SynGap Missense Server

Table of SynGAP1 Isoform α2 (UniProt Q96PV0-1) Missense Variants.

c.dna Variant SGM Consensus Domain ClinVar gnomAD ESM1b AlphaMissense REVEL FoldX Rosetta Foldetta PremPS PROVEAN PolyPhen-2 HumDiv PolyPhen-2 HumVar FATHMM SIFT PAM Physical SASA Normalized B-factor backbone Normalized B-factor sidechain SynGAP Structural Annotation DOI
Clinical Status Review Subm. ID Allele count Allele freq. LLR score Prediction Pathogenicity Class Optimized Score Prediction Average ΔΔG Prediction StdDev ΔΔG Prediction ΔΔG Prediction ΔΔG Prediction Score Prediction pph2_prob Prediction pph2_prob Prediction Nervous System Score Prediction Prediction Status Conservation Sequences PAM250 PAM120 Hydropathy Δ MW Δ Average Δ Δ StdDev Δ StdDev Secondary Tertiary bonds Inside out GAP-Ras interface At membrane No effect MD Alert Verdict Description
c.3308G>TR1103LLikely BenignUncertain 16-33443860-G-T-2.330Likely Benign0.205Likely BenignLikely Benign0.173Likely Benign-2.35Neutral0.002Benign0.005Benign2.44Pathogenic0.02Affected3.775-3-28.3-43.03
c.3313C>TR1105WUncertain 16-33443865-C-T63.93e-6-6.911Likely Benign0.488AmbiguousLikely Benign0.133Likely Benign-4.34Deleterious0.999Probably Damaging0.696Possibly Damaging2.42Pathogenic0.02Affected3.775-323.630.03
c.3314G>AR1105QLikely BenignUncertain 26-33443866-G-A31.96e-6-3.666Likely Benign0.216Likely BenignLikely Benign0.104Likely Benign-1.21Neutral0.958Probably Damaging0.194Benign2.50Benign0.16Tolerated3.775111.0-28.06
c.3323G>TS1108IUncertain 16-33443875-G-T-3.666Likely Benign0.292Likely BenignLikely Benign0.145Likely Benign-3.73Deleterious0.971Probably Damaging0.604Possibly Damaging2.44Pathogenic0.10Tolerated3.775-2-15.326.08
c.3338G>AG1113DLikely BenignUncertain 16-33443890-G-A-4.638Likely Benign0.354AmbiguousLikely Benign0.061Likely Benign-0.72Neutral0.029Benign0.017Benign2.58Benign0.34Tolerated4.322-11-3.158.04
c.3354C>AS1118RLikely BenignUncertain 1-2.670Likely Benign0.553AmbiguousLikely Benign0.166Likely Benign-0.74Neutral0.034Benign0.023Benign5.17Benign0.05Affected4.322-10-3.769.11
c.335G>CG112ALikely BenignUncertain 16-33432200-G-C159.30e-6-2.456Likely Benign0.119Likely BenignLikely Benign0.114Likely Benign-2.34Neutral0.231Benign0.054Benign4.07Benign0.00Affected3.615102.214.03
c.3361A>GS1121GLikely BenignUncertain 16-33443913-A-G17.00e-7-1.220Likely Benign0.054Likely BenignLikely Benign0.067Likely Benign-0.53Neutral0.003Benign0.004Benign6.63Benign0.00Affected3.775010.4-30.03
c.3368G>AG1123DUncertain 16-33443920-G-A21.33e-6-10.321Likely Pathogenic0.405AmbiguousLikely Benign0.360Likely Benign-0.78Neutral0.500Possibly Damaging0.157Benign4.34Benign0.19Tolerated3.7751-1-3.158.04
c.3374G>CG1125ALikely BenignUncertain 16-33443926-G-C16.68e-7-6.569Likely Benign0.083Likely BenignLikely Benign0.232Likely Benign-0.60Neutral0.999Probably Damaging0.995Probably Damaging4.60Benign0.11Tolerated3.775102.214.03
c.3376G>TG1126CLikely BenignUncertain 16-33443928-G-T117.35e-6-9.389Likely Pathogenic0.113Likely BenignLikely Benign0.449Likely Benign-1.40Neutral0.005Benign0.005Benign4.74Benign0.02Affected3.775-3-32.946.09
c.3377G>AG1126DUncertain 1-8.888Likely Pathogenic0.432AmbiguousLikely Benign0.376Likely Benign-0.65Neutral0.906Possibly Damaging0.473Possibly Damaging4.82Benign0.02Affected3.7751-1-3.158.04
c.3377G>TG1126VLikely BenignUncertain 16-33443929-G-T-6.536Likely Benign0.089Likely BenignLikely Benign0.357Likely Benign-1.20Neutral0.009Benign0.008Benign4.76Benign0.03Affected3.775-1-34.642.08
c.3379G>AG1127RLikely BenignUncertain 16-33443931-G-A21.34e-6-5.949Likely Benign0.629Likely PathogenicLikely Benign0.341Likely Benign-0.87Neutral0.001Benign0.001Benign4.86Benign0.12Tolerated4.324-2-3-4.199.14
c.3380G>TG1127VLikely BenignUncertain 16-33443932-G-T16.69e-7-6.097Likely Benign0.094Likely BenignLikely Benign0.230Likely Benign-1.01Neutral0.004Benign0.005Benign4.81Benign0.17Tolerated4.324-1-34.642.08
c.3386T>CL1129PLikely BenignUncertain 2-2.991Likely Benign0.154Likely BenignLikely Benign0.432Likely Benign0.27Neutral0.971Probably Damaging0.773Possibly Damaging5.44Benign0.00Affected4.324-3-3-5.4-16.04
c.3405G>CK1135NLikely BenignUncertain 1-5.715Likely Benign0.960Likely PathogenicLikely Pathogenic0.166Likely Benign-0.97Neutral0.411Benign0.321Benign5.43Benign0.07Tolerated4.322100.4-14.07
c.3413C>AS1138YUncertain 16-33444448-C-A31.86e-6-6.610Likely Benign0.449AmbiguousLikely Benign0.391Likely Benign-2.51Deleterious0.997Probably Damaging0.996Probably Damaging5.41Benign0.05Affected4.324-2-3-0.576.10
c.3434A>GN1145SLikely BenignUncertain 16-33444469-A-G21.24e-6-0.989Likely Benign0.126Likely BenignLikely Benign0.308Likely Benign-1.15Neutral0.997Probably Damaging0.989Probably Damaging5.55Benign0.89Tolerated4.324112.7-27.03
c.3442A>TM1148LLikely BenignUncertain 1-1.777Likely Benign0.093Likely BenignLikely Benign0.068Likely Benign-1.13Neutral0.016Benign0.016Benign2.62Benign0.00Affected4.322421.9-18.03
c.3449C>TA1150VLikely BenignUncertain 16-33444484-C-T31.86e-6-3.648Likely Benign0.192Likely BenignLikely Benign0.066Likely Benign-2.22Neutral0.114Benign0.055Benign2.32Pathogenic0.04Affected3.775002.428.05
c.3457C>TR1153WLikely PathogenicUncertain 26-33444492-C-T21.24e-6-5.812Likely Benign0.994Likely PathogenicLikely Pathogenic0.317Likely Benign-5.88Deleterious1.000Probably Damaging0.998Probably Damaging1.46Pathogenic0.00Affected3.7752-33.630.03
c.3484C>TP1162SLikely BenignUncertain 1-2.118Likely Benign0.913Likely PathogenicAmbiguous0.215Likely Benign-1.93Neutral1.000Probably Damaging0.999Probably Damaging2.73Benign0.55Tolerated3.8831-10.8-10.04
c.3487C>GH1163DUncertain 1-2.107Likely Benign0.949Likely PathogenicAmbiguous0.476Likely Benign-2.60Deleterious0.991Probably Damaging0.991Probably Damaging5.44Benign0.31Tolerated3.8831-1-0.3-22.05
c.3502A>GI1168VLikely BenignUncertain 1-3.263Likely Benign0.524AmbiguousLikely Benign0.363Likely Benign-0.14Neutral0.876Possibly Damaging0.643Possibly Damaging5.47Benign0.84Tolerated3.88343-0.3-14.03
c.3508A>GS1170GLikely BenignCoiled-coilUncertain 1-4.288Likely Benign0.221Likely BenignLikely Benign0.349Likely Benign-0.81Neutral0.241Benign0.229Benign5.31Benign0.54Tolerated4.324100.4-30.03
c.3511G>AA1171TLikely BenignCoiled-coilUncertain 1-3.658Likely Benign0.149Likely BenignLikely Benign0.201Likely Benign-0.48Neutral0.245Benign0.138Benign5.45Benign0.07Tolerated4.32410-2.530.03
c.3511_3512delinsTGA1171CLikely BenignCoiled-coilUncertain 1-5.363Likely Benign0.496AmbiguousLikely Benign-1.16Neutral0.978Probably Damaging0.825Possibly Damaging5.32Benign0.02Affected4.324-200.732.06
c.3520G>AE1174KLikely BenignCoiled-coilUncertain 16-33444555-G-A21.24e-6-4.345Likely Benign0.898Likely PathogenicAmbiguous0.442Likely Benign-1.59Neutral0.962Probably Damaging0.367Benign5.52Benign0.03Affected4.32201-0.4-0.94
c.3529G>AE1177KLikely BenignCoiled-coilUncertain 1-3.413Likely Benign0.944Likely PathogenicAmbiguous0.560Likely Pathogenic-1.75Neutral0.905Possibly Damaging0.637Possibly Damaging5.44Benign0.11Tolerated4.32201-0.4-0.94
c.3557C>TS1186LCoiled-coilUncertain 16-33444592-C-T-4.829Likely Benign0.923Likely PathogenicAmbiguous0.177Likely Benign-2.58Deleterious0.998Probably Damaging0.992Probably Damaging2.65Benign0.04Affected3.824-3-24.626.08
c.3572G>AR1191QLikely BenignCoiled-coilUncertain 26-33444607-G-A95.58e-6-1.069Likely Benign0.943Likely PathogenicAmbiguous0.343Likely Benign-1.41Neutral0.998Probably Damaging0.992Probably Damaging2.68Benign0.08Tolerated3.824111.0-28.06
c.3574C>GL1192VLikely BenignCoiled-coilUncertain 1-4.132Likely Benign0.471AmbiguousLikely Benign0.041Likely Benign-0.89Neutral0.779Possibly Damaging0.527Possibly Damaging2.69Benign0.16Tolerated210.4-14.03
c.3595G>AE1199KCoiled-coilUncertain 16-33446587-G-A16.20e-7-10.853Likely Pathogenic0.954Likely PathogenicAmbiguous0.171Likely Benign-2.26Neutral1.000Probably Damaging0.995Probably Damaging2.52Benign0.00Affected3.77501-0.4-0.94
c.3607C>GH1203DLikely BenignCoiled-coilUncertain 1-6.729Likely Benign0.525AmbiguousLikely Benign0.403Likely Benign-1.89Neutral0.473Possibly Damaging0.265Benign5.51Benign0.24Tolerated3.7751-1-0.3-22.05
c.3607C>TH1203YLikely BenignCoiled-coilUncertain 16-33446599-C-T21.24e-6-6.834Likely Benign0.149Likely BenignLikely Benign0.233Likely Benign-1.52Neutral0.006Benign0.011Benign5.55Benign0.10Tolerated3.775201.926.03
c.3614T>CL1205PLikely PathogenicCoiled-coilUncertain 1-16.878Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.536Likely Pathogenic-5.91Deleterious1.000Probably Damaging0.999Probably Damaging1.45Pathogenic0.00Affected-3-3-5.4-16.04
c.3633G>AM1211ILikely BenignCoiled-coilUncertain 16-33446625-G-A31.86e-6-1.537Likely Benign0.764Likely PathogenicLikely Benign0.298Likely Benign-0.42Neutral0.969Probably Damaging0.968Probably Damaging5.40Benign1.00Tolerated3.775122.6-18.03
c.3640C>TR1214WLikely PathogenicCoiled-coilUncertain 16-33446632-C-T21.24e-6-8.799Likely Pathogenic0.710Likely PathogenicLikely Benign0.143Likely Benign-4.95Deleterious1.000Probably Damaging0.983Probably Damaging2.45Pathogenic0.00Affected3.7752-33.630.03
c.3653A>TE1218VLikely PathogenicCoiled-coilUncertain 2-5.647Likely Benign0.936Likely PathogenicAmbiguous0.418Likely Benign-5.68Deleterious1.000Probably Damaging0.998Probably Damaging2.21Pathogenic0.00Affected3.775-2-27.7-29.98
c.3655T>CY1219HLikely PathogenicCoiled-coilUncertain 1-9.511Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.363Likely Benign-3.62Deleterious1.000Probably Damaging0.999Probably Damaging2.15Pathogenic0.00Affected3.77502-1.9-26.03
c.3686A>CQ1229PLikely PathogenicCoiled-coilUncertain 1-10.397Likely Pathogenic0.980Likely PathogenicLikely Pathogenic0.422Likely Benign-3.69Deleterious0.998Probably Damaging0.995Probably Damaging1.75Pathogenic0.12Tolerated3.7750-11.9-31.01
c.36C>GS12RLikely BenignUncertain 16-33420300-C-G42.59e-6-4.033Likely Benign0.500AmbiguousLikely Benign0.097Likely Benign-0.30Neutral0.000Benign0.000Benign4.09Benign0.00Affected4.3210-1-3.769.11
c.3705G>AM1235ILikely BenignCoiled-coilUncertain 1-4.312Likely Benign0.310Likely BenignLikely Benign0.027Likely Benign-1.44Neutral0.139Benign0.056Benign2.69Benign0.04Affected3.775122.6-18.03
c.3721C>AL1241MCoiled-coilUncertain 1-5.881Likely Benign0.782Likely PathogenicLikely Benign0.167Likely Benign-1.43Neutral1.000Probably Damaging0.999Probably Damaging1.65Pathogenic0.00Affected42-1.918.03
c.3731G>AS1244NLikely PathogenicCoiled-coilUncertain 1-9.008Likely Pathogenic0.751Likely PathogenicLikely Benign0.154Likely Benign-1.87Neutral0.997Probably Damaging0.992Probably Damaging2.10Pathogenic0.15Tolerated3.77511-2.727.03
c.373C>TP125SLikely BenignUncertain 1-3.769Likely Benign0.238Likely BenignLikely Benign0.121Likely Benign-3.57Deleterious0.580Possibly Damaging0.140Benign2.86Benign0.02Affected3.6151-10.8-10.04
c.3773A>GQ1258RLikely PathogenicCoiled-coilUncertain 1-10.971Likely Pathogenic0.931Likely PathogenicAmbiguous0.316Likely Benign-3.19Deleterious0.994Probably Damaging0.988Probably Damaging2.00Pathogenic0.00Affected11-1.028.06
c.3788T>CI1263TLikely PathogenicCoiled-coilUncertain 16-33446780-T-C21.24e-6-6.564Likely Benign0.962Likely PathogenicLikely Pathogenic0.529Likely Pathogenic-4.15Deleterious0.946Possibly Damaging0.673Possibly Damaging1.81Pathogenic0.00Affected3.7750-1-5.2-12.05
c.379C>TR127WUncertain 1-4.776Likely Benign0.806Likely PathogenicAmbiguous0.118Likely Benign-2.98Deleterious0.989Probably Damaging0.420Benign3.88Benign0.00Affected2-33.630.03
c.37A>GI13VLikely BenignUncertain 1-2.497Likely Benign0.105Likely BenignLikely Benign0.110Likely Benign0.01Neutral0.000Benign0.000Benign4.25Benign0.00Affected43-0.3-14.03
c.3806T>AV1269ELikely PathogenicCoiled-coilUncertain 1-11.418Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.403Likely Benign-5.05Deleterious0.999Probably Damaging0.995Probably Damaging2.09Pathogenic0.00Affected3.775-2-2-7.729.98
c.380G>AR127QLikely BenignUncertain 16-33432245-G-A63.72e-6-1.711Likely Benign0.320Likely BenignLikely Benign0.037Likely Benign-1.04Neutral0.006Benign0.001Benign4.04Benign0.02Affected3.744111.0-28.06
c.3820C>TR1274CUncertain 16-33447868-C-T-6.467Likely Benign0.439AmbiguousLikely Benign0.170Likely Benign-5.22Deleterious1.000Probably Damaging0.996Probably Damaging2.46Pathogenic0.00Affected3.775-4-37.0-53.05
c.3824G>AR1275QLikely BenignUncertain 16-33447872-G-A21.29e-6-4.928Likely Benign0.121Likely BenignLikely Benign0.103Likely Benign-1.72Neutral0.898Possibly Damaging0.147Benign2.59Benign0.03Affected3.775111.0-28.06
c.382C>AP128TLikely BenignUncertain 16-33432247-C-A16.20e-7-4.217Likely Benign0.267Likely BenignLikely Benign0.075Likely Benign-0.96Neutral0.952Possibly Damaging0.500Possibly Damaging4.19Benign0.35Tolerated3.744-100.93.99
c.3835G>AA1279TLikely BenignUncertain 26-33447883-G-A21.29e-6-4.871Likely Benign0.071Likely BenignLikely Benign0.178Likely Benign-0.30Neutral0.001Benign0.000Benign2.71Benign0.09Tolerated3.77510-2.530.03
c.3846G>CE1282DLikely BenignUncertain 16-33447894-G-C16.44e-7-3.879Likely Benign0.074Likely BenignLikely Benign0.104Likely Benign-1.26Neutral0.112Benign0.036Benign2.70Benign0.39Tolerated3.775320.0-14.03
c.3859C>AP1287TLikely BenignUncertain 16-33447907-C-A-3.940Likely Benign0.077Likely BenignLikely Benign0.044Likely Benign-0.22Neutral0.126Benign0.041Benign2.78Benign0.04Affected3.775-100.93.99
c.3862A>GK1288EUncertain 16-33447910-A-G53.22e-6-2.751Likely Benign0.407AmbiguousLikely Benign0.185Likely Benign-3.27Deleterious0.979Probably Damaging0.973Probably Damaging2.13Pathogenic0.00Affected3.775100.40.94
c.3902C>GP1301RLikely BenignUncertain 16-33451776-C-G159.30e-6-4.753Likely Benign0.162Likely BenignLikely Benign0.076Likely Benign-1.13Neutral0.077Benign0.059Benign2.81Benign0.10Tolerated3.7750-2-2.959.07
c.3906G>CL1302FUncertain 1-5.674Likely Benign0.148Likely BenignLikely Benign0.211Likely Benign-2.70Deleterious0.960Probably Damaging0.657Possibly Damaging1.53Pathogenic0.00Affected20-1.034.02
c.3907G>AG1303SLikely BenignUncertain 1-2.271Likely Benign0.125Likely BenignLikely Benign0.155Likely Benign-0.19Neutral0.649Possibly Damaging0.433Benign2.84Benign0.18Tolerated10-0.430.03
c.391G>CG131RUncertain 1-6.564Likely Benign0.983Likely PathogenicLikely Pathogenic0.099Likely Benign-3.82Deleterious0.983Probably Damaging0.656Possibly Damaging3.92Benign0.00Affected3.615-2-3-4.199.14
c.3920C>AP1307QLikely BenignUncertain 16-33451794-C-A-4.227Likely Benign0.114Likely BenignLikely Benign0.192Likely Benign-0.88Neutral0.988Probably Damaging0.765Possibly Damaging2.82Benign0.03Affected3.7750-1-1.931.01
c.3923G>AR1308HUncertain 16-33451797-G-A31.86e-6-3.586Likely Benign0.201Likely BenignLikely Benign0.319Likely Benign-3.12Deleterious0.998Probably Damaging0.991Probably Damaging2.33Pathogenic0.00Affected3.775201.3-19.05
c.3943T>CW1315RLikely BenignUncertain 10.205Likely Benign0.660Likely PathogenicLikely Benign0.114Likely Benign1.31Neutral0.000Benign0.001Benign4.37Benign0.91Tolerated3.7752-3-3.6-30.03
c.3956C>GA1319GLikely BenignUncertain 26-33451830-C-G-3.927Likely Benign0.084Likely BenignLikely Benign0.128Likely Benign-0.74Neutral0.819Possibly Damaging0.581Possibly Damaging4.07Benign0.06Tolerated3.77510-2.2-14.03
c.3958C>TP1320SLikely BenignUncertain 16-33451832-C-T21.28e-6-4.928Likely Benign0.073Likely BenignLikely Benign0.097Likely Benign-0.69Neutral0.980Probably Damaging0.968Probably Damaging4.25Benign0.00Affected3.7751-10.8-10.04
c.3961C>TP1321SLikely BenignUncertain 26-33451835-C-T106.46e-6-4.897Likely Benign0.077Likely BenignLikely Benign0.049Likely Benign0.68Neutral0.028Benign0.004Benign4.27Benign0.71Tolerated3.7751-10.8-10.0410.1016/j.ajhg.2020.11.011
c.3974C>TP1325LLikely BenignUncertain 16-33451848-C-T-5.256Likely Benign0.085Likely BenignLikely Benign0.146Likely Benign-1.05Neutral0.000Benign0.000Benign4.05Benign0.00Affected4.321-3-35.416.04
c.3977C>AP1326QLikely BenignUncertain 16-33451851-C-A16.40e-7-5.422Likely Benign0.128Likely BenignLikely Benign0.138Likely Benign-0.86Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.775-10-1.931.01
c.3977C>GP1326RLikely BenignUncertain 1-5.097Likely Benign0.240Likely BenignLikely Benign0.133Likely Benign-0.82Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.7750-2-2.959.07
c.3977C>TP1326LLikely BenignUncertain 1-5.541Likely Benign0.115Likely BenignLikely Benign0.117Likely Benign-1.06Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.775-3-35.416.04
c.3979C>TP1327SLikely BenignUncertain 16-33451853-C-T-4.744Likely Benign0.131Likely BenignLikely Benign0.092Likely Benign0.28Neutral0.980Probably Damaging0.857Possibly Damaging4.25Benign0.71Tolerated3.7751-10.8-10.04
c.3980C>TP1327LLikely BenignUncertain 16-33451854-C-T21.28e-6-5.264Likely Benign0.242Likely BenignLikely Benign0.142Likely Benign-1.24Neutral0.994Probably Damaging0.908Possibly Damaging4.12Benign0.10Tolerated3.775-3-35.416.04
c.3983G>AR1328QLikely BenignUncertain 36-33451857-G-A351.49e-4-2.921Likely Benign0.273Likely BenignLikely Benign0.043Likely Benign-1.02Neutral0.799Possibly Damaging0.098Benign4.12Benign0.03Affected3.775111.0-28.06
c.4000A>GN1334DUncertain 16-33451874-A-G-4.584Likely Benign0.674Likely PathogenicLikely Benign0.126Likely Benign-3.06Deleterious0.886Possibly Damaging0.522Possibly Damaging3.55Benign0.00Affected3.775120.00.98
c.401G>AS134NLikely BenignUncertain 1-5.534Likely Benign0.813Likely PathogenicAmbiguous0.075Likely Benign-1.62Neutral0.001Benign0.002Benign3.90Benign0.00Affected3.61511-2.727.03
c.4021G>TA1341SLikely BenignUncertain 16-33451895-G-T-2.867Likely Benign0.078Likely BenignLikely Benign0.099Likely Benign0.80Neutral0.000Benign0.001Benign4.40Benign1.00Tolerated3.77511-2.616.00
c.404G>AR135QUncertain 16-33432701-G-A53.84e-6-8.011Likely Pathogenic0.853Likely PathogenicAmbiguous0.087Likely Benign-1.94Neutral0.327Benign0.100Benign3.76Benign0.02Affected3.615111.0-28.06
c.406C>TR136WLikely PathogenicUncertain 2-10.453Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.237Likely Benign-4.71Deleterious0.965Probably Damaging0.416Benign3.45Benign0.00Affected3.6152-33.630.03
c.407G>CR136PLikely PathogenicUncertain 1-11.952Likely Pathogenic0.981Likely PathogenicLikely Pathogenic0.277Likely Benign-3.72Deleterious0.910Possibly Damaging0.578Possibly Damaging3.47Benign0.00Affected3.6150-22.9-59.07
c.416G>AS139NLikely BenignUncertain 16-33432713-G-A32.22e-6-4.584Likely Benign0.688Likely PathogenicLikely Benign0.109Likely Benign-0.75Neutral0.149Benign0.047Benign4.14Benign0.24Tolerated3.61511-2.727.03
c.431C>TT144MLikely PathogenicUncertain 26-33432728-C-T21.30e-6-11.228Likely Pathogenic0.922Likely PathogenicAmbiguous0.118Likely Benign-3.16Deleterious0.913Possibly Damaging0.333Benign3.73Benign0.00Affected3.615-1-12.630.09
c.43G>AA15TLikely BenignUncertain 16-33420307-G-A42.60e-6-3.720Likely Benign0.125Likely BenignLikely Benign0.086Likely Benign-0.08Neutral0.602Possibly Damaging0.017Benign4.16Benign0.00Affected4.32110-2.530.03
c.43G>CA15PLikely BenignUncertain 1-3.436Likely Benign0.097Likely BenignLikely Benign0.146Likely Benign-0.23Neutral0.880Possibly Damaging0.123Benign4.09Benign0.00Affected1-1-3.426.04
c.44C>TA15VLikely BenignUncertain 16-33420308-C-T16.49e-7-3.560Likely Benign0.161Likely BenignLikely Benign0.105Likely Benign0.20Neutral0.602Possibly Damaging0.015Benign4.19Benign0.00Affected4.321002.428.05
c.451G>CD151HLikely PathogenicUncertain 16-33432748-G-C21.26e-6-11.747Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.335Likely Benign-3.90Deleterious0.999Probably Damaging0.995Probably Damaging3.86Benign0.00Affected3.615-110.322.05
c.453C>AD151ELikely BenignUncertain 1-5.662Likely Benign0.886Likely PathogenicAmbiguous0.142Likely Benign-2.02Neutral0.984Probably Damaging0.967Probably Damaging3.99Benign0.11Tolerated3.615320.014.03
c.455G>AR152QUncertain 16-33432752-G-A53.14e-6-10.336Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.181Likely Benign-2.34Neutral0.997Probably Damaging0.968Probably Damaging3.89Benign0.00Affected3.615111.0-28.06
c.467T>GF156CLikely PathogenicUncertain 1-13.658Likely Pathogenic0.988Likely PathogenicLikely Pathogenic0.297Likely Benign-3.54Deleterious0.999Probably Damaging0.990Probably Damaging3.92Benign0.00Affected-4-2-0.3-44.04
c.470G>AR157HUncertain 16-33432767-G-A16.20e-7-10.235Likely Pathogenic0.604Likely PathogenicLikely Benign0.254Likely Benign-2.23Neutral0.999Probably Damaging0.987Probably Damaging3.80Benign0.00Affected3.744201.3-19.05
c.484C>GR162GLikely BenignUncertain 1-6.985Likely Benign0.664Likely PathogenicLikely Benign0.190Likely Benign-0.73Neutral0.487Possibly Damaging0.272Benign4.09Benign0.78Tolerated3.744-2-34.1-99.14
c.485G>AR162HUncertain 16-33432782-G-A21.24e-6-9.730Likely Pathogenic0.480AmbiguousLikely Benign0.167Likely Benign-1.13Neutral0.957Probably Damaging0.513Possibly Damaging4.03Benign0.12Tolerated3.744201.3-19.05
c.48G>AM16ILikely BenignUncertain 16-33420312-G-A16.49e-7-2.198Likely Benign0.722Likely PathogenicLikely Benign0.057Likely Benign-0.15Neutral0.000Benign0.000Benign4.28Benign0.00Affected4.321212.6-18.03
c.491G>AR164QUncertain 16-33432788-G-A21.24e-6-11.208Likely Pathogenic0.600Likely PathogenicLikely Benign0.184Likely Benign-1.86Neutral0.957Probably Damaging0.342Benign3.82Benign0.00Affected3.744111.0-28.06
c.505G>AD169NUncertain 1-10.713Likely Pathogenic0.761Likely PathogenicLikely Benign0.110Likely Benign-2.04Neutral0.079Benign0.052Benign4.07Benign0.01Affected3.744210.0-0.98
c.508C>TR170WLikely PathogenicUncertain 2-11.660Likely Pathogenic0.978Likely PathogenicLikely Pathogenic0.241Likely Benign-4.28Deleterious0.999Probably Damaging0.849Possibly Damaging3.84Benign0.00Affected3.7442-33.630.03
c.50C>TS17FLikely BenignUncertain 16-33420314-C-T106.49e-6-3.888Likely Benign0.637Likely PathogenicLikely Benign0.048Likely Benign-0.99Neutral0.486Possibly Damaging0.032Benign3.99Benign0.00Affected4.321-2-33.660.10
c.514C>TR172WLikely PathogenicUncertain 26-33435156-C-T95.58e-6-10.258Likely Pathogenic0.878Likely PathogenicAmbiguous0.228Likely Benign-3.61Deleterious0.997Probably Damaging0.803Possibly Damaging3.95Benign0.00Affected3.6152-33.630.03
c.515G>AR172QUncertain 16-33435157-G-A31.86e-6-7.245In-Between0.465AmbiguousLikely Benign0.135Likely Benign-1.72Neutral0.804Possibly Damaging0.091Benign4.04Benign0.04Affected3.615111.0-28.06
c.526A>CS176RLikely BenignUncertain 1-6.492Likely Benign0.987Likely PathogenicLikely Pathogenic0.247Likely Benign0.94Neutral0.718Possibly Damaging0.168Benign4.16Benign0.87Tolerated0-1-3.769.11
c.526A>GS176GUncertain 16-33435168-A-G16.20e-7-7.541In-Between0.360AmbiguousLikely Benign0.066Likely Benign-1.08Neutral0.131Benign0.039Benign4.08Benign0.22Tolerated3.546010.4-30.03
c.53A>GY18CLikely BenignUncertain 16-33420317-A-G442.88e-5-2.658Likely Benign0.251Likely BenignLikely Benign0.102Likely Benign-0.56Neutral0.872Possibly Damaging0.206Benign4.04Benign0.00Affected4.3210-23.8-60.04
c.558G>CL186FLikely PathogenicUncertain 1-11.861Likely Pathogenic0.993Likely PathogenicLikely Pathogenic0.132Likely Benign-3.03Deleterious0.009Benign0.012Benign3.50Benign0.00Affected20-1.034.02
c.597C>AN199K
(3D Viewer)
PHUncertain 1-8.198Likely Pathogenic0.686Likely PathogenicLikely Benign0.024Likely Benign-0.19Likely Benign0.10.03Likely Benign-0.08Likely Benign0.33Likely Benign-1.48Neutral0.276Benign0.083Benign4.27Benign0.13Tolerated3.47910-0.414.07207.821.5-0.11.50.10.0XUncertainAsn199, located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by a positively charged lysine. On the protein surface, both the carboxamide group of Asn199 and the amino group of Lys199 side chains can form hydrogen bonds with the backbone carbonyl groups of residues (e.g., Ala249) at the end of an α helix (res. Ala236-Lys251). However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.59C>GP20RLikely BenignUncertain 1-3.548Likely Benign0.434AmbiguousLikely Benign0.146Likely Benign-0.15Neutral0.972Probably Damaging0.804Possibly Damaging4.33Benign0.00Affected4.3210-2-2.959.07
c.59C>TP20LLikely BenignUncertain 3-3.289Likely Benign0.464AmbiguousLikely Benign0.100Likely Benign-0.44Neutral0.909Possibly Damaging0.713Possibly Damaging4.27Benign0.00Affected4.321-3-35.416.04
c.5G>AS2NLikely BenignUncertain 26-33420269-G-A31.96e-6-4.104Likely Benign0.207Likely BenignLikely Benign0.092Likely Benign-0.36Neutral0.000Benign0.000Benign4.06Benign0.00Affected4.32111-2.727.03
c.600G>CL200F
(3D Viewer)
PHUncertain 16-33435242-G-C21.24e-6-7.606In-Between0.592Likely PathogenicLikely Benign0.094Likely Benign1.00Ambiguous0.51.45Ambiguous1.23Ambiguous0.43Likely Benign-1.97Neutral0.997Probably Damaging0.916Probably Damaging4.02Benign0.17Tolerated3.46920-1.034.02250.4-15.10.60.20.50.0XUncertainLeu200, a hydrophobic residue located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by another hydrophobic residue, phenylalanine. Both the phenyl group of Phe200 and the branched iso-butyl hydrocarbon sidechain of Leu200 occupy an inward hydrophobic niche (e.g., Leu246, Val222, Phe231) during the simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.662A>GE221G
(3D Viewer)
Likely PathogenicPHUncertain 1-12.221Likely Pathogenic0.992Likely PathogenicLikely Pathogenic0.863Likely Pathogenic1.40Ambiguous0.11.74Ambiguous1.57Ambiguous0.71Ambiguous-5.56Deleterious0.596Possibly Damaging0.201Benign5.79Benign0.00Affected0-23.1-72.06
c.68A>GD23GLikely BenignUncertain 1-2.622Likely Benign0.684Likely PathogenicLikely Benign0.100Likely Benign-2.45Neutral0.805Possibly Damaging0.539Possibly Damaging3.50Benign0.00Affected1-13.1-58.04
c.70G>AV24ILikely BenignUncertain 16-33423479-G-A95.58e-6-3.701Likely Benign0.137Likely BenignLikely Benign0.069Likely Benign-0.25Neutral0.043Benign0.031Benign3.96Benign0.00Affected4.321340.314.03
c.718G>AD240NLikely PathogenicPHUncertain 1-12.942Likely Pathogenic0.755Likely PathogenicLikely Benign0.701Likely Pathogenic0.22Likely Benign0.90.47Likely Benign0.35Likely Benign0.37Likely Benign-4.37Deleterious0.993Probably Damaging0.984Probably Damaging5.88Benign0.01Affected210.0-0.98
c.719A>GD240GLikely PathogenicPHUncertain 1-12.825Likely Pathogenic0.951Likely PathogenicAmbiguous0.912Likely Pathogenic1.85Ambiguous0.12.72Destabilizing2.29Destabilizing0.24Likely Benign-6.19Deleterious0.993Probably Damaging0.984Probably Damaging5.79Benign0.01Affected1-13.1-58.04
c.73C>TR25WLikely BenignUncertain 26-33423482-C-T63.72e-6-5.133Likely Benign0.549AmbiguousLikely Benign0.158Likely Benign-1.60Neutral0.994Probably Damaging0.919Probably Damaging3.92Benign0.00Affected4.321-323.630.03
c.74G>AR25QLikely BenignUncertain 16-33423483-G-A159.29e-6-4.126Likely Benign0.212Likely BenignLikely Benign0.038Likely Benign-0.70Neutral0.829Possibly Damaging0.614Possibly Damaging4.01Benign0.00Affected4.321111.0-28.06
c.611C>GS204C
(3D Viewer)
Likely BenignPHUncertain 1-6.613Likely Benign0.127Likely BenignLikely Benign0.148Likely Benign0.65Ambiguous0.4-1.13Ambiguous-0.24Likely Benign0.10Likely Benign-0.64Neutral0.978Probably Damaging0.753Possibly Damaging4.13Benign0.05Affected3.44100-13.316.06223.6-13.80.60.30.00.2XUncertainThe hydroxyl-containing Ser204, located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by the thiol-containing cysteine. In the WT simulations, Ser204 simultaneously forms hydrogen bonds with the backbone carbonyl of Asp201 and the hydroxyl group of Thr224, helping to stabilize the two anti-parallel β strands (res. Ile205-Lys207 and Cys219-Thr223) at the end of the β sheet. Since the thiol group of cysteine forms weaker hydrogen bonds than the hydroxyl group of serine, Cys204 does not maintain the hydrogen bond network as stably as Ser204 in the variant simulations. However, because the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.667A>GT223A
(3D Viewer)
PHUncertain 16-33435518-A-G31.86e-6-7.076In-Between0.316Likely BenignLikely Benign0.574Likely Pathogenic0.30Likely Benign0.10.77Ambiguous0.54Ambiguous0.74Ambiguous-3.36Deleterious0.231Benign0.058Benign5.74Benign0.09Tolerated3.4113102.5-30.03186.444.00.00.00.00.0XXUncertainThe introduced residue Ala223 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr223 side chain in the WT protein, the methyl side chain of Ala223 cannot form hydrogen bonds with nearby residues Thr228 and Lys207. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and partially unfolds in the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.670A>GT224A
(3D Viewer)
PHUncertain 36-33435521-A-G21.24e-6-7.379In-Between0.651Likely PathogenicLikely Benign0.464Likely Benign0.33Likely Benign0.11.05Ambiguous0.69Ambiguous0.91Ambiguous-2.96Deleterious0.243Benign0.079Benign5.57Benign0.57Tolerated3.4113102.5-30.03169.041.4-0.51.1-0.40.0XXUncertainThe introduced residue Ala224 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr224 side chain in the WT model, the methyl side chain of Ala224 cannot form hydrogen bonds with nearby residues Ser204, Ser226, and Gly227. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and unfolds during the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.772C>TR258C
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437677-C-T16.20e-7-10.285Likely Pathogenic0.790Likely PathogenicAmbiguous0.771Likely Pathogenic1.17Ambiguous0.41.76Ambiguous1.47Ambiguous0.87Ambiguous-6.79Deleterious1.000Probably Damaging0.993Probably Damaging5.77Benign0.00Affected3.3915-3-47.0-53.05
c.791T>CL264P
(3D Viewer)
Likely PathogenicC2Uncertain 1-12.285Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.767Likely Pathogenic5.73Destabilizing0.36.57Destabilizing6.15Destabilizing2.65Destabilizing-6.43Deleterious1.000Probably Damaging0.999Probably Damaging0.49Pathogenic0.00Affected-3-3-5.4-16.04
c.82T>CS28PLikely BenignUncertain 1-3.309Likely Benign0.051Likely BenignLikely Benign0.047Likely Benign1.37Neutral0.000Benign0.000Benign4.53Benign0.00Affected4.3211-1-0.810.04
c.860A>CD287A
(3D Viewer)
Likely PathogenicC2Uncertain 1-14.686Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.484Likely Benign0.30Likely Benign0.1-0.04Likely Benign0.13Likely Benign0.40Likely Benign-7.35Deleterious1.000Probably Damaging0.998Probably Damaging1.58Pathogenic0.01Affected3.3823-205.3-44.01
c.700C>TR234W
(3D Viewer)
Likely PathogenicPHUncertain 16-33435551-C-T31.86e-6-12.625Likely Pathogenic0.947Likely PathogenicAmbiguous0.805Likely Pathogenic0.96Ambiguous0.30.69Ambiguous0.83Ambiguous0.13Likely Benign-5.52Deleterious0.997Probably Damaging0.803Possibly Damaging5.76Benign0.01Affected3.40142-33.630.03262.839.6-0.10.0-0.20.2XPotentially PathogenicThe guanidinium group of Arg234, located in a β-α loop between an anti-parallel β sheet strand (residues Gly227-Phe231) and an α helix (res. Ala236-Val250), forms a salt bridge with the carboxylate group of Glu238 in the α helix. Occasionally, it also bonds with the GAP domain residues Ser678 and Glu680. Thus, the positively charged Arg234 could contribute to the tertiary structure assembly between the PH and GAP domains. In contrast, the indole side chain of Trp234 in the variant is located on the protein surface in the variant simulations and is unable to form any interactions.
c.742C>TR248W
(3D Viewer)
Likely PathogenicPHUncertain 1-11.647Likely Pathogenic0.991Likely PathogenicLikely Pathogenic0.699Likely Pathogenic1.17Ambiguous0.3-0.20Likely Benign0.49Likely Benign0.89Ambiguous-6.98Deleterious1.000Probably Damaging0.948Probably Damaging5.62Benign0.00Affected3.41142-33.630.03266.442.30.00.00.30.1XPotentially PathogenicThe guanidinium group of Arg248, located on an α helix (res. Ala236-Val250), forms two very stable salt bridges with Asp255 (from a short α helical section, res. Lys254-Asn256) and Glu244 (from a nearby loop) in the WT simulations. In the variant simulations, the indole group of Trp248 cannot form any salt bridges, which could negatively affect the tertiary structure assembly of the PH domain. Instead, in the variant simulations, the indole ring of Trp248 stacks against Pro252, which makes a turn after the α helix.
c.862G>AD288N
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437767-G-A21.24e-6-10.535Likely Pathogenic0.521AmbiguousLikely Benign0.321Likely Benign-0.39Likely Benign0.10.01Likely Benign-0.19Likely Benign-0.03Likely Benign-3.73Deleterious0.999Probably Damaging0.997Probably Damaging1.78Pathogenic0.05Affected3.3823120.0-0.98
c.866T>CM289TLikely BenignC2Uncertain1-4.668Likely Benign0.238Likely BenignLikely Benign0.222Likely Benign0.73Ambiguous0.10.17Likely Benign0.45Likely Benign-0.01Likely Benign-0.47Neutral0.801Possibly Damaging0.315Benign1.83Pathogenic0.57Tolerated-1-1-2.6-30.09
c.86T>CM29TLikely BenignUncertain 1-2.167Likely Benign0.122Likely BenignLikely Benign0.199Likely Benign-0.37Neutral0.018Benign0.184Benign4.33Benign0.00Affected4.321-1-1-2.6-30.09
c.878G>AR293HLikely PathogenicC2Uncertain 1-13.009Likely Pathogenic0.973Likely PathogenicLikely Pathogenic0.438Likely Benign4.45Destabilizing2.32.12Destabilizing3.29Destabilizing0.32Likely Benign-4.60Deleterious1.000Probably Damaging0.998Probably Damaging1.45Pathogenic0.04Affected201.3-19.05
c.88C>TH30YLikely BenignUncertain 1-3.047Likely Benign0.115Likely BenignLikely Benign0.082Likely Benign-1.84Neutral0.273Benign0.478Possibly Damaging3.99Benign0.00Affected4.321021.926.03
c.910G>AD304N
(3D Viewer)
C2Uncertain 1-6.194Likely Benign0.391AmbiguousLikely Benign0.345Likely Benign0.30Likely Benign0.1-0.08Likely Benign0.11Likely Benign0.21Likely Benign-4.18Deleterious0.999Probably Damaging0.997Probably Damaging1.81Pathogenic0.03Affected3.3823120.0-0.98
c.745G>AA249T
(3D Viewer)
Likely BenignPHUncertain 1-3.564Likely Benign0.805Likely PathogenicAmbiguous0.487Likely Benign1.50Ambiguous0.61.39Ambiguous1.45Ambiguous0.30Likely Benign-0.96Neutral0.990Probably Damaging0.815Possibly Damaging5.65Benign0.40Tolerated3.391510-2.530.03214.5-43.30.00.00.50.2XPotentially BenignThe methyl group of Ala249, located on the surface of an α helix (res. Ala236-Val250) facing an anti-parallel β sheet strand (res. Ile205-Val209), packs against nearby hydrophobic residues such as Leu200, Leu246, and Val250. In the variant simulations, the hydroxyl group of Thr249, which is not suitable for hydrophobic packing, forms a stable hydrogen bond with the backbone carbonyl of Asn245 in the same helix. Although this interaction could theoretically weaken the structural integrity of the α helix, this destabilizing effect is not observed in the variant simulations.
c.762G>CK254N
(3D Viewer)
Likely PathogenicPHUncertain 1-13.306Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.757Likely Pathogenic0.73Ambiguous0.21.87Ambiguous1.30Ambiguous1.19Destabilizing-4.23Deleterious0.384Benign0.070Benign5.93Benign0.01Affected3.3915100.4-14.07215.3-21.0-1.01.70.20.3XPotentially PathogenicThe amino group of Lys254, located in an α-β loop connecting the PH and C2 domains (res. Lys251-Arg258), forms salt bridges with the carboxylate groups of Glu244 and Asp684. Since the neutral carboxamide group of the Asn254 side chain cannot form salt bridges with acidic residues, the residue swap potentially weakens the tertiary structure assembly and/or influences the loop positioning. Regardless, in both the variant and WT simulations, all hydrogen bonds formed by the residue’s side chain were broken, and the residue rotated outwards. The partially α helical conformation of the loop, which extends to a nearby α helix (res. Met414-Asn426), is dynamic, making it unclear if the mutation affects it.
c.775C>TR259W
(3D Viewer)
Likely PathogenicC2Uncertain 1-12.186Likely Pathogenic0.985Likely PathogenicLikely Pathogenic0.691Likely Pathogenic1.95Ambiguous0.80.51Ambiguous1.23Ambiguous0.51Ambiguous-7.35Deleterious1.000Probably Damaging0.993Probably Damaging5.76Benign0.00Affected3.39152-33.630.03254.040.00.20.20.20.4XXXPotentially PathogenicThe guanidinium group of Arg259, located at the beginning of an anti-parallel β sheet strand (res. Arg259-Arg272), forms salt bridges with the carboxylate groups of Asp684 at the end of an α helix (res. Ile683-Gln702, GAP domain) and Asp261 on the same β strand. The Arg259 side chain also frequently forms hydrogen bonds with the backbone carbonyl groups of Ser257, Asn256, and Asp255. In the variant simulations, the indole ring of the Trp259 side chain cannot form salt bridges or maintain hydrogen bonding with the carboxylate group of Asp684 or other nearby residues. Notably, the amino group of the Lys254 side chain maintains a salt bridge with Asp684 and Glu244 throughout the variant simulations, while it forms a cation-π bond with the indole ring of Trp259 in the variant. This salt bridge is not maintained in the WT simulations. Additionally, the partially or loosely α helical conformation of a lysine-containing loop (res. Lys251-Ser257), which extends to a nearby α helix (res. Met414-Asn426), could be stabilized due to the residue swap. Moreover, the bulky size of the Trp259 side chain requires nearby residues to adjust their positioning to accommodate the introduced residue, weakening the tertiary structure assembly between the C2, PH, and GAP domains. The residue swap potentially causes more severe effects during protein folding or for the SynGAP-membrane interaction than the solvent-only simulations imply.
c.791T>AL264Q
(3D Viewer)
Likely PathogenicC2Uncertain 1-15.729Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.678Likely Pathogenic3.43Destabilizing0.12.41Destabilizing2.92Destabilizing2.48Destabilizing-5.52Deleterious1.000Probably Damaging0.999Probably Damaging0.49Pathogenic0.00Affected3.3818-2-2-7.314.97254.7-7.60.00.00.00.3XXXPotentially PathogenicThe iso-butyl branched hydrocarbon side chain of Leu264, located at the end of an anti-parallel β sheet strand (res. Arg259-Arg272), packs against multiple hydrophobic residues such as Leu266, Phe314, Leu317, and Leu323 in the WT simulations. In the variant simulations, the hydrophilic carboxamide group of the Gln264 side chain is not suitable for the hydrophobic niche, causing the hydrophobic residues to make room for the swapped residue. Additionally, the carboxamide group of Gln264 forms hydrogen bonds with the backbone amide groups of Arg405 and Lys256 in the β sheet and the carbonyl group of Val350 in an α helical section of a nearby loop (res. Pro359-Phe358). The residue swap disrupts the packing of the C2 domain, which could adversely affect the C2 domain structure during folding. This disruption could potentially weaken the stability of the SynGAP-membrane association.
c.92G>AR31QLikely BenignUncertain 16-33423501-G-A74.34e-6-4.434Likely Benign0.136Likely BenignLikely Benign0.051Likely Benign-0.92Neutral0.829Possibly Damaging0.614Possibly Damaging4.01Benign0.00Affected4.321111.0-28.06
c.958G>AV320I
(3D Viewer)
Likely BenignC2Uncertain 1-5.220Likely Benign0.111Likely BenignLikely Benign0.027Likely Benign-0.27Likely Benign0.20.66Ambiguous0.20Likely Benign0.01Likely Benign-0.21Neutral0.198Benign0.114Benign1.77Pathogenic0.45Tolerated3.3823340.314.03
c.958G>CV320L
(3D Viewer)
C2Uncertain 16-33437863-G-C63.72e-6-6.207Likely Benign0.362AmbiguousLikely Benign0.096Likely Benign-0.26Likely Benign0.21.33Ambiguous0.54Ambiguous0.51Ambiguous-1.02Neutral0.900Possibly Damaging0.373Benign1.78Pathogenic0.92Tolerated3.382321-0.414.03245.8-10.20.30.90.10.3XPotentially BenignThe isopropyl side chain of Val310, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Thr305-Asn315, res. Ala322-Asp330), hydrophobically packs with the side chains of nearby residues (e.g., Leu286, Val350, Pro318). The hydrophobic Leu320 side chain mostly forms the same interactions; hence, the residue swap does not seem to negatively affect the protein structure based on the variant simulations.
c.815G>AR272Q
(3D Viewer)
C2Uncertain 26-33437720-G-A148.67e-6-9.559Likely Pathogenic0.286Likely BenignLikely Benign0.321Likely Benign0.73Ambiguous0.10.15Likely Benign0.44Likely Benign1.00Destabilizing-1.81Neutral0.999Probably Damaging0.994Probably Damaging1.88Pathogenic0.03Affected3.3819111.0-28.06255.752.90.00.0-0.20.1XUncertainThe guanidinium group of Arg272, located at the end of an anti-parallel β sheet strand (res. Arg259-Arg272), is stably maintained in an upright and outward position via stacking with the indole ring of the Trp362 side chain in another β strand (res. Thr359-Pro364). In the WT simulations, Arg272 forms hydrogen bonds with the glycine-rich Ω loop residues (res. Val365-Pro398, e.g., Gly380) and creates a salt bridge with the carboxylate group of the Asp304 side chain.In the variant simulations, the carboxamide group of the Gln272 side chain does not stack with the indole ring of Trp362 as stably as the guanidinium group of Arg272 in the WT. Consequently, the Gln272 side chain is freer to interact with the loop residues than Arg272, potentially negatively affecting the dynamic SynGAP-membrane association. Additionally, Arg272 faces the RasGTPase interface, so the residue swap could impact the SynGAP-Ras complex formation and GTPase activation.
c.821T>AL274Q
(3D Viewer)
Likely PathogenicC2Uncertain 1-15.518Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.774Likely Pathogenic2.54Destabilizing0.31.74Ambiguous2.14Destabilizing1.97Destabilizing-5.42Deleterious1.000Probably Damaging0.999Probably Damaging0.00Pathogenic0.00Affected3.3819-2-2-7.314.97245.91.80.00.00.10.2XXXPotentially PathogenicThe aliphatic side chain of Leu274, located in a β hairpin loop (res. Glu273-Lys278) connecting two anti-parallel β sheet strands, packs against multiple hydrophobic residues facing the β sheet (e.g., Ala271, Leu327, Tyr280, Val306). The hydrophilic carboxamide group of the Gln274 side chain is not suitable for this hydrophobic niche, causing nearby residues to adjust to make room for the hydrophilic glutamine. Additionally, a new hydrogen bond forms with the backbone carboxyl group of Arg272 in another β strand (res. Glu273-Arg259).As a result, the backbone amide group of Ala399 and the carbonyl group of Arg272, which connect two β strands at the β sheet end, form fewer hydrogen bonds in the variant than in the WT simulations. Although no major secondary structure disruption is observed in the variant simulations, the residue swap could profoundly affect the C2 domain folding, as the hydrophobic packing of Leu274 is crucial for maintaining the loop's contact with the rest of the C2 domain. Lastly, because the Leu274-containing loop faces the membrane surface, the residue swap could also negatively impact the SynGAP-membrane association.
c.971G>AR324Q
(3D Viewer)
Likely BenignC2Uncertain 36-33437876-G-A31.86e-6-5.001Likely Benign0.173Likely BenignLikely Benign0.307Likely Benign0.56Ambiguous0.10.63Ambiguous0.60Ambiguous1.02Destabilizing-1.17Neutral0.999Probably Damaging0.994Probably Damaging1.92Pathogenic0.41Tolerated3.3922111.0-28.06
c.835C>TR279W
(3D Viewer)
Likely PathogenicC2Uncertain 1-11.417Likely Pathogenic0.942Likely PathogenicAmbiguous0.485Likely Benign2.00Destabilizing0.81.47Ambiguous1.74Ambiguous0.80Ambiguous-6.29Deleterious1.000Probably Damaging0.998Probably Damaging1.88Pathogenic0.00Affected3.39182-33.630.03270.038.30.10.00.30.0UncertainThe guanidinium group of Arg279, located at the beginning of an anti-parallel β sheet strand (res. Arg279-Leu286), can form hydrogen bond with the backbone carbonyl groups of nearby loop residues (e.g., Ser296, Ser331, and As332) and form salt bridges with the carboxylate groups of Asp330 and Asp332. In the WT simulations, Arg279 sporadically forms a salt bridge even with the carboxylate group of Glu613, loosely connecting the C2 domain and GAP domain. Meanwhile, the indole ring of the Trp279 side chain is unable to hydrogen bond with the loop residues in the variant simulations. The lack of hydrogen bond or salt bridge formation with the loop residues could be significant, as Arg279 and the loops face the polar head group region of the membrane. Thus, although Trp279 could interact with the membrane surface as a “lipid anchor,” any changes to the wider loop dynamics could still adversely affect the formation of a stable SynGAP-membrane association. However, no definite conclusions on the effect of the residue swap on the SynGAP-membrane association can be drawn from solvent-only simulations.
c.844T>AC282S
(3D Viewer)
Likely PathogenicC2Uncertain 1-11.846Likely Pathogenic0.958Likely PathogenicLikely Pathogenic0.460Likely Benign1.55Ambiguous0.11.23Ambiguous1.39Ambiguous1.62Destabilizing-9.19Deleterious0.997Probably Damaging0.994Probably Damaging1.64Pathogenic0.03Affected3.39180-1-3.3-16.06233.214.8-0.10.0-0.20.3XPotentially BenignThe thiol-containing side chain of Cys282, located at the beginning of an anti-parallel β sheet strand (res. Arg279-Leu286), packs against multiple hydrophobic residues (e.g., Ile268, Leu284, Trp308, Leu327). In the variant simulations, the hydroxyl-containing side chain of Ser282 is more hydrophilic and, hence, not as favorable as Cys282 for this hydrophobic niche. Due to this polarity difference, the residue swap could potentially weaken the hydrophobic packing of the C2 domain during the folding process.Moreover, because the C2 domain interacts with the membrane, there could also be a negative effect on the stability of the SynGAP-membrane association. However, no large-scale structural changes were observed during the variant simulations. The hydroxyl group of Ser282 forms a hydrogen bond with the backbone carbonyl group of His326 in another β strand (res. Ala322-Arg329), which competes directly with the backbone amide group of Glu283 within the secondary structure element.
c.872A>GY291C
(3D Viewer)
Likely PathogenicC2Uncertain 1-8.997Likely Pathogenic0.967Likely PathogenicLikely Pathogenic0.505Likely Pathogenic2.90Destabilizing0.43.51Destabilizing3.21Destabilizing1.35Destabilizing-7.37Deleterious1.000Probably Damaging0.999Probably Damaging1.76Pathogenic0.01Affected3.38230-23.8-60.04205.266.10.10.0-0.40.4XXPotentially PathogenicThe phenol group of the Tyr291 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), packs against hydrophobic residues of the C2 and PH domains (e.g., Leu317, Leu286, Leu284, Pro208, Val209). The phenol ring of Tyr291 also forms favorable Met-aromatic stacking with the methyl group of Met289. In the variant simulation, the thiol group of the Cys291 side chain is not as suitable for the hydrophobic inter-domain space as the phenol ring of Tyr291. Consequently, the structural unity of the PH domain is weakened and ultimately unfolds in the second simulation. Moreover, the residue swap might result in severe detrimental effects on the C2 domain structure and the C2-PH domain tertiary structure assembly during folding.
c.877C>TR293C
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437782-C-T31.86e-6-12.844Likely Pathogenic0.985Likely PathogenicLikely Pathogenic0.579Likely Pathogenic1.38Ambiguous0.10.62Ambiguous1.00Ambiguous0.02Likely Benign-7.35Deleterious1.000Probably Damaging0.998Probably Damaging1.46Pathogenic0.00Affected3.3823-4-37.0-53.05226.096.50.00.00.10.1XXXPotentially PathogenicThe guanidinium group of the Arg293 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), packs against the phenol ring of the Tyr281 side chain or forms a salt bridge with the carboxylate group of Glu283 on the outer side of the C2 domain. The positively charged guanidinium side chain of arginine is on the outside surface of the hydrophobic C2 domain, resulting in a twist in the β strand. Although this twist is maintained in the variant simulations, replacing the positively charged residue with a more hydrophobic one, such as cysteine, could remove the twist during protein folding.Because Arg293 is positioned at the C2 and PH domain interface, the residue swap could significantly impact the tertiary structure assembly. Notably, Arg293 is located at the SynGAP-Ras interface, and its role in complex formation cannot be fully understood through solvent-only simulations.
c.886T>GS296A
(3D Viewer)
Likely BenignC2Uncertain 1-6.847Likely Benign0.247Likely BenignLikely Benign0.209Likely Benign0.50Ambiguous0.3-0.26Likely Benign0.12Likely Benign0.35Likely Benign-1.79Neutral0.992Probably Damaging0.987Probably Damaging1.97Pathogenic0.65Tolerated3.4016112.6-16.00182.526.6-0.20.1-0.50.0XPotentially PathogenicThe hydroxyl group of the Ser296 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), stably hydrogen bonds with the carboxylate group of Asp330 in a neighboring β strand (res. Ala322-Asp332). The backbone carbonyl group of Ser296 also hydrogen bonds with the guanidinium group of Arg279 in another nearby β strand (res. Arg279-Cys285). In the variant simulations, the methyl group of the Ala296 side chain cannot hydrogen bond with Asp330, causing the carboxylate group positioning to fluctuate more than in the WT simulations.Although the residue swap does not seem to affect the anti-parallel β sheet assembly during the simulations, it is possible that the Ser296-Asp330 hydrogen bond plays a crucial role in maintaining the C2 domain fold. Notably, because Ser296 is located near the membrane interface, the potential effect of the residue swap on the SynGAP-membrane association cannot be addressed by solvent-only simulations.
c.899C>TS300F
(3D Viewer)
Likely PathogenicC2Uncertain 1-10.222Likely Pathogenic0.353AmbiguousLikely Benign0.117Likely Benign-0.29Likely Benign0.40.16Likely Benign-0.07Likely Benign0.04Likely Benign-2.66Deleterious0.975Probably Damaging0.596Possibly Damaging1.52Pathogenic0.01Affected3.4719-3-23.660.10233.6-67.6-0.10.00.40.2XXPotentially PathogenicThe hydroxyl group of the Ser300 side chain, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), hydrogen bonds with the guanidinium group of Arg299 and the backbone amide group and side chain of Ser302. Thus, in the WT simulations, it contributes to the β hairpin stability. In the variant simulations, the phenol ring of Phe300 cannot form any side chain-related hydrogen bonds, and Arg299 is moved away from its central hairpin loop position.β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Due to its location near the membrane surface, the residue swap could also affect the C2 loop dynamics and SynGAP-membrane association. However, this is beyond the scope of the solvent-only simulations to unravel.
c.901G>AA301T
(3D Viewer)
Likely BenignC2Uncertain 56-33437806-G-A21.24e-6-3.448Likely Benign0.070Likely BenignLikely Benign0.150Likely Benign0.36Likely Benign0.2-0.33Likely Benign0.02Likely Benign0.03Likely Benign-0.25Neutral0.997Probably Damaging0.989Probably Damaging4.15Benign0.22Tolerated4.321410-2.530.03219.8-42.8-0.10.0-0.50.2UncertainThe methyl group of Ala301, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), points outward from the β hairpin loop, and its backbone atoms do not participate in the loop formation in the WT simulations. In the variant simulations, the hydroxyl group of the Thr301 side chain also mostly points outward; however, the guanidinium group of Arg299 is moved away from its central hairpin loop position.β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Due to its location near the membrane surface, the residue swap could also affect the C2 loop dynamics and SynGAP-membrane association. However, this is beyond the scope of the solvent-only simulations to unravel.
c.917T>AV306D
(3D Viewer)
Likely PathogenicC2Uncertain 1-18.289Likely Pathogenic0.986Likely PathogenicLikely Pathogenic0.530Likely Pathogenic4.40Destabilizing0.34.29Destabilizing4.35Destabilizing2.44Destabilizing-5.44Deleterious1.000Probably Damaging0.999Probably Damaging1.74Pathogenic0.00Affected3.3819-2-3-7.715.96212.3-18.3-0.20.40.00.2XXXPotentially PathogenicThe isopropyl group of Val396, located at the beginning of an anti-parallel β sheet strand (res. Thr305-Asn315), packs against multiple hydrophobic residues (e.g., Leu274, Trp308, Ala271) in the WT simulations. However, in the variant simulations, the negatively charged carboxylate group of the Asp306 side chain is not suitable for this hydrophobic niche. Consequently, the side chain moves out to interact with Ser300 in the β strand (res. Met289-Arg299) and the guanidinium group of Arg299 in the β hairpin loop.In the third simulation, the residue swap disrupts the C2 domain secondary structure and tertiary assembly to a large degree when the amino group of the Lys297 side chain rotates to form a salt bridge with Asp306. This drastic effect could potentially reflect the challenge presented by the residue swap during the C2 domain folding. Because the residue swap affects the C2 domain structure, the SynGAP-membrane association could also be impacted. However, this is beyond the scope of the solvent-only simulations to unravel.
c.953C>TP318L
(3D Viewer)
Likely PathogenicC2Uncertain 36-33437858-C-T31.86e-6-10.090Likely Pathogenic0.958Likely PathogenicLikely Pathogenic0.624Likely Pathogenic1.33Ambiguous0.10.26Likely Benign0.80Ambiguous0.43Likely Benign-8.96Deleterious1.000Probably Damaging0.999Probably Damaging1.82Pathogenic0.03Affected3.3823-3-35.416.04228.6-68.9-0.70.7-0.40.1XPotentially BenignThe cyclic five-membered pyrrolidine ring of Pro318, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Asp330-Ala322, res. Thr305-Asn315), packs against the hydrophobic side chain of Ile205 at the end of the anti-parallel β sheet in the PH domain. In the variant simulations, the iso-butyl side chain of Leu318 is unable to do the same, potentially weakening the PH and C2 domain association. Importantly, the residue swap could also affect loop formation during folding, as proline can make tighter turns than leucine. Because the residue swap could affect the C2 domain stability, it could also negatively impact the SynGAP-membrane association.
c.962G>AR321H
(3D Viewer)
C2Uncertain 16-33437867-G-A84.96e-6-8.751Likely Pathogenic0.136Likely BenignLikely Benign0.323Likely Benign0.48Likely Benign0.1-0.36Likely Benign0.06Likely Benign0.59Ambiguous-1.43Neutral1.000Probably Damaging0.998Probably Damaging1.92Pathogenic0.25Tolerated3.3823201.3-19.05218.586.91.10.00.30.0XPotentially BenignThe guanidinium group of Arg321, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Thr305-Asn315, res. Ala322-Asp330), faces outward without forming any stable interactions in the WT simulations. Similarly, in the variant simulations, the imidazole ring of His321 also points outward without making any stable intra-protein interactions. Thus, the residue swap does not seem to cause adverse effects on the protein structure based on the simulations. However, β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant.
c.968T>CL323P
(3D Viewer)
Likely PathogenicC2Uncertain 1-12.507Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.762Likely Pathogenic3.39Destabilizing0.68.46Destabilizing5.93Destabilizing2.20Destabilizing-4.80Deleterious0.999Probably Damaging0.977Probably Damaging0.59Pathogenic0.01Affected4.29398-3-3-5.4-16.04201.968.20.00.10.60.3XPotentially PathogenicThe iso-butyl side chain of Leu323, located at the beginning of an anti-parallel β sheet strand (res. Ala322-Asp330), packs against multiple hydrophobic leucine residues (e.g., Leu264, Leu266, Leu284, Leu286). In contrast, in the variant simulations, the less bulky cyclic five-membered pyrrolidine ring of Pro323 cannot fill the hydrophobic space as effectively as the branched hydrocarbon side chain of leucine. Notably, the backbone amide group of Leu323 forms a hydrogen bond with the backbone carbonyl group of Cys285. Pro323 cannot form this bond due to the absence of the backbone amide group, resulting in partial unfolding of the anti-parallel β sheet end in the variant simulations.
c.970C>TR324W
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437875-C-T21.24e-6-12.906Likely Pathogenic0.694Likely PathogenicLikely Benign0.481Likely Benign1.49Ambiguous0.30.56Ambiguous1.03Ambiguous0.66Ambiguous-3.12Deleterious1.000Probably Damaging0.998Probably Damaging1.82Pathogenic0.16Tolerated3.39222-33.630.03256.639.10.00.10.30.2XPotentially PathogenicThe guanidinium group of Arg324, located at the end of an anti-parallel β sheet strand (res. Ala322-Asp330), faces outward and frequently forms a salt bridge with the carboxylate group of the Asp288 side chain, which is part of a β strand end (res. Met289-Pro298). In the variant simulations, the indole ring of the Trp324 side chain cannot maintain a similar interaction with the negatively charged carboxylate side chain of Asp288, potentially compromising the folding of the anti-parallel β sheet assembly. However, the residue swap does not appear to negatively impact the protein structure or its integrity based on the simulations.
c.986G>AR329H
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437891-G-A21.24e-6-10.154Likely Pathogenic0.769Likely PathogenicLikely Benign0.155Likely Benign2.53Destabilizing0.70.71Ambiguous1.62Ambiguous0.82Ambiguous-3.17Deleterious0.995Probably Damaging0.778Possibly Damaging4.04Benign0.05Affected3.4115201.3-19.05220.481.40.10.10.20.3UncertainThe guanidinium group of Arg329, located at the end of an anti-parallel β sheet strand (res. Ala322-Asp330), faces the negatively charged lipid bilayer surface. While the residue swap does not cause any apparent negative effects on the protein structure in the variant simulations, it could adversely affect the SynGAP-membrane association in reality. The positively charged Arg329 side chain forms hydrogen bonds with other loop residues (e.g., Ser371, Asp338) that are expected to dynamically interact with the membrane head group region. However, this phenomenon is beyond the scope of the solvent-only simulations to unravel. Notably, histidine can also be double protonated and positively charged, but this alternative protonation state was not considered in the variant simulations.
c.1714T>CW572R
(3D Viewer)
Likely PathogenicGAPNot provided1-17.511Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.894Likely Pathogenic4.84Destabilizing0.16.19Destabilizing5.52Destabilizing1.79Destabilizing-12.81Deleterious-1.25Pathogenic0.00Affected3.37352-3-3.6-30.03312.6-37.60.00.0-1.00.0XXPotentially PathogenicThe indole ring of Trp572, located in an α-helix (res. Arg563-Glu578), lies in a hydrophobic inter-helix space, where it makes extensive hydrophobic interactions with nearby residues such as Met470, Phe569, Leu588, and Ile589. The guanidinium group of Arg572 is similarly sized to the tryptophan it replaced; however, it is also positively charged. In the variant simulations, Arg572 forms hydrogen bonds with other residues in the inter-helix space, such as Ser592 and the backbone carbonyl atom of Leu465. Additionally, Arg572 hydrophobically packs its carbon chain with surrounding residues such as Phe569 and Ile589.However, the introduced residue arginine is too hydrophilic and charged for the hydrophobic space, disrupting the hydrophobic packing of the inter-helix space. Indeed, in the second simulation, Arg572 successfully escapes the hydrophobic niche completely, causing the whole protein to partially unfold.Overall, the residue swap is highly likely to cause critical protein folding problems, as evidenced by the effects seen in the variant simulations.

Found 757 rows. Show 200 rows per page. Page 4/4 |