal as Leu696 for hydrophobic packing in the inter-helix space.
c.2089T>CW697R
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33441348-T-C16.20e-7-10.020Likely Pathogenic0.941Likely PathogenicAmbiguous0.401Likely Benign1.14Ambiguous0.11.18Ambiguous1.16Ambiguous1.25Destabilizing-9.50Deleterious1.000Probably Damaging0.994Probably Damaging3.45Benign0.02Affected3.46132-3-3.6-30.03254.4-41.20.00.0-0.70.0XPotentially BenignThe indole ring of Trp697, located on the outer surface of an α-helix (res. Leu685-Val699), is not involved in any long-lasting interactions in the WT simulations. In the variant simulations, the positively charged guanidinium side chain of Arg697 occasionally forms hydrogen bonds with nearby residues, such as Ser722 and Asn719. However, similar to Trp697 in the WT, Arg697 does not form any long-lasting interactions and thus does not induce any negative structural effects in the simulations.
c.2522T>CV841AUncertain 16-33443074-T-C31.86e-6-8.152Likely Pathogenic0.901Likely PathogenicAmbiguous0.183Likely Benign-2.13Neutral0.992Probably Damaging0.989Probably Damaging2.57Benign0.02Affected3.77500-2.4-28.05
c.2525C>AS842YLikely PathogenicLikely Pathogenic 1-16.124Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.191Likely Benign-4.28Deleterious0.944Possibly Damaging0.676Possibly Damaging1.97Pathogenic0.00Affected3.775-3-2-0.576.10
c.2548G>AG850RLikely BenignUncertain 1-5.082Likely Benign0.398AmbiguousLikely Benign0.194Likely Benign-0.07Neutral0.010Benign0.010Benign4.30Benign0.01Affected3.775-3-2-4.199.14
c.2557G>CG853RLikely BenignUncertain 1-4.749Likely Benign0.366AmbiguousLikely Benign0.091Likely Benign-1.27Neutral0.846Possibly Damaging0.624Possibly Damaging4.18Benign0.00Affected-3-2-4.199.14
c.2560C>TR854CLikely BenignUncertain 16-33443112-C-T31.86e-6-5.082Likely Benign0.170Likely BenignLikely Benign0.174Likely Benign-2.48Neutral1.000Probably Damaging0.947Probably Damaging4.05Benign0.01Affected3.883-3-47.0-53.05
c.2561G>AR854HLikely BenignUncertain 16-33443113-G-A42.48e-6-3.686Likely Benign0.094Likely BenignLikely Benign0.183Likely Benign-1.38Neutral0.997Probably Damaging0.899Possibly Damaging4.07Benign0.04Affected3.883201.3-19.05
c.2567A>GN856SLikely BenignUncertain 16-33443119-A-G21.24e-6-2.104Likely Benign0.064Likely BenignLikely Benign0.040Likely Benign-1.54Neutral0.901Possibly Damaging0.535Possibly Damaging4.16Benign0.30Tolerated3.883112.7-27.03
c.256G>AV86ILikely BenignUncertain 1-4.726Likely Benign0.338Likely BenignLikely Benign0.076Likely Benign-0.31Neutral0.267Benign0.097Benign3.94Benign0.00Affected4.321430.314.03
c.2573G>AS858NLikely BenignUncertain 16-33443125-G-A21.24e-6-4.311Likely Benign0.121Likely BenignLikely Benign0.107Likely Benign-0.67Neutral0.448Benign0.846Possibly Damaging4.13Benign0.02Affected3.77511-2.727.03
c.2578G>AV860ILikely BenignBenign 16-33443130-G-A211.30e-5-4.516Likely Benign0.095Likely BenignLikely Benign0.039Likely Benign-0.42Neutral0.009Benign0.006Benign4.24Benign0.00Affected3.775430.314.03
c.2582C>TS861LLikely BenignUncertain 16-33443134-C-T21.24e-6-4.966Likely Benign0.219Likely BenignLikely Benign0.144Likely Benign-2.10Neutral0.904Possibly Damaging0.355Benign3.93Benign0.07Tolerated4.323-3-24.626.08
c.2105A>GQ702R
(3D Viewer)
GAPUncertain 1-7.894In-Between0.348AmbiguousLikely Benign0.294Likely Benign-0.31Likely Benign0.10.63Ambiguous0.16Likely Benign0.13Likely Benign-3.14Deleterious0.909Possibly Damaging0.889Possibly Damaging3.43Benign0.02Affected3.471011-1.028.06270.3-52.90.00.00.00.1XPotentially PathogenicThe carboxamide side chain of Gln702 is located at the end and outer surface of an α-helix (res. Leu685-Gln702), where it does not directly form hydrogen bonds with any residues in the WT simulations. In the variant simulations, the positively charged guanidinium group of Arg702 forms a salt bridge with the negatively charged carboxylate group of Glu698 on the same helix and/or hydrogen bonds with the backbone carbonyl group of Ala438 on an opposite α-helix (res. Tyr428-Glu436). Consequently, the residue swap could strengthen the tertiary structure assembly, which could have either positive or negative effects on its function.
c.2116G>AE706K
(3D Viewer)
GAPUncertain 1-10.519Likely Pathogenic0.833Likely PathogenicAmbiguous0.080Likely Benign1.17Ambiguous0.10.51Ambiguous0.84Ambiguous0.08Likely Benign-1.51Neutral0.345Benign0.028Benign4.15Benign0.52Tolerated3.471001-0.4-0.94187.149.20.00.00.40.1XUncertainThe carboxylate side chain of Glu706, located at the end and outer surface of an α-helix (res. Thr704-Gly712), forms a salt bridge with Lys710 and a hydrogen bond with its own backbone amino group at the helix end in the WT simulations. Although Lys706 is unable to make these transient interactions in the variant simulations, there is no apparent negative effect on the protein structure due to the residue swap. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.2143C>TP715S
(3D Viewer)
GAPLikely Pathogenic 16-33441608-C-T16.20e-7-7.635In-Between0.787Likely PathogenicAmbiguous0.277Likely Benign3.54Destabilizing0.00.81Ambiguous2.18Destabilizing0.94Ambiguous-7.17Deleterious1.000Probably Damaging0.998Probably Damaging3.43Benign0.01Affected3.5091-10.8-10.04231.8-14.0-0.10.0-0.80.1XUncertainPro715, along with Gly712 and Pro713, are located in a hinge region of an α-helix making a ~90-degree turn (res. Lys705-Leu725). In the WT simulations, the pyrrolidine side chain of Pro715, lacking the backbone amide groups altogether, forces the tight helix turn to take place while also hydrophobically packing with nearby residues (e.g., Leu700, Leu708, Leu714, and Leu718). Leu715, with a normal amide backbone, could potentially affect protein folding and turn formation, although this was not observed in the variant simulations. Additionally, the hydroxyl group of the Ser715 side chain can form hydrogen bonds with the backbone carbonyl group of Gly712 and disrupt the hydrophobic packing arrangement of the leucine residues from the neighboring α-helices, impacting the GAP domain tertiary assembly.
c.2147G>AR716Q
(3D Viewer)
GAPConflicting 26-33441612-G-A42.48e-6-8.338Likely Pathogenic0.308Likely BenignLikely Benign0.210Likely Benign-0.01Likely Benign0.00.47Likely Benign0.23Likely Benign0.58Ambiguous-3.14Deleterious1.000Probably Damaging0.990Probably Damaging3.35Benign0.02Affected3.509111.0-28.06250.048.90.00.0-0.50.0XUncertainThe guanidinium group of Arg716, located on the outer surface of an α-helix (res. Leu714-Arg726), forms a salt bridge with the carboxylate group of Asp720. In the variant simulations, the carboxamide group of Gln716 also forms a hydrogen bond with the carboxylate group of Asp720, although this bond is weaker than the Arg716 salt bridge in the WT. Overall, no adverse effects on the protein structure are observed in the simulations. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.2162T>GI721S
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.032Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.466Likely Benign3.91Destabilizing0.13.96Destabilizing3.94Destabilizing2.28Destabilizing-5.26Deleterious1.000Probably Damaging1.000Probably Damaging2.21Pathogenic0.00Affected3.509-1-2-5.3-26.08203.349.3-0.10.0-1.10.0XUncertainThe sec-butyl side chain of Ile721, located on an α-helix (res. Leu714-Arg726), engages in hydrophobic packing with other residues in the hydrophobic inter-helix space, such as Phe420, Tyr417, His693, and Leu717. In the variant simulations, the hydroxyl side chain of Ser721 forms hydrogen bonds with nearby residues, such as Leu717 and His693. Although no major structural changes are observed during the variant simulations, the hydrophilic residue Ser721 could disrupt the hydrophobic packing during folding. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.2596G>AV866ILikely BenignConflicting 36-33443148-G-A53.10e-6-4.652Likely Benign0.118Likely BenignLikely Benign0.059Likely Benign-0.39Neutral0.957Probably Damaging0.541Possibly Damaging2.69Benign0.27Tolerated3.824430.314.03
c.2596G>TV866LLikely BenignUncertain 16-33443148-G-T16.20e-7-3.352Likely Benign0.148Likely BenignLikely Benign0.046Likely Benign-0.97Neutral0.217Benign0.229Benign2.71Benign0.21Tolerated3.82421-0.414.03
c.2608C>GL870VLikely BenignUncertain 1-4.123Likely Benign0.300Likely BenignLikely Benign0.111Likely Benign-1.19Neutral0.997Probably Damaging0.992Probably Damaging2.64Benign0.12Tolerated3.883210.4-14.03
c.2619C>GS873RUncertain 16-33443171-C-G16.20e-7-5.856Likely Benign0.976Likely PathogenicLikely Pathogenic0.192Likely Benign-2.74Deleterious0.997Probably Damaging0.995Probably Damaging2.67Benign0.06Tolerated3.7750-1-3.769.11
c.2623G>AA875TLikely BenignUncertain 16-33443175-G-A16.20e-7-3.793Likely Benign0.179Likely BenignLikely Benign0.110Likely Benign-1.56Neutral0.972Probably Damaging0.864Possibly Damaging2.72Benign0.26Tolerated3.77501-2.530.03
c.2168C>TT723I
(3D Viewer)
Likely BenignGAPLikely Benign 16-33441633-C-T21.24e-6-2.591Likely Benign0.120Likely BenignLikely Benign0.045Likely Benign-0.39Likely Benign0.0-0.20Likely Benign-0.30Likely Benign0.26Likely Benign-2.09Neutral0.088Benign0.030Benign3.39Benign0.03Affected3.5080-15.212.05252.3-31.60.00.0-0.20.2XUncertainThe hydroxyl group of Thr723, located on the outer surface of an α-helix (res. Leu714-Arg726), continuously forms hydrogen bonds with the backbone carbonyl of Asn719 in the WT simulations, potentially lowering the stability of the α-helix. In the variant simulations, the sec-butyl side chain of Ile723 cannot form any hydrogen bonds, which, in theory, could increase the helix stability. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.2632A>GT878ALikely BenignUncertain 1-2.154Likely Benign0.081Likely BenignLikely Benign0.088Likely Benign-0.67Neutral0.003Benign0.006Benign2.73Benign0.18Tolerated3.775102.5-30.03
c.2635_2636delinsAAA879KLikely BenignLikely Benign 1-5.877Likely Benign0.757Likely PathogenicLikely Benign-0.71Neutral0.969Probably Damaging0.593Possibly Damaging2.69Benign0.21Tolerated3.775-1-1-5.757.10
c.263T>CV88ALikely BenignUncertain 1-5.860Likely Benign0.993Likely PathogenicLikely Pathogenic0.050Likely Benign-1.22Neutral0.053Benign0.008Benign3.75Benign0.00Affected4.32100-2.4-28.05
c.2650C>TR884WLikely BenignUncertain 16-33443202-C-T53.10e-6-3.785Likely Benign0.332Likely BenignLikely Benign0.151Likely Benign0.26Neutral0.995Probably Damaging0.812Possibly Damaging2.56Benign0.05Affected4.324-323.630.03
c.2651G>AR884QLikely BenignUncertain 26-33443203-G-A53.10e-6-3.785Likely Benign0.128Likely BenignLikely Benign0.055Likely Benign-0.42Neutral0.012Benign0.004Benign2.62Benign0.36Tolerated4.324111.0-28.06
c.2657C>TA886VLikely BenignUncertain 16-33443209-C-T181.12e-5-4.478Likely Benign0.078Likely BenignLikely Benign0.061Likely Benign-0.20Neutral0.888Possibly Damaging0.314Benign2.17Pathogenic0.00Affected4.324002.428.05
c.2668C>TR890CBenign 16-33443220-C-T95.58e-6-5.786Likely Benign0.402AmbiguousLikely Benign0.200Likely Benign-3.38Deleterious1.000Probably Damaging0.971Probably Damaging3.94Benign0.04Affected4.324-4-37.0-53.05
c.2669G>AR890HLikely BenignBenign 16-33443221-G-A191.18e-5-3.600Likely Benign0.198Likely BenignLikely Benign0.056Likely Benign-1.29Neutral0.254Benign0.134Benign3.97Benign0.15Tolerated4.324201.3-19.05
c.2681G>AG894ELikely BenignUncertain 16-33443233-G-A63.72e-6-5.377Likely Benign0.859Likely PathogenicAmbiguous0.180Likely Benign-2.07Neutral1.000Probably Damaging1.000Probably Damaging2.68Benign0.01Affected4.3240-2-3.172.06
c.2684G>AS895NLikely BenignUncertain 1-6.399Likely Benign0.604Likely PathogenicLikely Benign0.118Likely Benign-0.85Neutral0.991Probably Damaging0.988Probably Damaging2.64Benign0.30Tolerated4.32411-2.727.03
c.2690C>TS897LLikely BenignUncertain 1-4.034Likely Benign0.299Likely BenignLikely Benign0.028Likely Benign-1.71Neutral0.901Possibly Damaging0.636Possibly Damaging2.66Benign0.01Affected-3-24.626.08
c.2695A>GI899VLikely BenignBenign 16-33443247-A-G63.72e-6-2.569Likely Benign0.074Likely BenignLikely Benign0.040Likely Benign0.09Neutral0.220Benign0.078Benign2.75Benign0.92Tolerated4.32443-0.3-14.03
c.2699C>TT900MLikely BenignConflicting 26-33443251-C-T148.68e-6-3.852Likely Benign0.176Likely BenignLikely Benign0.015Likely Benign-0.81Neutral0.060Benign0.016Benign2.79Benign0.08Tolerated4.324-1-12.630.09
c.269T>AV90ELikely BenignUncertain 1-4.079Likely Benign0.703Likely PathogenicLikely Benign0.108Likely Benign-0.38Neutral0.001Benign0.000Benign4.00Benign0.00Affected4.321-2-2-7.729.98
c.2704G>AA902TLikely BenignLikely Benign 16-33443256-G-A362.23e-5-4.966Likely Benign0.116Likely BenignLikely Benign0.075Likely Benign-1.11Neutral0.951Possibly Damaging0.617Possibly Damaging2.61Benign0.01Affected3.77510-2.530.03
c.2711T>CM904TLikely BenignUncertain 1-2.721Likely Benign0.668Likely PathogenicLikely Benign0.042Likely Benign-1.15Neutral0.277Benign0.103Benign2.78Benign0.18Tolerated3.775-1-1-2.6-30.09
c.2713C>TR905CConflicting 26-33443265-C-T159.31e-6-5.578Likely Benign0.723Likely PathogenicLikely Benign0.194Likely Benign-3.14Deleterious1.000Probably Damaging0.980Probably Damaging2.57Benign0.01Affected3.775-4-37.0-53.05
c.2714G>AR905HLikely BenignUncertain 16-33443266-G-A84.96e-6-4.182Likely Benign0.457AmbiguousLikely Benign0.192Likely Benign-1.11Neutral1.000Probably Damaging0.991Probably Damaging2.59Benign0.09Tolerated3.775201.3-19.05
c.2719A>TS907CLikely BenignLikely Benign 1-6.685Likely Benign0.298Likely BenignLikely Benign0.113Likely Benign-2.34Neutral0.999Probably Damaging0.988Probably Damaging2.60Benign0.02Affected3.7750-13.316.06
c.2724G>CQ908HLikely BenignConflicting 46-33443276-G-C16.20e-7-4.658Likely Benign0.311Likely BenignLikely Benign0.112Likely Benign-0.74Neutral0.996Probably Damaging0.995Probably Damaging2.58Benign0.05Affected3.775300.39.01
c.2729G>CG910ALikely BenignUncertain 16-33443281-G-C16.20e-7-3.587Likely Benign0.361AmbiguousLikely Benign0.209Likely Benign-1.43Neutral0.999Probably Damaging0.999Probably Damaging2.78Benign0.10Tolerated3.775102.214.03
c.272A>GE91GLikely BenignLikely Benign 1-3.226Likely Benign0.783Likely PathogenicLikely Benign0.110Likely Benign-2.18Neutral0.947Possibly Damaging0.727Possibly Damaging3.86Benign0.00Affected4.3210-23.1-72.06
c.2735C>AT912NLikely BenignUncertain 1-4.260Likely Benign0.190Likely BenignLikely Benign0.116Likely Benign-1.15Neutral0.999Probably Damaging0.977Probably Damaging3.96Benign0.00Affected3.77500-2.813.00
c.2741A>TD914VLikely BenignUncertain 1-4.260Likely Benign0.723Likely PathogenicLikely Benign0.187Likely Benign-2.24Neutral0.999Probably Damaging0.986Probably Damaging2.64Benign0.01Affected3.775-3-27.7-15.96
c.2743G>AG915SLikely BenignBenign 16-33443295-G-A95.58e-6-3.557Likely Benign0.083Likely BenignLikely Benign0.050Likely Benign-0.88Neutral0.801Possibly Damaging0.201Benign2.73Benign0.31Tolerated3.77510-0.430.03
c.2750C>GP917RLikely BenignUncertain 16-33443302-C-G53.10e-6-4.475Likely Benign0.363AmbiguousLikely Benign0.142Likely Benign-1.70Neutral0.642Possibly Damaging0.316Benign2.68Benign0.00Affected3.775-20-2.959.07
c.2752G>AA918TLikely BenignUncertain 16-33443304-G-A16.20e-7-4.139Likely Benign0.083Likely BenignLikely Benign0.065Likely Benign-1.09Neutral0.980Probably Damaging0.721Possibly Damaging2.64Benign0.03Affected4.32401-2.530.03
c.2765G>AR922QLikely BenignBenign 16-33443317-G-A74.34e-6-3.295Likely Benign0.189Likely BenignLikely Benign0.085Likely Benign-0.27Neutral0.992Probably Damaging0.736Possibly Damaging2.57Benign0.20Tolerated3.775111.0-28.06
c.2768T>AI923NLikely BenignUncertain 1-0.733Likely Benign0.712Likely PathogenicLikely Benign0.108Likely Benign-1.16Neutral0.991Probably Damaging0.793Possibly Damaging2.70Benign0.13Tolerated3.775-2-3-8.00.94
c.277C>GR93GLikely BenignUncertain 1-2.674Likely Benign0.400AmbiguousLikely Benign0.093Likely Benign-1.69Neutral0.103Benign0.019Benign3.99Benign0.00Affected4.321-2-34.1-99.14
c.2809G>CD937HLikely BenignUncertain 1-0.733Likely Benign0.677Likely PathogenicLikely Benign0.150Likely Benign-1.74Neutral1.000Probably Damaging0.975Probably Damaging2.68Benign0.13Tolerated3.775-110.322.05
c.280C>TP94SLikely BenignBenign 16-33425888-C-T53.10e-6-3.151Likely Benign0.084Likely BenignLikely Benign0.093Likely Benign-2.36Neutral0.092Benign0.008Benign4.13Benign0.00Affected4.3211-10.8-10.04
c.2812G>AG938RLikely BenignUncertain 1-5.271Likely Benign0.732Likely PathogenicLikely Benign0.141Likely Benign-1.11Neutral0.999Probably Damaging0.985Probably Damaging2.74Benign0.36Tolerated3.775-3-2-4.199.14
c.2818G>AG940SLikely BenignUncertain 16-33443370-G-A16.20e-7-5.451Likely Benign0.084Likely BenignLikely Benign0.135Likely Benign0.45Neutral0.409Benign0.253Benign2.77Benign0.44Tolerated3.77510-0.430.03
c.2818G>CG940RLikely BenignBenign 16-33443370-G-C53.10e-6-6.169Likely Benign0.480AmbiguousLikely Benign0.060Likely Benign0.02Neutral0.922Possibly Damaging0.543Possibly Damaging2.73Benign0.15Tolerated3.775-3-2-4.199.14
c.2825C>TP942LLikely BenignUncertain 16-33443377-C-T42.48e-6-5.063Likely Benign0.086Likely BenignLikely Benign0.048Likely Benign-2.00Neutral0.411Benign0.239Benign2.37Pathogenic0.00Affected4.324-3-35.416.04
c.2830G>AG944SLikely BenignBenign 16-33443382-G-A138.05e-6-5.303Likely Benign0.082Likely BenignLikely Benign0.223Likely Benign-0.75Neutral0.007Benign0.004Benign3.77Benign0.00Affected4.32410-0.430.03
c.2835T>AH945QLikely BenignConflicting 26-33443387-T-A31.86e-6-5.248Likely Benign0.091Likely BenignLikely Benign0.343Likely Benign-0.36Neutral0.995Probably Damaging0.939Probably Damaging5.03Benign0.06Tolerated4.32430-0.3-9.01
c.2837G>AG946ELikely BenignBenign 36-33443389-G-A138.05e-6-8.793Likely Pathogenic0.257Likely BenignLikely Benign0.341Likely Benign-0.51Neutral0.818Possibly Damaging0.355Benign4.58Benign0.00Affected4.3240-2-3.172.06
c.2840G>CG947ALikely BenignLikely Benign 16-33443392-G-C281.73e-5-6.511Likely Benign0.080Likely BenignLikely Benign0.156Likely Benign-0.41Neutral0.224Benign0.131Benign4.97Benign0.10Tolerated4.324102.214.03
c.2852A>GH951RLikely BenignLikely Pathogenic 1-4.964Likely Benign0.125Likely BenignLikely Benign0.185Likely Benign-1.08Neutral0.048Benign0.029Benign5.46Benign0.24Tolerated3.77520-1.319.05
c.2854G>AG952SLikely BenignConflicting 26-33443406-G-A21.24e-6-6.190Likely Benign0.077Likely BenignLikely Benign0.167Likely Benign0.19Neutral0.000Benign0.002Benign3.31Benign0.07Tolerated3.77510-0.430.03
c.2855G>TG952VLikely BenignUncertain 1-7.074In-Between0.078Likely BenignLikely Benign0.231Likely Benign-0.33Neutral0.000Benign0.000Benign3.20Benign0.02Affected3.775-1-34.642.08
c.2858C>AP953QLikely BenignUncertain 1-6.038Likely Benign0.079Likely BenignLikely Benign0.086Likely Benign-0.78Neutral0.058Benign0.015Benign2.78Benign0.29Tolerated3.7750-1-1.931.01
c.2860C>TP954SLikely BenignLikely Benign 16-33443412-C-T16.20e-7-3.525Likely Benign0.062Likely BenignLikely Benign0.143Likely Benign-0.25Neutral0.954Possibly Damaging0.812Possibly Damaging2.87Benign1.00Tolerated3.7751-10.8-10.04
c.2863T>CS955PLikely BenignUncertain 16-33443415-T-C31.86e-6-2.584Likely Benign0.073Likely BenignLikely Benign0.098Likely Benign-0.75Neutral0.001Benign0.004Benign2.33Pathogenic0.00Affected3.7751-1-0.810.04
c.2864C>TS955FConflicting 46-33443416-C-T955.89e-5-7.374In-Between0.176Likely BenignLikely Benign0.093Likely Benign-1.73Neutral0.977Probably Damaging0.721Possibly Damaging2.32Pathogenic0.00Affected3.775-3-23.660.10
c.286G>AG96SLikely BenignUncertain 16-33425894-G-A53.10e-6-3.049Likely Benign0.065Likely BenignLikely Benign0.071Likely Benign-0.76Neutral0.364Benign0.008Benign4.25Benign0.00Affected4.32110-0.430.03
c.2873A>CH958PLikely BenignBenign 16-33443425-A-C21.24e-6-8.369Likely Pathogenic0.068Likely BenignLikely Benign0.204Likely Benign-0.36Neutral0.925Possibly Damaging0.316Benign4.14Benign0.10Tolerated3.7750-21.6-40.02
c.2881C>TH961YLikely BenignConflicting 26-33443433-C-T31.86e-6-8.051Likely Pathogenic0.157Likely BenignLikely Benign0.102Likely Benign-1.07Neutral0.716Possibly Damaging0.147Benign4.10Benign0.55Tolerated3.775021.926.03
c.2888A>GH963RLikely BenignUncertain 16-33443440-A-G84.96e-6-8.952Likely Pathogenic0.169Likely BenignLikely Benign0.081Likely Benign-1.28Neutral0.001Benign0.003Benign4.15Benign0.24Tolerated3.77520-1.319.05
c.28C>TR10WLikely BenignUncertain 16-33420292-C-T21.30e-6-5.707Likely Benign0.503AmbiguousLikely Benign0.236Likely Benign-0.31Neutral0.964Probably Damaging0.190Benign4.10Benign0.00Affected4.3212-33.630.03
c.2900G>TR967LLikely BenignUncertain 16-33443452-G-T16.20e-7-3.496Likely Benign0.164Likely BenignLikely Benign0.123Likely Benign-0.99Neutral0.959Probably Damaging0.586Possibly Damaging4.15Benign0.75Tolerated4.322-2-38.3-43.03
c.2909A>GE970GLikely BenignBenign 1-0.167Likely Benign0.139Likely BenignLikely Benign0.139Likely Benign-0.93Neutral0.144Benign0.058Benign4.09Benign0.10Tolerated4.3220-23.1-72.06
c.2912C>AP971HLikely BenignUncertain 16-33443464-C-A16.20e-7-5.243Likely Benign0.086Likely BenignLikely Benign0.039Likely Benign-1.11Neutral0.898Possibly Damaging0.477Possibly Damaging3.89Benign0.00Affected4.322-20-1.640.02
c.2914C>GP972ALikely BenignUncertain 16-33443466-C-G16.20e-7-0.167Likely Benign0.045Likely BenignLikely Benign0.046Likely Benign-0.89Neutral0.016Benign0.011Benign4.29Benign0.07Tolerated4.322-113.4-26.04
c.2914C>TP972SLikely BenignUncertain 16-33443466-C-T42.48e-6-4.008Likely Benign0.058Likely BenignLikely Benign0.074Likely Benign-0.38Neutral0.001Benign0.002Benign4.28Benign0.05Affected4.322-110.8-10.04
c.2924C>AT975NLikely BenignUncertain 16-33443476-C-A16.20e-7-4.671Likely Benign0.089Likely BenignLikely Benign0.100Likely Benign-0.58Neutral0.586Possibly Damaging0.302Benign4.13Benign0.07Tolerated4.32200-2.813.00
c.2924C>GT975SLikely BenignUncertain 1-2.743Likely Benign0.068Likely BenignLikely Benign0.109Likely Benign-0.57Neutral0.059Benign0.061Benign4.16Benign0.20Tolerated11-0.1-14.03
c.2924C>TT975ILikely BenignUncertain 16-33443476-C-T63.72e-6-3.912Likely Benign0.164Likely BenignLikely Benign0.068Likely Benign-1.66Neutral0.411Benign0.239Benign4.11Benign0.66Tolerated4.3220-15.212.05
c.2928T>GF976LLikely BenignUncertain 1-2.432Likely Benign0.825Likely PathogenicAmbiguous0.212Likely Benign-0.87Neutral0.264Benign0.102Benign4.20Benign0.53Tolerated4.322201.0-34.02
c.2932C>TP978SLikely BenignUncertain 1-3.913Likely Benign0.151Likely BenignLikely Benign0.085Likely Benign-1.07Neutral0.481Possibly Damaging0.220Benign4.22Benign0.48Tolerated1-10.8-10.04
c.2935T>CF979LLikely BenignUncertain 1-2.341Likely Benign0.870Likely PathogenicAmbiguous0.228Likely Benign-1.00Neutral0.625Possibly Damaging0.430Benign4.22Benign0.73Tolerated4.322201.0-34.02
c.2945A>GY982CLikely BenignLikely Benign 16-33443497-A-G21.24e-6-6.256Likely Benign0.746Likely PathogenicLikely Benign0.195Likely Benign-1.67Neutral0.997Probably Damaging0.923Probably Damaging3.87Benign0.00Affected4.3210-23.8-60.04
c.2948G>AS983NLikely Benign 16-33443500-G-A63.72e-6-5.604Likely Benign0.909Likely PathogenicAmbiguous0.136Likely Benign-1.78Neutral0.991Probably Damaging0.988Probably Damaging2.04Pathogenic0.00Affected4.32111-2.727.03
c.2954G>AS985NLikely BenignUncertain 1-6.979Likely Benign0.845Likely PathogenicAmbiguous0.088Likely Benign-1.68Neutral0.991Probably Damaging0.988Probably Damaging2.65Benign0.00Affected4.32111-2.727.03
c.2960A>GD987GLikely PathogenicUncertain 1-4.782Likely Benign0.849Likely PathogenicAmbiguous0.234Likely Benign-2.79Deleterious0.943Possibly Damaging0.808Possibly Damaging2.45Pathogenic0.07Tolerated4.3221-13.1-58.04
c.2962C>TL988FLikely BenignUncertain 16-33443514-C-T16.20e-7-4.368Likely Benign0.356AmbiguousLikely Benign0.135Likely Benign-1.70Neutral0.977Probably Damaging0.900Possibly Damaging2.69Benign0.00Affected4.32220-1.034.02
c.2971G>AG991RLikely BenignConflicting 36-33443523-G-A84.96e-6-3.934Likely Benign0.411AmbiguousLikely Benign0.102Likely Benign-1.20Neutral0.984Probably Damaging0.772Possibly Damaging4.11Benign0.01Affected4.322-3-2-4.199.14
c.2983C>TP995SLikely BenignUncertain 1-4.457Likely Benign0.071Likely BenignLikely Benign0.042Likely Benign-1.03Neutral0.011Benign0.015Benign4.24Benign0.00Affected4.3211-10.8-10.04
c.2987C>GP996RLikely BenignBenign 1-4.457Likely Benign0.141Likely BenignLikely Benign0.040Likely Benign-1.04Neutral0.144Benign0.085Benign4.26Benign0.01Affected4.324-20-2.959.07
c.2989G>AA997TLikely BenignUncertain 1-4.102Likely Benign0.071Likely BenignLikely Benign0.085Likely Benign-0.62Neutral0.224Benign0.120Benign4.17Benign0.00Affected4.32410-2.530.03
c.2998A>GI1000VLikely BenignUncertain 2-4.102Likely Benign0.098Likely BenignLikely Benign0.086Likely Benign-0.20Neutral0.437Benign0.170Benign2.76Benign0.81Tolerated4.32434-0.3-14.03
c.3002T>CL1001PLikely BenignUncertain 1-3.071Likely Benign0.209Likely BenignLikely Benign0.113Likely Benign-1.02Neutral0.966Probably Damaging0.690Possibly Damaging2.65Benign0.00Affected4.324-3-3-5.4-16.04
c.3009C>GS1003RUncertain 1-5.113Likely Benign0.991Likely PathogenicLikely Pathogenic0.141Likely Benign-1.88Neutral0.999Probably Damaging0.996Probably Damaging2.48Pathogenic0.00Affected3.7750-1-3.769.11
c.3020G>AS1007NLikely BenignBenign 1-5.113Likely Benign0.803Likely PathogenicAmbiguous0.075Likely Benign-1.54Neutral0.997Probably Damaging0.992Probably Damaging2.65Benign0.01Affected3.77511-2.727.03
c.3022G>AD1008NLikely BenignLikely Benign 16-33443574-G-A31.86e-6-4.045Likely Benign0.714Likely PathogenicLikely Benign0.128Likely Benign-2.15Neutral0.999Probably Damaging0.997Probably Damaging2.75Benign0.01Affected3.775210.0-0.98
c.3023A>GD1008GUncertain 16-33443575-A-G16.20e-7-3.213Likely Benign0.742Likely PathogenicLikely Benign0.203Likely Benign-2.84Deleterious0.999Probably Damaging0.997Probably Damaging2.65Benign0.01Affected3.775-113.1-58.04
c.3026A>CE1009ALikely PathogenicUncertain 1-3.118Likely Benign0.679Likely PathogenicLikely Benign0.109Likely Benign-3.06Deleterious0.980Probably Damaging0.630Possibly Damaging2.39Pathogenic0.01Affected3.7750-15.3-58.04
c.3038C>GS1013CLikely BenignUncertain 16-33443590-C-G42.48e-6-6.745Likely Benign0.110Likely BenignLikely Benign0.058Likely Benign-2.06Neutral0.898Possibly Damaging0.579Possibly Damaging2.64Benign0.05Affected3.7750-13.316.06
c.303C>AH101QLikely BenignUncertain 16-33432168-C-A16.20e-7-2.827Likely Benign0.124Likely BenignLikely Benign0.147Likely Benign-0.37Neutral0.824Possibly Damaging0.880Possibly Damaging4.24Benign0.00Affected4.32130-0.3-9.01
c.3041G>TG1014VLikely BenignUncertain 1-4.612Likely Benign0.181Likely BenignLikely Benign0.053Likely Benign-2.47Neutral0.818Possibly Damaging0.377Benign2.72Benign0.06Tolerated3.775-1-34.642.08
c.3048C>AD1016ELikely BenignLikely Benign 16-33443600-C-A21.24e-6-3.422Likely Benign0.216Likely BenignLikely Benign0.017Likely Benign-0.37Neutral0.008Benign0.028Benign2.64Benign0.65Tolerated3.775230.014.03

Found 757 rows. Show 200 rows per page. Page 2/4 |