SynGap Missense Server

Table of SynGAP1 Isoform α2 (UniProt Q96PV0-1) Missense Variants.

c.dna Variant SGM Consensus Domain ClinVar gnomAD ESM1b AlphaMissense REVEL FoldX Rosetta Foldetta PremPS PROVEAN PolyPhen-2 HumDiv PolyPhen-2 HumVar FATHMM SIFT PAM Physical SASA Normalized B-factor backbone Normalized B-factor sidechain SynGAP Structural Annotation DOI
Clinical Status Review Subm. ID Allele count Allele freq. LLR score Prediction Pathogenicity Class Optimized Score Prediction Average ΔΔG Prediction StdDev ΔΔG Prediction ΔΔG Prediction ΔΔG Prediction Score Prediction pph2_prob Prediction pph2_prob Prediction Nervous System Score Prediction Prediction Status Conservation Sequences PAM250 PAM120 Hydropathy Δ MW Δ Average Δ Δ StdDev Δ StdDev Secondary Tertiary bonds Inside out GAP-Ras interface At membrane No effect MD Alert Verdict Description
c.1408A>CM470L
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33438440-A-C16.20e-7-8.993Likely Pathogenic0.406AmbiguousLikely Benign0.678Likely Pathogenic0.73Ambiguous0.10.84Ambiguous0.79Ambiguous1.04Destabilizing-2.72Deleterious0.484Possibly Damaging0.654Possibly Damaging-1.22Pathogenic0.16Tolerated3.3734421.9-18.03225.317.90.00.0-0.80.5XPotentially BenignThe thioether group of Met470, located in the middle of an α helix (res. Ala461–Phe476), interacts with hydrophobic residues in the inter-helix space (e.g., Val473, Leu558) formed by two other α helices (res. Ser604–Arg581, res. Pro562–Arg579). In the WT simulations, Met470 also packs against the positively charged guanidinium groups of Arg575, Arg429, and Arg579, which form salt bridges with the negatively charged carboxylate groups of the Asp474 and Asp467 side chains at the protein surface. In the variant simulations, the iso-butyl side chain of Leu470 packs similarly with the hydrophobic residues as methionine, resulting in no negative effects on the protein structure during the simulation.
c.1712C>TS571L
(3D Viewer)
Likely PathogenicGAPUncertain 16-33440764-C-T16.23e-7-11.651Likely Pathogenic0.660Likely PathogenicLikely Benign0.841Likely Pathogenic-1.53Ambiguous0.1-1.05Ambiguous-1.29Ambiguous0.27Likely Benign-5.61Deleterious1.000Probably Damaging0.996Probably Damaging-1.25Pathogenic0.04Affected3.3735-2-34.626.08
c.1423C>TR475W
(3D Viewer)
Likely PathogenicGAPUncertain 16-33438455-C-T16.20e-7-13.235Likely Pathogenic0.962Likely PathogenicLikely Pathogenic0.725Likely Pathogenic1.44Ambiguous0.4-0.92Ambiguous0.26Likely Benign0.56Ambiguous-7.56Deleterious1.000Probably Damaging0.995Probably Damaging-1.45Pathogenic0.00Affected3.39282-33.630.03266.939.60.00.00.00.1XXXPotentially PathogenicIn the WT simulations, the guanidinium group of Arg475, located near the end of an α-helix (res. Ala461-Phe476), stacks with the phenyl ring of Phe476 and forms a salt bridge with Glu472. Additionally, Arg475 occasionally forms another salt bridge with the carboxylate group of Glu486 on the α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. Therefore, Arg475 potentially plays a key role in positioning the loop by interacting with Glu486, which is necessary for the positioning of the “arginine finger” (Arg485) and, ultimately, for RasGTPase activation.In the variant simulations, Trp475 moves and stacks with Arg479 on the proceeding α-α loop, disrupting the terminal end of the α-helix. Lastly, the potential effect of the residue swap on the SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.1738G>AG580S
(3D Viewer)
Likely PathogenicGAPUncertain 16-33440790-G-A16.20e-7-10.788Likely Pathogenic0.861Likely PathogenicAmbiguous0.644Likely Pathogenic2.84Destabilizing0.20.59Ambiguous1.72Ambiguous0.87Ambiguous-5.73Deleterious1.000Probably Damaging0.999Probably Damaging-1.23Pathogenic0.07Tolerated3.373410-0.430.03233.9-49.30.80.00.60.1XPotentially BenignGly580 is located on the outer surface in a short α-α loop turn connecting two α-helices (res. Arg563-Glu578, res. Glu582-Phe608) in the WT simulations. In the variant simulations, the side chain of Ser580 faces outward, and its hydroxyl group does not make any new or additional interactions compared to Gly580 in the WT simulations that could affect the protein structure.
c.1465C>TL489F
(3D Viewer)
Likely PathogenicGAPUncertain 26-33438497-C-T16.20e-7-12.066Likely Pathogenic0.965Likely PathogenicLikely Pathogenic0.724Likely Pathogenic1.72Ambiguous0.51.14Ambiguous1.43Ambiguous0.56Ambiguous-3.76Deleterious1.000Probably Damaging0.997Probably Damaging-1.51Pathogenic0.01Affected3.373520-1.034.02246.4-17.80.00.00.60.1XPotentially BenignThe iso-butyl side chain of Leu489, located in the α-helix (res. Leu489-Glu519) within an inter-helix space of four helices (res. Ala461-Phe476, res. Val441-Ser457, and res. Met414-Glu436), packs with hydrophobic residues (e.g., Cys432, Ala448, Lys444, Ala493, Val447, Met468) in the inter-helix space. In the variant simulations, the phenyl ring of the Phe489 side chain can also pack favorably in the hydrophobic region. However, due to the size difference, the aromatic side chain of Phe489 tends to reposition to escape the tight region to accommodate the larger side chain, stacking with Lys444. Although no apparent negative changes are observed during the variant simulation, the size difference between the swapped residues could affect the protein folding process.
c.1832T>CM611T
(3D Viewer)
Likely BenignGAPUncertain 16-33440884-T-C16.19e-7-5.696Likely Benign0.101Likely BenignLikely Benign0.240Likely Benign1.98Ambiguous0.20.94Ambiguous1.46Ambiguous0.87Ambiguous-2.40Neutral0.034Benign0.038Benign-1.19Pathogenic0.29Tolerated3.3735-1-1-2.6-30.09
c.1918A>TT640S
(3D Viewer)
Likely BenignGAPBenign 16-33441177-A-T16.20e-7-2.371Likely Benign0.062Likely BenignLikely Benign0.088Likely Benign-0.78Ambiguous0.10.43Likely Benign-0.18Likely Benign-0.30Likely Benign0.92Neutral0.000Benign0.001Benign3.60Benign0.33Tolerated3.373011-0.1-14.03
c.194A>GH65RLikely BenignUncertain 16-33425802-A-G16.20e-7-1.980Likely Benign0.967Likely PathogenicLikely Pathogenic0.073Likely Benign-1.60Neutral0.462Possibly Damaging0.227Benign4.19Benign0.00Affected4.32120-1.319.05
c.2113A>CK705Q
(3D Viewer)
Likely BenignGAPUncertain 16-33441372-A-C16.20e-7-5.787Likely Benign0.436AmbiguousLikely Benign0.142Likely Benign-0.10Likely Benign0.00.33Likely Benign0.12Likely Benign-0.02Likely Benign-0.24Neutral0.997Probably Damaging0.969Probably Damaging3.42Benign0.78Tolerated3.4710110.4-0.04
c.2131C>GL711V
(3D Viewer)
Likely PathogenicGAPUncertain16-33441596-C-G16.20e-7-10.045Likely Pathogenic0.709Likely PathogenicLikely Benign0.170Likely Benign3.48Destabilizing0.12.22Destabilizing2.85Destabilizing1.40Destabilizing-2.59Deleterious0.992Probably Damaging0.970Probably Damaging3.34Benign0.00Affected3.509120.4-14.03
c.2214T>GS738RLikely BenignBenign 16-33441679-T-G16.20e-7-4.241Likely Benign0.570Likely PathogenicLikely Benign0.068Likely Benign-1.55Neutral0.473Possibly Damaging0.193Benign2.69Benign0.01Affected4.3220-1-3.769.11
c.1730C>GA577G
(3D Viewer)
Likely BenignGAPBenign/Likely benign 26-33440782-C-G16.20e-7-5.717Likely Benign0.268Likely BenignLikely Benign0.443Likely Benign0.83Ambiguous0.01.02Ambiguous0.93Ambiguous0.86Ambiguous-1.84Neutral0.997Probably Damaging0.990Probably Damaging-1.31Pathogenic0.31Tolerated3.373410-2.2-14.03158.723.60.00.00.00.0XPotentially BenignAla577 is located near the end and outer surface of an α-helix (res. Arg563-Glu578), where its methyl group does not form any particular interactions in the WT simulations. The introduced residue, glycine, is known as an “α-helix breaker.” However, the residue swap caused only minor helix shortening in one of the replica simulations for the variant system. Regardless, the residue swap seems to be well tolerated based on the variant simulations.
c.1752C>GI584M
(3D Viewer)
Likely PathogenicGAPUncertain 26-33440804-C-G16.20e-7-10.119Likely Pathogenic0.419AmbiguousLikely Benign0.478Likely Benign0.11Likely Benign0.10.46Likely Benign0.29Likely Benign1.16Destabilizing-2.62Deleterious0.983Probably Damaging0.925Probably Damaging-1.25Pathogenic0.12Tolerated3.373421-2.618.03247.5-20.3-0.10.3-0.10.1XPotentially BenignA hydrophobic residue, Ile584, located in an α helix (res. Glu582-Met603), is swapped for another hydrophobic residue, Met584. The sec-butyl hydrocarbon side chain of Ile584 packs hydrophobically with residues in an inter-helix hydrophobic space (e.g., Leu588, Met477, Val473, and Ile483).In the variant simulations, the thioether hydrophobic side chain of Met584 maintains similar interactions as Ile584 in the WT, as it is roughly the same size and fits well within the hydrophobic space. Thus, the residue swap does not appear to cause any negative effects on the protein structure.
c.2277G>AM759ILikely BenignUncertain 16-33441742-G-A16.20e-7-4.058Likely Benign0.393AmbiguousLikely Benign0.075Likely Benign-0.88Neutral0.454Possibly Damaging0.192Benign2.83Benign0.34Tolerated3.995122.6-18.03
c.2282G>CR761PLikely BenignUncertain 36-33441747-G-C16.20e-7-5.091Likely Benign0.640Likely PathogenicLikely Benign0.201Likely Benign-1.89Neutral0.999Probably Damaging0.968Probably Damaging2.69Benign0.38Tolerated3.9950-22.9-59.07
c.2405G>AG802DLikely BenignSH3-binding motifUncertain 16-33442957-G-A16.20e-7-5.083Likely Benign0.476AmbiguousLikely Benign0.153Likely Benign-0.38Neutral0.126Benign0.138Benign2.72Benign0.09Tolerated3.7751-1-3.158.04
c.2420A>GY807CSH3-binding motifUncertain 16-33442972-A-G16.20e-7-7.228In-Between0.204Likely BenignLikely Benign0.243Likely Benign-3.89Deleterious0.997Probably Damaging0.934Probably Damaging2.42Pathogenic0.01Affected3.7750-23.8-60.04
c.2434C>TP812SLikely BenignSH3-binding motifUncertain 16-33442986-C-T16.20e-7-5.689Likely Benign0.456AmbiguousLikely Benign0.162Likely Benign-0.62Neutral0.999Probably Damaging0.966Probably Damaging2.89Benign0.95Tolerated4.3241-10.8-10.04
c.1966G>CE656Q
(3D Viewer)
GAPUncertain 16-33441225-G-C16.20e-7-9.145Likely Pathogenic0.766Likely PathogenicLikely Benign0.249Likely Benign-0.14Likely Benign0.0-0.81Ambiguous-0.48Likely Benign0.25Likely Benign-2.29Neutral0.980Probably Damaging0.528Possibly Damaging3.46Benign0.02Affected3.3924220.0-0.98224.31.70.00.10.10.0XPotentially BenignThe carboxylate side chain of Glu656, located on an α helix (res. Ser641-Glu666), frequently forms a hydrogen bond with the nearby residue Ser659 on the same α helix. In the variant simulations, the carboxamide side chain of Gln656 alternatively forms a hydrogen bond with either Ser659 or Glu548 on an opposing helix (res. Ala533-Val560).Although the frequent interaction between Gln656 and Glu548 may strengthen or stabilize the tertiary structure assembly, the effect is likely to be marginal.
c.1991T>CL664S
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33441250-T-C16.20e-7-16.498Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.543Likely Pathogenic3.75Destabilizing0.23.63Destabilizing3.69Destabilizing2.77Destabilizing-5.99Deleterious1.000Probably Damaging0.996Probably Damaging2.85Benign0.00Affected3.3828-3-2-4.6-26.08215.550.10.00.0-0.20.2XPotentially BenignThe iso-butyl side chain of L664, located on an α-helix (res. Ser641-Glu666), hydrophobically interacts with residues in the inter-helix space between three helices (res. Glu617-Asn635, res. Glu582-Met603, and res. Ser641-Glu666), such as Ile589, Phe663, and Met660. In the variant simulations, the hydroxyl group of Ser664 forms hydrogen bonds with the backbone carbonyl oxygen of another helix residue, such as Met660 or Gln661. This interaction is known to destabilize hydrogen bonding in the α-helix, but this effect was not observed in the simulations. Additionally, Ser664 occasionally forms hydrogen bonds with the carboxylate group of Asp586 on another α-helix (res. Glu582-Met603), which could minimally influence the tertiary structure assembly. Despite these interactions, no major negative effects on the protein structure were observed during the simulations.
c.2474C>TS825LLikely PathogenicUncertain 16-33443026-C-T16.20e-7-4.987Likely Benign0.910Likely PathogenicAmbiguous0.249Likely Benign-4.30Deleterious0.999Probably Damaging0.994Probably Damaging1.94Pathogenic0.01Affected3.775-2-34.626.08
c.2493G>CE831DLikely BenignUncertain 16-33443045-G-C16.19e-7-3.055Likely Benign0.063Likely BenignLikely Benign0.073Likely Benign1.23Neutral0.002Benign0.002Benign2.64Benign0.77Tolerated3.775320.0-14.03
c.2089T>CW697R
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33441348-T-C16.20e-7-10.020Likely Pathogenic0.941Likely PathogenicAmbiguous0.401Likely Benign1.14Ambiguous0.11.18Ambiguous1.16Ambiguous1.25Destabilizing-9.50Deleterious1.000Probably Damaging0.994Probably Damaging3.45Benign0.02Affected3.46132-3-3.6-30.03254.4-41.20.00.0-0.70.0XPotentially BenignThe indole ring of Trp697, located on the outer surface of an α-helix (res. Leu685-Val699), is not involved in any long-lasting interactions in the WT simulations. In the variant simulations, the positively charged guanidinium side chain of Arg697 occasionally forms hydrogen bonds with nearby residues, such as Ser722 and Asn719. However, similar to Trp697 in the WT, Arg697 does not form any long-lasting interactions and thus does not induce any negative structural effects in the simulations.
c.2143C>TP715S
(3D Viewer)
GAPLikely Pathogenic 16-33441608-C-T16.20e-7-7.635In-Between0.787Likely PathogenicAmbiguous0.277Likely Benign3.54Destabilizing0.00.81Ambiguous2.18Destabilizing0.94Ambiguous-7.17Deleterious1.000Probably Damaging0.998Probably Damaging3.43Benign0.01Affected3.5091-10.8-10.04231.8-14.0-0.10.0-0.80.1XUncertainPro715, along with Gly712 and Pro713, are located in a hinge region of an α-helix making a ~90-degree turn (res. Lys705-Leu725). In the WT simulations, the pyrrolidine side chain of Pro715, lacking the backbone amide groups altogether, forces the tight helix turn to take place while also hydrophobically packing with nearby residues (e.g., Leu700, Leu708, Leu714, and Leu718). Leu715, with a normal amide backbone, could potentially affect protein folding and turn formation, although this was not observed in the variant simulations. Additionally, the hydroxyl group of the Ser715 side chain can form hydrogen bonds with the backbone carbonyl group of Gly712 and disrupt the hydrophobic packing arrangement of the leucine residues from the neighboring α-helices, impacting the GAP domain tertiary assembly.
c.2596G>TV866LLikely BenignUncertain 16-33443148-G-T16.20e-7-3.352Likely Benign0.148Likely BenignLikely Benign0.046Likely Benign-0.97Neutral0.217Benign0.229Benign2.71Benign0.21Tolerated3.82421-0.414.03
c.2619C>GS873RUncertain 16-33443171-C-G16.20e-7-5.856Likely Benign0.976Likely PathogenicLikely Pathogenic0.192Likely Benign-2.74Deleterious0.997Probably Damaging0.995Probably Damaging2.67Benign0.06Tolerated3.7750-1-3.769.11
c.2623G>AA875TLikely BenignUncertain 16-33443175-G-A16.20e-7-3.793Likely Benign0.179Likely BenignLikely Benign0.110Likely Benign-1.56Neutral0.972Probably Damaging0.864Possibly Damaging2.72Benign0.26Tolerated3.77501-2.530.03
c.2724G>CQ908HLikely BenignConflicting 46-33443276-G-C16.20e-7-4.658Likely Benign0.311Likely BenignLikely Benign0.112Likely Benign-0.74Neutral0.996Probably Damaging0.995Probably Damaging2.58Benign0.05Affected3.775300.39.01
c.2729G>CG910ALikely BenignUncertain 16-33443281-G-C16.20e-7-3.587Likely Benign0.361AmbiguousLikely Benign0.209Likely Benign-1.43Neutral0.999Probably Damaging0.999Probably Damaging2.78Benign0.10Tolerated3.775102.214.03
c.2752G>AA918TLikely BenignUncertain 16-33443304-G-A16.20e-7-4.139Likely Benign0.083Likely BenignLikely Benign0.065Likely Benign-1.09Neutral0.980Probably Damaging0.721Possibly Damaging2.64Benign0.03Affected4.32401-2.530.03
c.2818G>AG940SLikely BenignUncertain 16-33443370-G-A16.20e-7-5.451Likely Benign0.084Likely BenignLikely Benign0.135Likely Benign0.45Neutral0.409Benign0.253Benign2.77Benign0.44Tolerated3.77510-0.430.03
c.2860C>TP954SLikely BenignLikely Benign 16-33443412-C-T16.20e-7-3.525Likely Benign0.062Likely BenignLikely Benign0.143Likely Benign-0.25Neutral0.954Possibly Damaging0.812Possibly Damaging2.87Benign1.00Tolerated3.7751-10.8-10.04
c.2900G>TR967LLikely BenignUncertain 16-33443452-G-T16.20e-7-3.496Likely Benign0.164Likely BenignLikely Benign0.123Likely Benign-0.99Neutral0.959Probably Damaging0.586Possibly Damaging4.15Benign0.75Tolerated4.322-2-38.3-43.03
c.2912C>AP971HLikely BenignUncertain 16-33443464-C-A16.20e-7-5.243Likely Benign0.086Likely BenignLikely Benign0.039Likely Benign-1.11Neutral0.898Possibly Damaging0.477Possibly Damaging3.89Benign0.00Affected4.322-20-1.640.02
c.2914C>GP972ALikely BenignUncertain 16-33443466-C-G16.20e-7-0.167Likely Benign0.045Likely BenignLikely Benign0.046Likely Benign-0.89Neutral0.016Benign0.011Benign4.29Benign0.07Tolerated4.322-113.4-26.04
c.2924C>AT975NLikely BenignUncertain 16-33443476-C-A16.20e-7-4.671Likely Benign0.089Likely BenignLikely Benign0.100Likely Benign-0.58Neutral0.586Possibly Damaging0.302Benign4.13Benign0.07Tolerated4.32200-2.813.00
c.2962C>TL988FLikely BenignUncertain 16-33443514-C-T16.20e-7-4.368Likely Benign0.356AmbiguousLikely Benign0.135Likely Benign-1.70Neutral0.977Probably Damaging0.900Possibly Damaging2.69Benign0.00Affected4.32220-1.034.02
c.3023A>GD1008GUncertain 16-33443575-A-G16.20e-7-3.213Likely Benign0.742Likely PathogenicLikely Benign0.203Likely Benign-2.84Deleterious0.999Probably Damaging0.997Probably Damaging2.65Benign0.01Affected3.775-113.1-58.04
c.303C>AH101QLikely BenignUncertain 16-33432168-C-A16.20e-7-2.827Likely Benign0.124Likely BenignLikely Benign0.147Likely Benign-0.37Neutral0.824Possibly Damaging0.880Possibly Damaging4.24Benign0.00Affected4.32130-0.3-9.01
c.304T>GL102VLikely BenignUncertain 16-33432169-T-G16.20e-7-4.316Likely Benign0.068Likely BenignLikely Benign0.102Likely Benign0.32Neutral0.880Possibly Damaging0.899Possibly Damaging4.21Benign0.00Affected4.321210.4-14.03
c.311G>TR104LLikely BenignBenign 16-33432176-G-T16.20e-7-3.563Likely Benign0.578Likely PathogenicLikely Benign0.170Likely Benign-1.38Neutral0.001Benign0.002Benign4.05Benign0.00Affected4.321-2-38.3-43.03
c.3121C>TP1041SLikely BenignConflicting 26-33443673-C-T16.20e-7-4.246Likely Benign0.121Likely BenignLikely Benign0.344Likely Benign-2.72Deleterious0.664Possibly Damaging0.283Benign5.48Benign0.11Tolerated3.7751-10.8-10.04
c.3136C>GP1046ALikely BenignUncertain 16-33443688-C-G16.20e-7-3.246Likely Benign0.048Likely BenignLikely Benign0.041Likely Benign-1.67Neutral0.001Benign0.008Benign2.39Pathogenic0.29Tolerated3.775-113.4-26.04
c.3179G>TG1060VLikely BenignBenign 16-33443731-G-T16.22e-7-6.966Likely Benign0.103Likely BenignLikely Benign0.369Likely Benign-0.73Neutral0.986Probably Damaging0.728Possibly Damaging2.63Benign0.33Tolerated4.322-1-34.642.08
c.3238G>TA1080SLikely BenignUncertain 16-33443790-G-T16.26e-7-3.277Likely Benign0.108Likely BenignLikely Benign0.103Likely Benign0.01Neutral0.702Possibly Damaging0.346Benign4.16Benign0.08Tolerated3.77511-2.616.00
c.3251C>AP1084HLikely BenignUncertain 16-33443803-C-A16.31e-7-4.125Likely Benign0.323Likely BenignLikely Benign0.134Likely Benign-3.16Deleterious0.997Probably Damaging0.840Possibly Damaging3.96Benign0.00Affected3.775-20-1.640.02
c.3310C>TP1104SLikely BenignBenign 16-33443862-C-T16.54e-7-2.330Likely Benign0.073Likely BenignLikely Benign0.088Likely Benign-0.30Neutral0.770Possibly Damaging0.404Benign2.77Benign0.10Tolerated3.775-110.8-10.04
c.3361A>GS1121GLikely BenignUncertain 16-33443913-A-G17.00e-7-1.220Likely Benign0.054Likely BenignLikely Benign0.067Likely Benign-0.53Neutral0.003Benign0.004Benign6.63Benign0.00Affected3.775010.4-30.03
c.3374G>CG1125ALikely BenignUncertain 16-33443926-G-C16.68e-7-6.569Likely Benign0.083Likely BenignLikely Benign0.232Likely Benign-0.60Neutral0.999Probably Damaging0.995Probably Damaging4.60Benign0.11Tolerated3.775102.214.03
c.3380G>TG1127VLikely BenignUncertain 16-33443932-G-T16.69e-7-6.097Likely Benign0.094Likely BenignLikely Benign0.230Likely Benign-1.01Neutral0.004Benign0.005Benign4.81Benign0.17Tolerated4.324-1-34.642.08
c.3394T>CS1132PLikely BenignConflicting 36-33443946-T-C16.74e-7-1.423Likely Benign0.144Likely BenignLikely Benign0.301Likely Benign0.38Neutral0.003Benign0.006Benign5.40Benign0.28Tolerated4.3241-1-0.810.04
c.3404A>CK1135TLikely BenignConflicting 26-33443956-A-C16.75e-7-4.778Likely Benign0.779Likely PathogenicLikely Benign0.210Likely Benign-0.90Neutral0.411Benign0.321Benign5.46Benign0.10Tolerated4.3220-13.2-27.07
c.3424T>CS1142PLikely BenignLikely Benign 16-33444459-T-C16.20e-7-2.713Likely Benign0.222Likely BenignLikely Benign0.107Likely Benign-2.19Neutral0.918Possibly Damaging0.761Possibly Damaging2.64Benign0.00Affected4.324-11-0.810.04
c.3595G>AE1199KCoiled-coilUncertain 16-33446587-G-A16.20e-7-10.853Likely Pathogenic0.954Likely PathogenicAmbiguous0.171Likely Benign-2.26Neutral1.000Probably Damaging0.995Probably Damaging2.52Benign0.00Affected3.77501-0.4-0.94
c.3661C>TR1221WLikely PathogenicCoiled-coilConflicting 36-33446653-C-T16.20e-7-10.938Likely Pathogenic0.651Likely PathogenicLikely Benign0.174Likely Benign-4.57Deleterious1.000Probably Damaging0.987Probably Damaging2.50Benign0.01Affected3.7752-33.630.03
c.3824G>TR1275LLikely Benign 16-33447872-G-T16.45e-7-6.052Likely Benign0.446AmbiguousLikely Benign0.117Likely Benign-4.04Deleterious0.800Possibly Damaging0.277Benign2.55Benign0.01Affected3.775-3-28.3-43.03
c.382C>AP128TLikely BenignUncertain 16-33432247-C-A16.20e-7-4.217Likely Benign0.267Likely BenignLikely Benign0.075Likely Benign-0.96Neutral0.952Possibly Damaging0.500Possibly Damaging4.19Benign0.35Tolerated3.744-100.93.99
c.3846G>CE1282DLikely BenignUncertain 16-33447894-G-C16.44e-7-3.879Likely Benign0.074Likely BenignLikely Benign0.104Likely Benign-1.26Neutral0.112Benign0.036Benign2.70Benign0.39Tolerated3.775320.0-14.03
c.3932T>CL1311PLikely BenignLikely Benign 16-33451806-T-C16.21e-7-1.831Likely Benign0.079Likely BenignLikely Benign0.123Likely Benign-0.52Neutral0.579Possibly Damaging0.335Benign2.72Benign0.18Tolerated3.775-3-3-5.4-16.04
c.3949G>AG1317SLikely BenignConflicting 36-33451823-G-A16.26e-7-3.522Likely Benign0.145Likely BenignLikely Benign0.092Likely Benign-2.45Neutral0.127Benign0.045Benign4.08Benign0.00Affected3.77510-0.430.03
c.3962C>AP1321QLikely BenignBenign 16-33451836-C-A16.58e-7-5.594Likely Benign0.079Likely BenignLikely Benign0.055Likely Benign-0.74Neutral0.659Possibly Damaging0.034Benign4.24Benign0.09Tolerated3.7750-1-1.931.01
c.3977C>AP1326QLikely BenignUncertain 16-33451851-C-A16.40e-7-5.422Likely Benign0.128Likely BenignLikely Benign0.138Likely Benign-0.86Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.775-10-1.931.01
c.44C>TA15VLikely BenignUncertain 16-33420308-C-T16.49e-7-3.560Likely Benign0.161Likely BenignLikely Benign0.105Likely Benign0.20Neutral0.602Possibly Damaging0.015Benign4.19Benign0.00Affected4.321002.428.05
c.470G>AR157HUncertain 16-33432767-G-A16.20e-7-10.235Likely Pathogenic0.604Likely PathogenicLikely Benign0.254Likely Benign-2.23Neutral0.999Probably Damaging0.987Probably Damaging3.80Benign0.00Affected3.744201.3-19.05
c.48G>AM16ILikely BenignUncertain 16-33420312-G-A16.49e-7-2.198Likely Benign0.722Likely PathogenicLikely Benign0.057Likely Benign-0.15Neutral0.000Benign0.000Benign4.28Benign0.00Affected4.321212.6-18.03
c.526A>GS176GUncertain 16-33435168-A-G16.20e-7-7.541In-Between0.360AmbiguousLikely Benign0.066Likely Benign-1.08Neutral0.131Benign0.039Benign4.08Benign0.22Tolerated3.546010.4-30.03
c.772C>TR258C
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437677-C-T16.20e-7-10.285Likely Pathogenic0.790Likely PathogenicAmbiguous0.771Likely Pathogenic1.17Ambiguous0.41.76Ambiguous1.47Ambiguous0.87Ambiguous-6.79Deleterious1.000Probably Damaging0.993Probably Damaging5.77Benign0.00Affected3.3915-3-47.0-53.05
c.694G>AA232T
(3D Viewer)
PHBenign 16-33435545-G-A16.20e-7-7.655In-Between0.874Likely PathogenicAmbiguous0.469Likely Benign0.47Likely Benign0.1-0.04Likely Benign0.22Likely Benign0.61Ambiguous-1.42Neutral0.608Possibly Damaging0.240Benign5.80Benign0.09Tolerated3.401410-2.530.03210.8-42.00.50.10.40.5XUncertainThe hydroxyl group of Thr232, located at the end of an anti-parallel β sheet strand (res. Thr228-Ala232), forms hydrogen bonds with nearby residues Glu217, Cys233, and Cys219 in the variant simulations. These hydrogen-bonding interactions at the β sheet surface contribute to the stability of the secondary structure element and prevent it from unfolding. The new hydrogen bond interactions may be more favorable for structural stability than the steric interactions of the methyl side chain of Ala with the side chains of Gln216 and Cys219 in the WT. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.1004G>AR335H
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437909-G-A21.24e-6-12.521Likely Pathogenic0.831Likely PathogenicAmbiguous0.132Likely Benign0.58Ambiguous0.10.22Likely Benign0.40Likely Benign0.72Ambiguous-3.02Deleterious1.000Probably Damaging0.998Probably Damaging1.70Pathogenic0.03Affected3.3822201.3-19.05242.482.1-2.40.6-0.10.1UncertainThe guanidinium group of Arg335, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Ala322-Asp330, res. Gly341-Pro349), faces the post-synaptic inner membrane surface. In the WT simulations, the Arg335 side chain dynamically forms salt bridges with the carboxylate groups of Asp322, Asp338, and Asp616. In contrast, the imidazole ring of His335, which is not double protonated and thus not positively charged in the variant simulations, continues to move dynamically without forming any lasting or strong interactions. Importantly, the positively charged arginine residues of the C2 domain are ideal membrane anchors for ensuring SynGAP-membrane association. However, this phenomenon cannot be addressed using solvent-only simulations.
c.106C>TH36YLikely BenignUncertain 16-33423515-C-T21.24e-6-3.461Likely Benign0.139Likely BenignLikely Benign0.023Likely Benign-1.03Neutral0.219Benign0.066Benign4.16Benign0.00Affected4.321021.926.03
c.1055C>AT352N
(3D Viewer)
Likely BenignC2Likely Benign 16-33437960-C-A21.24e-6-4.817Likely Benign0.117Likely BenignLikely Benign0.027Likely Benign0.20Likely Benign0.0-0.04Likely Benign0.08Likely Benign0.45Likely Benign-0.92Neutral0.255Benign0.057Benign1.75Pathogenic0.19Tolerated3.372500-2.813.00208.4-14.5-0.20.1-0.10.0XPotentially BenignThr352 is located in a short α helical section within a loop connecting two β strands (res. Gly341-Pro349, res. Thr359-Pro364) originating from two different anti-parallel β sheets of the C2 domain. In the WT simulations, the side chain hydroxyl and backbone amide groups of Thr354 form hydrogen bonds with the backbone carbonyl group of Pro349 at the end of the preceding β strand. This arrangement likely stabilizes the α helical section and aids in folding, keeping the short secondary structure element intact in the variant simulations. However, the carboxamide group of the Asn352 side chain does not form hydrogen bonds with the backbone carbonyl group of Pro349. Instead, it packs against the cyclic ring and forms hydrogen bonds with the phenol group of the Tyr363 side chain in the other β strand.
c.1142G>TG381V
(3D Viewer)
Likely BenignC2Uncertain 16-33438047-G-T21.25e-6-5.967Likely Benign0.146Likely BenignLikely Benign0.618Likely Pathogenic7.16Destabilizing1.04.10Destabilizing5.63Destabilizing-0.32Likely Benign-0.95Neutral0.386Benign0.157Benign1.32Pathogenic0.10Tolerated4.329-1-34.642.08214.6-68.80.30.7-0.50.3UncertainGly381 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Val381 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effects on Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1463C>TT488M
(3D Viewer)
Likely PathogenicGAPUncertain 16-33438495-C-T21.24e-6-12.459Likely Pathogenic0.973Likely PathogenicLikely Pathogenic0.746Likely Pathogenic0.66Ambiguous0.31.62Ambiguous1.14Ambiguous0.46Likely Benign-5.70Deleterious1.000Probably Damaging0.999Probably Damaging3.21Benign0.00Affected3.3735-1-12.630.09
c.1511A>GK504R
(3D Viewer)
Likely BenignGAPUncertain16-33438543-A-G21.24e-6-4.365Likely Benign0.088Likely BenignLikely Benign0.238Likely Benign0.13Likely Benign0.10.51Ambiguous0.32Likely Benign0.94Ambiguous-2.16Neutral0.002Benign0.015Benign-1.41Pathogenic0.11Tolerated3.373523-0.628.01
c.1622C>GA541G
(3D Viewer)
GAPUncertain 16-33438865-C-G21.24e-6-7.233In-Between0.341AmbiguousLikely Benign0.421Likely Benign0.67Ambiguous0.00.94Ambiguous0.81Ambiguous0.76Ambiguous-1.48Neutral0.999Probably Damaging0.995Probably Damaging-1.31Pathogenic0.57Tolerated3.373510-2.2-14.03170.123.60.00.00.00.0XPotentially PathogenicAla541 is located on the outer surface of an α-helix (res. Ala533-Val560). The methyl group of Ala541 is on the surface and does not form any interactions. Glycine, known as an “α-helix breaker,” weakens the integrity of the helix. Indeed, in the variant simulations, the hydrogen bond formation between Gly541 and the backbone carbonyl of Ala537 is disrupted.
c.196C>TP66SLikely BenignBenign 16-33425804-C-T21.24e-6-2.760Likely Benign0.929Likely PathogenicAmbiguous0.081Likely Benign-1.69Neutral0.909Possibly Damaging0.641Possibly Damaging4.01Benign0.00Affected4.3211-10.8-10.04
c.218G>AR73KLikely BenignUncertain 16-33425826-G-A21.24e-6-4.033Likely Benign0.151Likely BenignLikely Benign0.077Likely Benign-0.46Neutral0.053Benign0.007Benign4.14Benign0.00Affected4.321230.6-28.01
c.2200C>TP734SLikely BenignUncertain 26-33441665-C-T21.24e-6-4.291Likely Benign0.077Likely BenignLikely Benign0.030Likely Benign-2.44Neutral0.344Benign0.048Benign2.77Benign0.11Tolerated3.6461-10.8-10.0410.1016/j.ajhg.2020.11.011
c.2239G>CV747LLikely BenignUncertain 16-33441704-G-C21.24e-6-2.790Likely Benign0.096Likely BenignLikely Benign0.047Likely Benign-0.52Neutral0.065Benign0.033Benign2.67Benign0.00Affected4.32221-0.414.03
c.2275A>CM759LLikely BenignUncertain 16-33441740-A-C21.24e-6-2.431Likely Benign0.093Likely BenignLikely Benign0.048Likely Benign-0.53Neutral0.002Benign0.005Benign2.84Benign1.00Tolerated3.995421.9-18.03
c.227C>GS76CLikely BenignUncertain 16-33425835-C-G21.24e-6-5.408Likely Benign0.100Likely BenignLikely Benign0.076Likely Benign-1.78Neutral0.992Probably Damaging0.869Possibly Damaging3.71Benign0.00Affected4.3210-13.316.06
c.2302G>AD768NLikely BenignUncertain 16-33442460-G-A22.57e-6-6.892Likely Benign0.453AmbiguousLikely Benign0.048Likely Benign-0.77Neutral0.106Benign0.009Benign4.07Benign0.96Tolerated3.646120.0-0.98
c.1819C>GL607V
(3D Viewer)
Likely PathogenicGAPUncertain 26-33440871-C-G21.24e-6-11.190Likely Pathogenic0.637Likely PathogenicLikely Benign0.715Likely Pathogenic1.04Ambiguous0.21.36Ambiguous1.20Ambiguous0.90Ambiguous-2.99Deleterious0.985Probably Damaging0.992Probably Damaging-1.50Pathogenic0.01Affected3.3735210.4-14.03216.328.10.10.00.90.2XPotentially BenignLeu607 is located in a short helical region (res. Ser606-Phe608) within an α-α loop connecting two α helices (res. Glu582-Met603 and res. Glu617-Asn635). In the WT simulations, the iso-butyl side chain of Leu607 does not interact with any other residues, but it could potentially interact directly with Ras due to its location at the GAP domain.In the variant simulations, Val607, which has similar size and physicochemical properties to leucine, does not cause any negative effects on the protein structure. However, due to its location at the GAP-Ras interface, the residue swap could affect the complex formation with the GTPase, but this cannot be investigated using solvent-only simulations.
c.2047A>GI683V
(3D Viewer)
Likely BenignGAPUncertain 16-33441306-A-G21.24e-6-7.588In-Between0.138Likely BenignLikely Benign0.112Likely Benign0.90Ambiguous0.00.60Ambiguous0.75Ambiguous0.76Ambiguous-0.78Neutral0.538Possibly Damaging0.080Benign3.35Benign0.14Tolerated3.421743-0.3-14.03215.629.10.00.0-0.70.1XPotentially BenignThe sec-butyl side chain of Ile683, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is sterically packed against His453 and Glu688. In the variant simulations, the iso-propyl side chain of Val683 has similar size and physicochemical properties as Ile630 in the WT, and thus, it is able to maintain similar interactions in the inter-helix space. Consequently, no negative structural effects are observed during the simulations due to the residue swap.
c.2567A>GN856SLikely BenignUncertain 16-33443119-A-G21.24e-6-2.104Likely Benign0.064Likely BenignLikely Benign0.040Likely Benign-1.54Neutral0.901Possibly Damaging0.535Possibly Damaging4.16Benign0.30Tolerated3.883112.7-27.03
c.2573G>AS858NLikely BenignUncertain 16-33443125-G-A21.24e-6-4.311Likely Benign0.121Likely BenignLikely Benign0.107Likely Benign-0.67Neutral0.448Benign0.846Possibly Damaging4.13Benign0.02Affected3.77511-2.727.03
c.2582C>TS861LLikely BenignUncertain 16-33443134-C-T21.24e-6-4.966Likely Benign0.219Likely BenignLikely Benign0.144Likely Benign-2.10Neutral0.904Possibly Damaging0.355Benign3.93Benign0.07Tolerated4.323-3-24.626.08
c.2168C>TT723I
(3D Viewer)
Likely BenignGAPLikely Benign 16-33441633-C-T21.24e-6-2.591Likely Benign0.120Likely BenignLikely Benign0.045Likely Benign-0.39Likely Benign0.0-0.20Likely Benign-0.30Likely Benign0.26Likely Benign-2.09Neutral0.088Benign0.030Benign3.39Benign0.03Affected3.5080-15.212.05252.3-31.60.00.0-0.20.2XUncertainThe hydroxyl group of Thr723, located on the outer surface of an α-helix (res. Leu714-Arg726), continuously forms hydrogen bonds with the backbone carbonyl of Asn719 in the WT simulations, potentially lowering the stability of the α-helix. In the variant simulations, the sec-butyl side chain of Ile723 cannot form any hydrogen bonds, which, in theory, could increase the helix stability. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.2702C>TA901VLikely BenignUncertain 26-33443254-C-T21.24e-6-5.043Likely Benign0.219Likely BenignLikely Benign0.029Likely Benign-1.83Neutral0.106Benign0.009Benign2.64Benign0.17Tolerated3.775002.428.05
c.2753C>TA918VLikely BenignUncertain 36-33443305-C-T21.24e-6-3.684Likely Benign0.112Likely BenignLikely Benign0.119Likely Benign-1.61Neutral0.980Probably Damaging0.782Possibly Damaging2.61Benign0.03Affected4.324002.428.05
c.2854G>AG952SLikely BenignConflicting 26-33443406-G-A21.24e-6-6.190Likely Benign0.077Likely BenignLikely Benign0.167Likely Benign0.19Neutral0.000Benign0.002Benign3.31Benign0.07Tolerated3.77510-0.430.03
c.2873A>CH958PLikely BenignBenign 16-33443425-A-C21.24e-6-8.369Likely Pathogenic0.068Likely BenignLikely Benign0.204Likely Benign-0.36Neutral0.925Possibly Damaging0.316Benign4.14Benign0.10Tolerated3.7750-21.6-40.02
c.28C>TR10WLikely BenignUncertain 16-33420292-C-T21.30e-6-5.707Likely Benign0.503AmbiguousLikely Benign0.236Likely Benign-0.31Neutral0.964Probably Damaging0.190Benign4.10Benign0.00Affected4.3212-33.630.03
c.2945A>GY982CLikely BenignLikely Benign 16-33443497-A-G21.24e-6-6.256Likely Benign0.746Likely PathogenicLikely Benign0.195Likely Benign-1.67Neutral0.997Probably Damaging0.923Probably Damaging3.87Benign0.00Affected4.3210-23.8-60.04
c.29G>CR10PLikely BenignUncertain 26-33420293-G-C21.30e-6-3.772Likely Benign0.162Likely BenignLikely Benign0.220Likely Benign-0.05Neutral0.233Benign0.026Benign4.13Benign0.00Affected4.3210-22.9-59.07
c.3048C>AD1016ELikely BenignLikely Benign 16-33443600-C-A21.24e-6-3.422Likely Benign0.216Likely BenignLikely Benign0.017Likely Benign-0.37Neutral0.008Benign0.028Benign2.64Benign0.65Tolerated3.775230.014.03
c.3056G>TR1019LLikely PathogenicUncertain 16-33443608-G-T21.24e-6-5.194Likely Benign0.752Likely PathogenicLikely Benign0.110Likely Benign-3.57Deleterious0.800Possibly Damaging0.573Possibly Damaging2.40Pathogenic0.01Affected3.775-2-38.3-43.03
c.3092T>CM1031TLikely BenignUncertain 16-33443644-T-C21.24e-6-1.863Likely Benign0.540AmbiguousLikely Benign0.085Likely Benign-0.24Neutral0.002Benign0.005Benign2.67Benign1.00Tolerated3.775-1-1-2.6-30.09
c.3125A>GQ1042RLikely BenignUncertain 26-33443677-A-G21.24e-6-2.928Likely Benign0.413AmbiguousLikely Benign0.300Likely Benign-1.39Neutral0.586Possibly Damaging0.120Benign5.48Benign0.12Tolerated3.77511-1.028.06
c.3152G>AG1051DBenign 16-33443704-G-A21.24e-6-9.379Likely Pathogenic0.311Likely BenignLikely Benign0.445Likely Benign-0.31Neutral0.761Possibly Damaging0.239Benign-0.74Pathogenic0.39Tolerated3.775-11-3.158.04
c.3253C>TR1085WUncertain 16-33443805-C-T21.26e-6-6.339Likely Benign0.821Likely PathogenicAmbiguous0.202Likely Benign-3.15Deleterious1.000Probably Damaging0.996Probably Damaging2.70Benign0.00Affected3.775-323.630.03
c.3368G>AG1123DUncertain 16-33443920-G-A21.33e-6-10.321Likely Pathogenic0.405AmbiguousLikely Benign0.360Likely Benign-0.78Neutral0.500Possibly Damaging0.157Benign4.34Benign0.19Tolerated3.7751-1-3.158.04
c.3379G>AG1127RLikely BenignUncertain 16-33443931-G-A21.34e-6-5.949Likely Benign0.629Likely PathogenicLikely Benign0.341Likely Benign-0.87Neutral0.001Benign0.001Benign4.86Benign0.12Tolerated4.324-2-3-4.199.14
c.3434A>GN1145SLikely BenignUncertain 16-33444469-A-G21.24e-6-0.989Likely Benign0.126Likely BenignLikely Benign0.308Likely Benign-1.15Neutral0.997Probably Damaging0.989Probably Damaging5.55Benign0.89Tolerated4.324112.7-27.03
c.3457C>TR1153WLikely PathogenicUncertain 26-33444492-C-T21.24e-6-5.812Likely Benign0.994Likely PathogenicLikely Pathogenic0.317Likely Benign-5.88Deleterious1.000Probably Damaging0.998Probably Damaging1.46Pathogenic0.00Affected3.7752-33.630.03
c.3520G>AE1174KLikely BenignCoiled-coilUncertain 16-33444555-G-A21.24e-6-4.345Likely Benign0.898Likely PathogenicAmbiguous0.442Likely Benign-1.59Neutral0.962Probably Damaging0.367Benign5.52Benign0.03Affected4.32201-0.4-0.94
c.3607C>TH1203YLikely BenignCoiled-coilUncertain 16-33446599-C-T21.24e-6-6.834Likely Benign0.149Likely BenignLikely Benign0.233Likely Benign-1.52Neutral0.006Benign0.011Benign5.55Benign0.10Tolerated3.775201.926.03
c.3640C>TR1214WLikely PathogenicCoiled-coilUncertain 16-33446632-C-T21.24e-6-8.799Likely Pathogenic0.710Likely PathogenicLikely Benign0.143Likely Benign-4.95Deleterious1.000Probably Damaging0.983Probably Damaging2.45Pathogenic0.00Affected3.7752-33.630.03
c.3788T>CI1263TLikely PathogenicCoiled-coilUncertain 16-33446780-T-C21.24e-6-6.564Likely Benign0.962Likely PathogenicLikely Pathogenic0.529Likely Pathogenic-4.15Deleterious0.946Possibly Damaging0.673Possibly Damaging1.81Pathogenic0.00Affected3.7750-1-5.2-12.05
c.3824G>AR1275QLikely BenignUncertain 16-33447872-G-A21.29e-6-4.928Likely Benign0.121Likely BenignLikely Benign0.103Likely Benign-1.72Neutral0.898Possibly Damaging0.147Benign2.59Benign0.03Affected3.775111.0-28.06
c.3835G>AA1279TLikely BenignUncertain 26-33447883-G-A21.29e-6-4.871Likely Benign0.071Likely BenignLikely Benign0.178Likely Benign-0.30Neutral0.001Benign0.000Benign2.71Benign0.09Tolerated3.77510-2.530.03
c.3941C>TP1314LLikely BenignLikely Benign 16-33451815-C-T21.24e-6-4.040Likely Benign0.118Likely BenignLikely Benign0.049Likely Benign-0.20Neutral0.421Benign0.066Benign4.19Benign0.05Affected3.775-3-35.416.04
c.3958C>TP1320SLikely BenignUncertain 16-33451832-C-T21.28e-6-4.928Likely Benign0.073Likely BenignLikely Benign0.097Likely Benign-0.69Neutral0.980Probably Damaging0.968Probably Damaging4.25Benign0.00Affected3.7751-10.8-10.04
c.3980C>TP1327LLikely BenignUncertain 16-33451854-C-T21.28e-6-5.264Likely Benign0.242Likely BenignLikely Benign0.142Likely Benign-1.24Neutral0.994Probably Damaging0.908Possibly Damaging4.12Benign0.10Tolerated3.775-3-35.416.04
c.431C>TT144MLikely PathogenicUncertain 26-33432728-C-T21.30e-6-11.228Likely Pathogenic0.922Likely PathogenicAmbiguous0.118Likely Benign-3.16Deleterious0.913Possibly Damaging0.333Benign3.73Benign0.00Affected3.615-1-12.630.09
c.451G>CD151HLikely PathogenicUncertain 16-33432748-G-C21.26e-6-11.747Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.335Likely Benign-3.90Deleterious0.999Probably Damaging0.995Probably Damaging3.86Benign0.00Affected3.615-110.322.05
c.485G>AR162HUncertain 16-33432782-G-A21.24e-6-9.730Likely Pathogenic0.480AmbiguousLikely Benign0.167Likely Benign-1.13Neutral0.957Probably Damaging0.513Possibly Damaging4.03Benign0.12Tolerated3.744201.3-19.05
c.491G>AR164QUncertain 16-33432788-G-A21.24e-6-11.208Likely Pathogenic0.600Likely PathogenicLikely Benign0.184Likely Benign-1.86Neutral0.957Probably Damaging0.342Benign3.82Benign0.00Affected3.744111.0-28.06
c.600G>CL200F
(3D Viewer)
PHUncertain 16-33435242-G-C21.24e-6-7.606In-Between0.592Likely PathogenicLikely Benign0.094Likely Benign1.00Ambiguous0.51.45Ambiguous1.23Ambiguous0.43Likely Benign-1.97Neutral0.997Probably Damaging0.916Probably Damaging4.02Benign0.17Tolerated3.46920-1.034.02250.4-15.10.60.20.50.0XUncertainLeu200, a hydrophobic residue located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by another hydrophobic residue, phenylalanine. Both the phenyl group of Phe200 and the branched iso-butyl hydrocarbon sidechain of Leu200 occupy an inward hydrophobic niche (e.g., Leu246, Val222, Phe231) during the simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.670A>GT224A
(3D Viewer)
PHUncertain 36-33435521-A-G21.24e-6-7.379In-Between0.651Likely PathogenicLikely Benign0.464Likely Benign0.33Likely Benign0.11.05Ambiguous0.69Ambiguous0.91Ambiguous-2.96Deleterious0.243Benign0.079Benign5.57Benign0.57Tolerated3.4113102.5-30.03169.041.4-0.51.1-0.40.0XXUncertainThe introduced residue Ala224 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr224 side chain in the WT model, the methyl side chain of Ala224 cannot form hydrogen bonds with nearby residues Ser204, Ser226, and Gly227. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and unfolds during the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.862G>AD288N
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437767-G-A21.24e-6-10.535Likely Pathogenic0.521AmbiguousLikely Benign0.321Likely Benign-0.39Likely Benign0.10.01Likely Benign-0.19Likely Benign-0.03Likely Benign-3.73Deleterious0.999Probably Damaging0.997Probably Damaging1.78Pathogenic0.05Affected3.3823120.0-0.98
c.819G>TE273D
(3D Viewer)
Likely BenignC2Benign 16-33437724-G-T21.24e-6-1.811Likely Benign0.058Likely BenignLikely Benign0.092Likely Benign0.26Likely Benign0.1-0.48Likely Benign-0.11Likely Benign-0.63Ambiguous1.99Neutral0.004Benign0.010Benign2.00Pathogenic1.00Tolerated3.3818320.0-14.03223.122.10.20.00.00.1XPotentially BenignThe negatively charged residue Glu273, located in a β hairpin loop (res. Glu273-Lys278) that connects two anti-parallel β sheet strands, is replaced with another negatively charged residue, aspartate. Because the C2 domain loop faces the membrane surface, the potentially crucial role of the carboxylate group of Glu273 or Asp273 on SynGAP-membrane association cannot be fully explored via solvent-only simulations.As a minor note, the neighboring residue Arg272, which stacks with the indole ring of the Trp362 side chain and directly faces RasGTPase, forms a salt bridge more often with Asp273 than with the non-mutated Glu273 in the simulations. Regardless, due to the similar physicochemical properties of the WT and variant residues at the membrane interface, the residue swap is likely to be well tolerated.
c.901G>AA301T
(3D Viewer)
Likely BenignC2Uncertain 56-33437806-G-A21.24e-6-3.448Likely Benign0.070Likely BenignLikely Benign0.150Likely Benign0.36Likely Benign0.2-0.33Likely Benign0.02Likely Benign0.03Likely Benign-0.25Neutral0.997Probably Damaging0.989Probably Damaging4.15Benign0.22Tolerated4.321410-2.530.03219.8-42.8-0.10.0-0.50.2UncertainThe methyl group of Ala301, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), points outward from the β hairpin loop, and its backbone atoms do not participate in the loop formation in the WT simulations. In the variant simulations, the hydroxyl group of the Thr301 side chain also mostly points outward; however, the guanidinium group of Arg299 is moved away from its central hairpin loop position.β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Due to its location near the membrane surface, the residue swap could also affect the C2 loop dynamics and SynGAP-membrane association. However, this is beyond the scope of the solvent-only simulations to unravel.
c.970C>TR324W
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437875-C-T21.24e-6-12.906Likely Pathogenic0.694Likely PathogenicLikely Benign0.481Likely Benign1.49Ambiguous0.30.56Ambiguous1.03Ambiguous0.66Ambiguous-3.12Deleterious1.000Probably Damaging0.998Probably Damaging1.82Pathogenic0.16Tolerated3.39222-33.630.03256.639.10.00.10.30.2XPotentially PathogenicThe guanidinium group of Arg324, located at the end of an anti-parallel β sheet strand (res. Ala322-Asp330), faces outward and frequently forms a salt bridge with the carboxylate group of the Asp288 side chain, which is part of a β strand end (res. Met289-Pro298). In the variant simulations, the indole ring of the Trp324 side chain cannot maintain a similar interaction with the negatively charged carboxylate side chain of Asp288, potentially compromising the folding of the anti-parallel β sheet assembly. However, the residue swap does not appear to negatively impact the protein structure or its integrity based on the simulations.
c.986G>AR329H
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437891-G-A21.24e-6-10.154Likely Pathogenic0.769Likely PathogenicLikely Benign0.155Likely Benign2.53Destabilizing0.70.71Ambiguous1.62Ambiguous0.82Ambiguous-3.17Deleterious0.995Probably Damaging0.778Possibly Damaging4.04Benign0.05Affected3.4115201.3-19.05220.481.40.10.10.20.3UncertainThe guanidinium group of Arg329, located at the end of an anti-parallel β sheet strand (res. Ala322-Asp330), faces the negatively charged lipid bilayer surface. While the residue swap does not cause any apparent negative effects on the protein structure in the variant simulations, it could adversely affect the SynGAP-membrane association in reality. The positively charged Arg329 side chain forms hydrogen bonds with other loop residues (e.g., Ser371, Asp338) that are expected to dynamically interact with the membrane head group region. However, this phenomenon is beyond the scope of the solvent-only simulations to unravel. Notably, histidine can also be double protonated and positively charged, but this alternative protonation state was not considered in the variant simulations.
c.1345A>GS449G
(3D Viewer)
Likely BenignGAPUncertain 16-33438250-A-G31.86e-6-5.936Likely Benign0.071Likely BenignLikely Benign0.116Likely Benign0.47Likely Benign0.00.55Ambiguous0.51Ambiguous0.85Ambiguous-2.32Neutral0.948Possibly Damaging0.124Benign3.35Benign0.13Tolerated3.3732010.4-30.03
c.1172G>TG391V
(3D Viewer)
Likely BenignC2Likely Benign 16-33438077-G-T31.86e-6-6.642Likely Benign0.133Likely BenignLikely Benign0.595Likely Pathogenic4.23Destabilizing1.34.81Destabilizing4.52Destabilizing-0.11Likely Benign-0.98Neutral0.994Probably Damaging0.887Possibly Damaging1.32Pathogenic0.10Tolerated3.698-1-34.642.08228.6-69.00.00.8-0.50.3UncertainGly387 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. This loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Val391 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1600T>CS534P
(3D Viewer)
Likely BenignGAPUncertain 16-33438843-T-C31.86e-6-5.056Likely Benign0.265Likely BenignLikely Benign0.203Likely Benign-0.40Likely Benign0.20.35Likely Benign-0.03Likely Benign0.47Likely Benign-3.81Deleterious0.993Probably Damaging0.993Probably Damaging3.32Benign0.05Affected3.3735-11-0.810.04
c.1322T>CV441A
(3D Viewer)
GAPConflicting 26-33438227-T-C31.86e-6-9.439Likely Pathogenic0.359AmbiguousLikely Benign0.053Likely Benign-0.14Likely Benign0.00.33Likely Benign0.10Likely Benign0.95Ambiguous-2.92Deleterious0.513Possibly Damaging0.214Benign3.44Benign0.93Tolerated3.372900-2.4-28.05195.044.60.00.10.50.0XXUncertainThe iso-propyl side chain of Val441, located on the outer surface of an α helix (res. Asn440-Thr458), does not interact with other residues in the WT simulations. In the variant simulations, the methyl side chain of Ala441 is similarly hydrophobic and does not form any interactions on the outer helix surface. Although the residue swap does not negatively affect the protein structure based on the simulations, it is noteworthy that the residue faces the RasGTPase interface. Thus, the effect of the residue swap on the SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.1544G>AR515H
(3D Viewer)
Likely PathogenicGAPUncertain 16-33438787-G-A31.86e-6-10.774Likely Pathogenic0.337Likely BenignLikely Benign0.730Likely Pathogenic1.07Ambiguous0.20.74Ambiguous0.91Ambiguous1.09Destabilizing-3.44Deleterious1.000Probably Damaging0.998Probably Damaging-1.32Pathogenic0.01Affected3.3735201.3-19.05239.277.80.00.00.40.2XPotentially BenignThe guanidinium group of Arg515, located in the middle of an α-helix at the GAP domain (res. Gly502-Tyr518), forms salt bridges with the carboxylate groups of Glu512 on the same helix and Glu217 on a loop in the PH domain. Additionally, the positively charged Arg515 side chain forms hydrogen bonds with Leu610 and Gln612 in an opposing loop (res. Gly609-Asp616). In contrast, in the variant simulations, the imidazole ring of His515 cannot form salt bridges with either of the acidic residues, and its side chain is too short to form hydrogen bonds with the loop residues. Accordingly, the residue swap could weaken the tertiary structure assembly of the protein. Due to the missing N-terminal part of the SynGAP model, the effect could be largely underestimated or missing. Notably, the doubly protonated and positively charged form of histidine was not simulated here.
c.1973G>AG658D
(3D Viewer)
GAPUncertain 16-33441232-G-A31.86e-6-7.786In-Between0.442AmbiguousLikely Benign0.144Likely Benign-0.40Likely Benign0.1-0.59Ambiguous-0.50Ambiguous0.46Likely Benign-2.64Deleterious0.008Benign0.005Benign3.53Benign0.38Tolerated3.39241-1-3.158.04219.8-84.30.00.00.20.1XPotentially PathogenicGly658, located on the outer surface of an α helix (res. Ser641-Glu666), weakens the helix integrity at that spot, which is necessary for the kink in the middle of the long helix. In the variant simulations, the carboxylic acid side chain of Asp658 is on the surface of the α helix and is not involved in any interactions. However, aspartate is not as effective a breaker of the secondary structure element as glycine, which may lead to misfolding.
c.1667A>GN556S
(3D Viewer)
GAPUncertain 16-33438910-A-G31.86e-6-6.576Likely Benign0.197Likely BenignLikely Benign0.449Likely Benign0.52Ambiguous0.10.14Likely Benign0.33Likely Benign0.16Likely Benign-3.60Deleterious1.000Probably Damaging0.989Probably Damaging-1.22Pathogenic0.14Tolerated3.3735112.7-27.03198.831.00.00.0-0.50.2XPotentially BenignAsn556 is located on the outer surface of an α-helix (res. Ala533-Val560). The carboxamide group of Asn556 forms hydrogen bonds with nearby residues such as Lys553 and Cys552. It also forms a hydrogen bond with the backbone carbonyl group of Cys552, which weakens the α-helix integrity. In the variant simulations, the hydroxyl group of Ser556 forms a more stable hydrogen bond with the backbone carbonyl oxygen of the same helix residue, Cys552, compared to Asn556 in the WT. Serine has a slightly lower propensity to reside in an α-helix than asparagine, which may exacerbate the negative effect on the α-helix integrity. However, the residue swap does not cause negative structural effects during the simulations.
c.2101C>TP701S
(3D Viewer)
Likely BenignGAPUncertain 16-33441360-C-T31.86e-6-4.375Likely Benign0.221Likely BenignLikely Benign0.132Likely Benign1.33Ambiguous0.00.12Likely Benign0.73Ambiguous-0.36Likely Benign0.78Neutral0.044Benign0.025Benign3.48Benign1.00Tolerated3.4710-110.8-10.0410.1016/j.ajhg.2020.11.011
c.2221C>TP741SLikely BenignUncertain 26-33441686-C-T31.86e-6-3.700Likely Benign0.063Likely BenignLikely Benign0.076Likely Benign-0.27Neutral0.270Benign0.136Benign2.92Benign0.00Affected4.3221-10.8-10.0410.1016/j.ajhg.2020.11.011
c.2243T>GL748RLikely BenignConflicting 26-33441708-T-G31.86e-6-3.331Likely Benign0.245Likely BenignLikely Benign0.055Likely Benign-0.67Neutral0.912Possibly Damaging0.448Possibly Damaging2.73Benign0.02Affected4.322-3-2-8.343.03
c.2245C>TR749WLikely Benign 16-33441710-C-T31.86e-6-7.647In-Between0.338Likely BenignLikely Benign0.173Likely Benign-2.62Deleterious1.000Probably Damaging0.998Probably Damaging2.59Benign0.00Affected4.3222-33.630.03
c.2359C>TP787SSH3-binding motifUncertain 16-33442911-C-T31.86e-6-4.203Likely Benign0.564AmbiguousLikely Benign0.221Likely Benign-3.81Deleterious1.000Probably Damaging0.999Probably Damaging2.48Pathogenic0.02Affected3.646-110.8-10.04
c.2435C>AP812HSH3-binding motifUncertain 26-33442987-C-A31.86e-6-7.470In-Between0.698Likely PathogenicLikely Benign0.272Likely Benign-2.81Deleterious1.000Probably Damaging0.995Probably Damaging2.68Benign0.00Affected4.3240-2-1.640.02
c.2014A>GT672A
(3D Viewer)
Likely BenignGAPBenign 16-33441273-A-G31.86e-6-6.524Likely Benign0.109Likely BenignLikely Benign0.046Likely Benign0.51Ambiguous0.31.15Ambiguous0.83Ambiguous0.65Ambiguous-3.20Deleterious0.006Benign0.002Benign3.44Benign0.12Tolerated3.4025102.5-30.03188.542.5-0.10.30.20.0XPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. In the variant simulations, Ala672 can only form a hydrogen bond with Lys566 via its backbone carbonyl group. Consequently, it cannot maintain the Lys566-Glu666 salt bridge through hydrogen bonding, leading to a significant disruption of the intricate and stable hydrogen-bond network between the loop and the helices.
c.2521G>AV841MUncertain 16-33443073-G-A31.86e-6-7.000In-Between0.651Likely PathogenicLikely Benign0.119Likely Benign-0.74Neutral0.999Probably Damaging0.998Probably Damaging2.54Benign0.02Affected3.77512-2.332.06
c.2522T>CV841AUncertain 16-33443074-T-C31.86e-6-8.152Likely Pathogenic0.901Likely PathogenicAmbiguous0.183Likely Benign-2.13Neutral0.992Probably Damaging0.989Probably Damaging2.57Benign0.02Affected3.77500-2.4-28.05
c.2560C>TR854CLikely BenignUncertain 16-33443112-C-T31.86e-6-5.082Likely Benign0.170Likely BenignLikely Benign0.174Likely Benign-2.48Neutral1.000Probably Damaging0.947Probably Damaging4.05Benign0.01Affected3.883-3-47.0-53.05
c.2835T>AH945QLikely BenignConflicting 26-33443387-T-A31.86e-6-5.248Likely Benign0.091Likely BenignLikely Benign0.343Likely Benign-0.36Neutral0.995Probably Damaging0.939Probably Damaging5.03Benign0.06Tolerated4.32430-0.3-9.01
c.2863T>CS955PLikely BenignUncertain 16-33443415-T-C31.86e-6-2.584Likely Benign0.073Likely BenignLikely Benign0.098Likely Benign-0.75Neutral0.001Benign0.004Benign2.33Pathogenic0.00Affected3.7751-1-0.810.04
c.2881C>TH961YLikely BenignConflicting 26-33443433-C-T31.86e-6-8.051Likely Pathogenic0.157Likely BenignLikely Benign0.102Likely Benign-1.07Neutral0.716Possibly Damaging0.147Benign4.10Benign0.55Tolerated3.775021.926.03
c.3022G>AD1008NLikely BenignLikely Benign 16-33443574-G-A31.86e-6-4.045Likely Benign0.714Likely PathogenicLikely Benign0.128Likely Benign-2.15Neutral0.999Probably Damaging0.997Probably Damaging2.75Benign0.01Affected3.775210.0-0.98
c.3314G>AR1105QLikely BenignUncertain 26-33443866-G-A31.96e-6-3.666Likely Benign0.216Likely BenignLikely Benign0.104Likely Benign-1.21Neutral0.958Probably Damaging0.194Benign2.50Benign0.16Tolerated3.775111.0-28.06
c.3413C>AS1138YUncertain 16-33444448-C-A31.86e-6-6.610Likely Benign0.449AmbiguousLikely Benign0.391Likely Benign-2.51Deleterious0.997Probably Damaging0.996Probably Damaging5.41Benign0.05Affected4.324-2-3-0.576.10
c.3449C>TA1150VLikely BenignUncertain 16-33444484-C-T31.86e-6-3.648Likely Benign0.192Likely BenignLikely Benign0.066Likely Benign-2.22Neutral0.114Benign0.055Benign2.32Pathogenic0.04Affected3.775002.428.05
c.3567G>CE1189DLikely BenignCoiled-coilLikely Benign 16-33444602-G-C31.86e-6-3.582Likely Benign0.461AmbiguousLikely Benign0.359Likely Benign-1.42Neutral0.992Probably Damaging0.989Probably Damaging5.30Benign0.25Tolerated3.824320.0-14.03
c.3631A>GM1211VLikely BenignCoiled-coilBenign 16-33446623-A-G31.86e-6-2.101Likely Benign0.258Likely BenignLikely Benign0.412Likely Benign-0.29Neutral0.932Possibly Damaging0.949Probably Damaging5.43Benign0.72Tolerated3.775122.3-32.06
c.3633G>AM1211ILikely BenignCoiled-coilUncertain 16-33446625-G-A31.86e-6-1.537Likely Benign0.764Likely PathogenicLikely Benign0.298Likely Benign-0.42Neutral0.969Probably Damaging0.968Probably Damaging5.40Benign1.00Tolerated3.775122.6-18.03
c.3923G>AR1308HUncertain 16-33451797-G-A31.86e-6-3.586Likely Benign0.201Likely BenignLikely Benign0.319Likely Benign-3.12Deleterious0.998Probably Damaging0.991Probably Damaging2.33Pathogenic0.00Affected3.775201.3-19.05
c.4003G>AG1335SLikely PathogenicConflicting 26-33451877-G-A32.37e-6-4.495Likely Benign0.986Likely PathogenicLikely Pathogenic0.362Likely Benign-3.79Deleterious1.000Probably Damaging0.997Probably Damaging2.04Pathogenic0.00Affected3.77510-0.430.03
c.416G>AS139NLikely BenignUncertain 16-33432713-G-A32.22e-6-4.584Likely Benign0.688Likely PathogenicLikely Benign0.109Likely Benign-0.75Neutral0.149Benign0.047Benign4.14Benign0.24Tolerated3.61511-2.727.03
c.515G>AR172QUncertain 16-33435157-G-A31.86e-6-7.245In-Between0.465AmbiguousLikely Benign0.135Likely Benign-1.72Neutral0.804Possibly Damaging0.091Benign4.04Benign0.04Affected3.615111.0-28.06
c.5G>AS2NLikely BenignUncertain 26-33420269-G-A31.96e-6-4.104Likely Benign0.207Likely BenignLikely Benign0.092Likely Benign-0.36Neutral0.000Benign0.000Benign4.06Benign0.00Affected4.32111-2.727.03
c.667A>GT223A
(3D Viewer)
PHUncertain 16-33435518-A-G31.86e-6-7.076In-Between0.316Likely BenignLikely Benign0.574Likely Pathogenic0.30Likely Benign0.10.77Ambiguous0.54Ambiguous0.74Ambiguous-3.36Deleterious0.231Benign0.058Benign5.74Benign0.09Tolerated3.4113102.5-30.03186.444.00.00.00.00.0XXUncertainThe introduced residue Ala223 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr223 side chain in the WT protein, the methyl side chain of Ala223 cannot form hydrogen bonds with nearby residues Thr228 and Lys207. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and partially unfolds in the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.667A>TT223S
(3D Viewer)
PHConflicting 26-33435518-A-T31.86e-6-7.714In-Between0.410AmbiguousLikely Benign0.535Likely Pathogenic0.26Likely Benign0.10.50Ambiguous0.38Likely Benign0.62Ambiguous-2.86Deleterious0.421Benign0.058Benign5.80Benign0.02Affected3.411311-0.1-14.03200.717.3-0.20.20.00.0XUncertainThe introduced residue Ser223 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Its hydroxyl group forms hydrogen bonds with nearby residues Thr228 and Lys207 in the variant simulations, similar to the hydroxyl group of Thr223 in the WT simulations. These hydrogen-bonding interactions at the β sheet surface contribute to the stability of the secondary structure element and may prevent it from unfolding. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.680G>AG227E
(3D Viewer)
Likely PathogenicPHConflicting 26-33435531-G-A31.86e-6-9.186Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.792Likely Pathogenic2.56Destabilizing0.45.36Destabilizing3.96Destabilizing0.94Ambiguous-6.49Deleterious0.906Possibly Damaging0.360Benign5.72Benign0.01Affected3.43120-2-3.172.06237.7-112.10.10.30.00.3XXUncertainThe introduced residue Glu227 is located in a β hairpin loop connecting two anti-parallel β sheet strands (res. Cys219-Thr224 and Thr228-Ala232). In the variant simulations, the carboxylate group of Glu227 frequently forms a salt bridge with the amino group of the neighboring residue Lys229. Despite this interaction, the integrity of the secondary structure element is not compromised. However, the β hairpins are potential nucleation sites during the initial stages of protein folding. Additionally, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.76G>AG26RLikely BenignBenign 16-33423485-G-A31.86e-6-2.946Likely Benign0.678Likely PathogenicLikely Benign0.189Likely Benign-2.22Neutral0.994Probably Damaging0.990Probably Damaging3.87Benign0.00Affected4.321-3-2-4.199.14
c.700C>TR234W
(3D Viewer)
Likely PathogenicPHUncertain 16-33435551-C-T31.86e-6-12.625Likely Pathogenic0.947Likely PathogenicAmbiguous0.805Likely Pathogenic0.96Ambiguous0.30.69Ambiguous0.83Ambiguous0.13Likely Benign-5.52Deleterious0.997Probably Damaging0.803Possibly Damaging5.76Benign0.01Affected3.40142-33.630.03262.839.6-0.10.0-0.20.2XPotentially PathogenicThe guanidinium group of Arg234, located in a β-α loop between an anti-parallel β sheet strand (residues Gly227-Phe231) and an α helix (res. Ala236-Val250), forms a salt bridge with the carboxylate group of Glu238 in the α helix. Occasionally, it also bonds with the GAP domain residues Ser678 and Glu680. Thus, the positively charged Arg234 could contribute to the tertiary structure assembly between the PH and GAP domains. In contrast, the indole side chain of Trp234 in the variant is located on the protein surface in the variant simulations and is unable to form any interactions.
c.971G>AR324Q
(3D Viewer)
Likely BenignC2Uncertain 36-33437876-G-A31.86e-6-5.001Likely Benign0.173Likely BenignLikely Benign0.307Likely Benign0.56Ambiguous0.10.63Ambiguous0.60Ambiguous1.02Destabilizing-1.17Neutral0.999Probably Damaging0.994Probably Damaging1.92Pathogenic0.41Tolerated3.3922111.0-28.06
c.877C>TR293C
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437782-C-T31.86e-6-12.844Likely Pathogenic0.985Likely PathogenicLikely Pathogenic0.579Likely Pathogenic1.38Ambiguous0.10.62Ambiguous1.00Ambiguous0.02Likely Benign-7.35Deleterious1.000Probably Damaging0.998Probably Damaging1.46Pathogenic0.00Affected3.3823-4-37.0-53.05226.096.50.00.00.10.1XXXPotentially PathogenicThe guanidinium group of the Arg293 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), packs against the phenol ring of the Tyr281 side chain or forms a salt bridge with the carboxylate group of Glu283 on the outer side of the C2 domain. The positively charged guanidinium side chain of arginine is on the outside surface of the hydrophobic C2 domain, resulting in a twist in the β strand. Although this twist is maintained in the variant simulations, replacing the positively charged residue with a more hydrophobic one, such as cysteine, could remove the twist during protein folding.Because Arg293 is positioned at the C2 and PH domain interface, the residue swap could significantly impact the tertiary structure assembly. Notably, Arg293 is located at the SynGAP-Ras interface, and its role in complex formation cannot be fully understood through solvent-only simulations.
c.895C>TR299C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33437800-C-T31.86e-6-6.326Likely Benign0.572Likely PathogenicLikely Benign0.344Likely Benign1.85Ambiguous0.40.61Ambiguous1.23Ambiguous0.76Ambiguous-3.54Deleterious1.000Probably Damaging0.998Probably Damaging1.65Pathogenic0.06Tolerated3.3919-4-37.0-53.05210.791.30.10.00.00.2XXPotentially PathogenicThe guanidinium group of Arg299, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), forms hydrogen bonds that stabilize the tight turn. In the WT simulations, the Arg299 side chain hydrogen bonds with the loop backbone carbonyl groups (e.g., Ser302, Thr305, Leu274, Gly303), the hydroxyl group of Ser300, and even forms a salt bridge with the carboxylate group of Asp304.In the variant simulations, the thiol group of the Cys299 side chain is unable to form any of these well-coordinated or strong interactions, which could affect the initial formation of the secondary hairpin loop during folding. β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Moreover, the positively charged Arg299 side chain faces the polar head group region of the inner leaflet membrane and could directly anchor the C2 domain to the membrane. In short, the residue swap could negatively affect both protein folding and the stability of the SynGAP-membrane association.
c.953C>TP318L
(3D Viewer)
Likely PathogenicC2Uncertain 36-33437858-C-T31.86e-6-10.090Likely Pathogenic0.958Likely PathogenicLikely Pathogenic0.624Likely Pathogenic1.33Ambiguous0.10.26Likely Benign0.80Ambiguous0.43Likely Benign-8.96Deleterious1.000Probably Damaging0.999Probably Damaging1.82Pathogenic0.03Affected3.3823-3-35.416.04228.6-68.9-0.70.7-0.40.1XPotentially BenignThe cyclic five-membered pyrrolidine ring of Pro318, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Asp330-Ala322, res. Thr305-Asn315), packs against the hydrophobic side chain of Ile205 at the end of the anti-parallel β sheet in the PH domain. In the variant simulations, the iso-butyl side chain of Leu318 is unable to do the same, potentially weakening the PH and C2 domain association. Importantly, the residue swap could also affect loop formation during folding, as proline can make tighter turns than leucine. Because the residue swap could affect the C2 domain stability, it could also negatively impact the SynGAP-membrane association.
c.140G>AR47QLikely BenignLikely Benign 16-33423549-G-A42.48e-6-4.989Likely Benign0.347AmbiguousLikely Benign0.096Likely Benign-0.57Neutral0.829Possibly Damaging0.614Possibly Damaging4.12Benign0.00Affected4.321111.0-28.0610.1016/j.ajhg.2020.11.011
c.1214G>AR405H
(3D Viewer)
Likely PathogenicC2Conflicting 26-33438119-G-A42.48e-6-9.081Likely Pathogenic0.706Likely PathogenicLikely Benign0.371Likely Benign2.79Destabilizing0.61.85Ambiguous2.32Destabilizing1.26Destabilizing-4.54Deleterious1.000Probably Damaging0.991Probably Damaging3.65Benign0.01Affected3.3828201.3-19.05214.0102.2-0.10.0-0.70.1XPotentially PathogenicThe guanidinium group of Arg405, located in an anti-parallel β sheet strand of the C2 domain (res. Pro398-Ile411), forms a salt bridge with the carboxylate group of the Glu446 side chain from an opposing α helix (res. Val441-Ser457) in the GAP domain. The positively charged Arg405 side chain also stacks with the aromatic ring of the Phe358 side chain from a loop preceding the β strand (res. Thr359-Thr366), which could assist in maintaining the anti-parallel strand arrangement.In the variant simulations, the imidazole ring of His405 does not stack with the aromatic ring of Phe358 nor form any lasting H-bonds with the loop residues. The imidazole ring of His405 (neutral and epsilon protonated in the simulations) is unable to form a salt bridge with Glu446, which could affect the tertiary structure assembly, although this is not apparent based on the variant simulations.
c.1428C>GF476L
(3D Viewer)
GAPUncertain 26-33438460-C-G42.48e-6-10.109Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.180Likely Benign1.00Ambiguous0.11.04Ambiguous1.02Ambiguous0.75Ambiguous-1.10Neutral0.997Probably Damaging0.978Probably Damaging3.53Benign0.60Tolerated3.4022201.0-34.02235.916.10.00.1-0.20.0XPotentially BenignIn the WT simulations, the phenyl ring of Phe476, located at the end of an α-helix (res. Ala461-Phe476), packs with the hydrophobic side chains of Leu482 and Ile483. Additionally, Phe476 stacks with the Arg475 side chain on the preceding α-α loop connecting the two α-helices (res. Ala461-Phe476 and res. Leu489-Glu519) near the GAP-Ras interface.In the variant simulations, Leu476 can maintain hydrophobic packing with neighboring residues, although not as efficiently as the phenylalanine in the WT system. The absence of Phe476/Arg475 stacking weakens the integrity of the α-helix end in the variant simulations. Nonetheless, no large-scale adverse effects are observed in the simulations. Lastly, the potential effect of the residue swap on SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.2195G>AR732KLikely BenignConflicting 26-33441660-G-A42.48e-6-5.278Likely Benign0.240Likely BenignLikely Benign0.045Likely Benign-0.82Neutral0.973Probably Damaging0.943Probably Damaging2.69Benign0.21Tolerated3.597320.6-28.01
c.2219G>AR740QLikely BenignUncertain 16-33441684-G-A42.48e-6-5.195Likely Benign0.078Likely BenignLikely Benign0.102Likely Benign-0.67Neutral0.999Probably Damaging0.881Possibly Damaging2.60Benign0.08Tolerated4.322111.0-28.06
c.2246G>AR749QLikely BenignLikely Benign 16-33441711-G-A42.48e-6-3.069Likely Benign0.212Likely BenignLikely Benign0.152Likely Benign-1.00Neutral0.999Probably Damaging0.994Probably Damaging2.64Benign0.03Affected4.322111.0-28.06
c.2354G>AR785HSH3-binding motifUncertain 26-33442906-G-A42.50e-6-4.782Likely Benign0.388AmbiguousLikely Benign0.129Likely Benign-2.61Deleterious0.999Probably Damaging0.947Probably Damaging2.25Pathogenic0.01Affected3.646201.3-19.05
c.2362T>AS788TLikely BenignSH3-binding motifUncertain 26-33442914-T-A42.49e-6-4.288Likely Benign0.288Likely BenignLikely Benign0.092Likely Benign-2.25Neutral0.979Probably Damaging0.982Probably Damaging1.55Pathogenic0.02Affected3.646110.114.03
c.2506A>GS836GLikely BenignUncertain 16-33443058-A-G42.48e-6-4.749Likely Benign0.112Likely BenignLikely Benign0.066Likely Benign-1.65Neutral0.006Benign0.019Benign2.54Benign0.39Tolerated3.775100.4-30.03
c.2561G>AR854HLikely BenignUncertain 16-33443113-G-A42.48e-6-3.686Likely Benign0.094Likely BenignLikely Benign0.183Likely Benign-1.38Neutral0.997Probably Damaging0.899Possibly Damaging4.07Benign0.04Affected3.883201.3-19.05
c.2147G>AR716Q
(3D Viewer)
GAPConflicting 26-33441612-G-A42.48e-6-8.338Likely Pathogenic0.308Likely BenignLikely Benign0.210Likely Benign-0.01Likely Benign0.00.47Likely Benign0.23Likely Benign0.58Ambiguous-3.14Deleterious1.000Probably Damaging0.990Probably Damaging3.35Benign0.02Affected3.509111.0-28.06250.048.90.00.0-0.50.0XUncertainThe guanidinium group of Arg716, located on the outer surface of an α-helix (res. Leu714-Arg726), forms a salt bridge with the carboxylate group of Asp720. In the variant simulations, the carboxamide group of Gln716 also forms a hydrogen bond with the carboxylate group of Asp720, although this bond is weaker than the Arg716 salt bridge in the WT. Overall, no adverse effects on the protein structure are observed in the simulations. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.2825C>TP942LLikely BenignUncertain 16-33443377-C-T42.48e-6-5.063Likely Benign0.086Likely BenignLikely Benign0.048Likely Benign-2.00Neutral0.411Benign0.239Benign2.37Pathogenic0.00Affected4.324-3-35.416.04
c.2914C>TP972SLikely BenignUncertain 16-33443466-C-T42.48e-6-4.008Likely Benign0.058Likely BenignLikely Benign0.074Likely Benign-0.38Neutral0.001Benign0.002Benign4.28Benign0.05Affected4.322-110.8-10.04
c.3038C>GS1013CLikely BenignUncertain 16-33443590-C-G42.48e-6-6.745Likely Benign0.110Likely BenignLikely Benign0.058Likely Benign-2.06Neutral0.898Possibly Damaging0.579Possibly Damaging2.64Benign0.05Affected3.7750-13.316.06
c.3053C>TT1018IUncertain 16-33443605-C-T42.48e-6-3.264Likely Benign0.524AmbiguousLikely Benign0.076Likely Benign-2.55Deleterious0.586Possibly Damaging0.304Benign2.24Pathogenic0.01Affected3.775-105.212.05
c.3119G>TG1040VLikely PathogenicUncertain 16-33443671-G-T42.48e-6-3.453Likely Benign0.645Likely PathogenicLikely Benign0.774Likely Pathogenic-2.89Deleterious0.827Possibly Damaging0.456Possibly Damaging-0.74Pathogenic0.01Affected3.775-1-34.642.08
c.314C>TS105LLikely BenignUncertain 26-33432179-C-T42.48e-6-3.710Likely Benign0.233Likely BenignLikely Benign0.095Likely Benign-1.52Neutral0.828Possibly Damaging0.048Benign4.06Benign0.00Affected4.321-3-24.626.08
c.3176G>CG1059ALikely BenignUncertain 16-33443728-G-C42.49e-6-6.754Likely Benign0.081Likely BenignLikely Benign0.329Likely Benign-0.17Neutral0.001Benign0.002Benign2.56Benign0.00Affected4.322102.214.03
c.3237C>AS1079RLikely BenignUncertain 16-33443789-C-A42.51e-6-4.579Likely Benign0.955Likely PathogenicAmbiguous0.123Likely Benign-1.81Neutral0.177Benign0.075Benign3.86Benign0.00Affected3.7750-1-3.769.11
c.3380G>CG1127ALikely BenignConflicting 46-33443932-G-C42.68e-6-5.949Likely Benign0.080Likely BenignLikely Benign0.164Likely Benign-0.43Neutral0.001Benign0.002Benign4.83Benign1.00Tolerated4.324102.214.03
c.3662G>AR1221QLikely BenignCoiled-coilConflicting 26-33446654-G-A42.48e-6-5.491Likely Benign0.115Likely BenignLikely Benign0.078Likely Benign-1.46Neutral0.836Possibly Damaging0.153Benign2.56Benign0.12Tolerated3.775111.0-28.06
c.36C>GS12RLikely BenignUncertain 16-33420300-C-G42.59e-6-4.033Likely Benign0.500AmbiguousLikely Benign0.097Likely Benign-0.30Neutral0.000Benign0.000Benign4.09Benign0.00Affected4.3210-1-3.769.11
c.3821G>AR1274HLikely Benign 16-33447869-G-A42.58e-6-5.259Likely Benign0.256Likely BenignLikely Benign0.149Likely Benign-3.20Deleterious1.000Probably Damaging0.995Probably Damaging2.49Pathogenic0.01Affected3.775021.3-19.05
c.3922C>TR1308CConflicting 26-33451796-C-T42.48e-6-4.994Likely Benign0.421AmbiguousLikely Benign0.352Likely Benign-4.89Deleterious0.999Probably Damaging0.993Probably Damaging2.31Pathogenic0.00Affected3.775-4-37.0-53.05
c.43G>AA15TLikely BenignUncertain 16-33420307-G-A42.60e-6-3.720Likely Benign0.125Likely BenignLikely Benign0.086Likely Benign-0.08Neutral0.602Possibly Damaging0.017Benign4.16Benign0.00Affected4.32110-2.530.03
c.103G>AV35ILikely BenignUncertain 16-33423512-G-A53.10e-6-3.764Likely Benign0.081Likely BenignLikely Benign0.017Likely Benign-0.32Neutral0.672Possibly Damaging0.369Benign4.16Benign0.00Affected4.321340.314.03
c.1066C>TR356C
(3D Viewer)
Likely PathogenicC2Likely Benign 16-33437971-C-T53.10e-6-11.827Likely Pathogenic0.774Likely PathogenicLikely Benign0.312Likely Benign0.76Ambiguous0.01.19Ambiguous0.98Ambiguous0.84Ambiguous-7.12Deleterious1.000Probably Damaging0.990Probably Damaging1.67Pathogenic0.00Affected3.3922-4-37.0-53.05212.391.0-0.10.3-0.30.1XPotentially PathogenicArg356 is located in a loop that includes a short helical section and connects two anti-parallel β sheet strands (res. Gly341-Pro349, res. Thr359-Pro364). In the WT simulations, the guanidinium group of Arg356 alternately forms salt bridges with the carboxylate groups of the GAP domain residues, Glu446 and Glu698. Arg356 also forms hydrogen bonds with the hydroxyl group of the GAP domain residue Thr691 and interacts with Met409 at the C2-GAP interface.In the variant simulations, the Cys356 mutation fails to maintain any of the Arg356 interactions and only occasionally forms weak hydrogen bonds with nearby C2 domain residues (e.g., Gln407). Although no negative structural effects are observed during the simulations, Arg356 is located at the C2 and GAP domain interface, making the residue swap potentially detrimental to the tertiary structure assembly.
c.1424G>AR475Q
(3D Viewer)
Likely PathogenicGAPUncertain 26-33438456-G-A53.10e-6-12.087Likely Pathogenic0.721Likely PathogenicLikely Benign0.632Likely Pathogenic0.71Ambiguous0.10.12Likely Benign0.42Likely Benign0.82Ambiguous-3.65Deleterious1.000Probably Damaging0.991Probably Damaging-1.32Pathogenic0.01Affected3.3928111.0-28.06253.652.70.00.0-0.80.0XXXPotentially PathogenicIn the WT simulations, the guanidinium group of Arg475, located near the end of an α-helix (res. Ala461-Phe476), stacks with the phenyl ring of Phe476 and forms a salt bridge with Glu472. Additionally, Arg475 occasionally forms another salt bridge with the carboxylate group of Glu486 on the α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. Therefore, Arg475 potentially plays a key role in positioning the loop by interacting with Glu486, which is necessary for the positioning of the “arginine finger” (Arg485) and, ultimately, for RasGTPase activation. In the variant simulations, Asn475 forms a hydrogen bond with Arg479 on the proceeding α-α loop. The absence of Phe476/Arg475 stacking and the Arg475-Glu472 salt bridge weakens the integrity of the terminal end of the α-helix during the variant simulations. Lastly, the potential effect of the residue swap on the SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.2158G>AD720N
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33441623-G-A53.10e-6-9.135Likely Pathogenic0.654Likely PathogenicLikely Benign0.289Likely Benign0.01Likely Benign0.0-0.20Likely Benign-0.10Likely Benign0.46Likely Benign-3.74Deleterious1.000Probably Damaging0.995Probably Damaging2.18Pathogenic0.01Affected3.509120.0-0.98
c.221G>AS74NLikely BenignUncertain 16-33425829-G-A53.10e-6-5.156Likely Benign0.112Likely BenignLikely Benign0.031Likely Benign-0.89Neutral0.043Benign0.007Benign4.09Benign0.00Affected4.32111-2.727.03
c.2443C>TR815CLikely PathogenicSH3-binding motifUncertain 16-33442995-C-T53.10e-6-9.373Likely Pathogenic0.828Likely PathogenicAmbiguous0.174Likely Benign-3.89Deleterious1.000Probably Damaging0.998Probably Damaging2.59Benign0.00Affected4.324-4-37.0-53.05
c.2596G>AV866ILikely BenignConflicting 36-33443148-G-A53.10e-6-4.652Likely Benign0.118Likely BenignLikely Benign0.059Likely Benign-0.39Neutral0.957Probably Damaging0.541Possibly Damaging2.69Benign0.27Tolerated3.824430.314.03
c.2650C>TR884WLikely BenignUncertain 16-33443202-C-T53.10e-6-3.785Likely Benign0.332Likely BenignLikely Benign0.151Likely Benign0.26Neutral0.995Probably Damaging0.812Possibly Damaging2.56Benign0.05Affected4.324-323.630.03
c.2651G>AR884QLikely BenignUncertain 26-33443203-G-A53.10e-6-3.785Likely Benign0.128Likely BenignLikely Benign0.055Likely Benign-0.42Neutral0.012Benign0.004Benign2.62Benign0.36Tolerated4.324111.0-28.06

Found 757 rows. Show 200 rows per page. Page 3/4 |