SynGap Missense Server

Table of SynGAP1 Isoform α2 (UniProt Q96PV0-1) Missense Variants.

c.dna Variant SGM Consensus Domain ClinVar gnomAD ESM1b AlphaMissense REVEL FoldX Rosetta Foldetta PremPS PROVEAN PolyPhen-2 HumDiv PolyPhen-2 HumVar FATHMM SIFT PAM Physical SASA Normalized B-factor backbone Normalized B-factor sidechain SynGAP Structural Annotation DOI
Clinical Status Review Subm. ID Allele count Allele freq. LLR score Prediction Pathogenicity Class Optimized Score Prediction Average ΔΔG Prediction StdDev ΔΔG Prediction ΔΔG Prediction ΔΔG Prediction Score Prediction pph2_prob Prediction pph2_prob Prediction Nervous System Score Prediction Prediction Status Conservation Sequences PAM250 PAM120 Hydropathy Δ MW Δ Average Δ Δ StdDev Δ StdDev Secondary Tertiary bonds Inside out GAP-Ras interface At membrane No effect MD Alert Verdict Description
c.1004G>AR335H
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437909-G-A21.24e-6-12.521Likely Pathogenic0.831Likely PathogenicAmbiguous0.132Likely Benign0.58Ambiguous0.10.22Likely Benign0.40Likely Benign0.72Ambiguous-3.02Deleterious1.000Probably Damaging0.998Probably Damaging1.70Pathogenic0.03Affected3.3822201.3-19.05242.482.1-2.40.6-0.10.1UncertainThe guanidinium group of Arg335, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Ala322-Asp330, res. Gly341-Pro349), faces the post-synaptic inner membrane surface. In the WT simulations, the Arg335 side chain dynamically forms salt bridges with the carboxylate groups of Asp322, Asp338, and Asp616. In contrast, the imidazole ring of His335, which is not double protonated and thus not positively charged in the variant simulations, continues to move dynamically without forming any lasting or strong interactions. Importantly, the positively charged arginine residues of the C2 domain are ideal membrane anchors for ensuring SynGAP-membrane association. However, this phenomenon cannot be addressed using solvent-only simulations.
c.1202G>AR401Q
(3D Viewer)
Likely PathogenicC2Uncertain 16-33438107-G-A-11.213Likely Pathogenic0.969Likely PathogenicLikely Pathogenic0.780Likely Pathogenic0.96Ambiguous0.11.50Ambiguous1.23Ambiguous1.20Destabilizing-3.69Deleterious0.999Probably Damaging0.978Probably Damaging5.47Benign0.04Affected3.3827111.0-28.06
c.1214G>CR405P
(3D Viewer)
Likely PathogenicC2Uncertain 1-14.206Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.572Likely Pathogenic3.11Destabilizing0.35.19Destabilizing4.15Destabilizing1.26Destabilizing-6.32Deleterious1.000Probably Damaging1.000Probably Damaging3.62Benign0.01Affected3.3828-202.9-59.07
c.1221G>TQ407H
(3D Viewer)
Likely PathogenicC2Uncertain 1-10.526Likely Pathogenic0.830Likely PathogenicAmbiguous0.206Likely Benign0.59Ambiguous0.00.61Ambiguous0.60Ambiguous1.10Destabilizing-4.51Deleterious0.982Probably Damaging0.947Probably Damaging3.88Benign0.01Affected3.3828030.39.01
c.1231A>GI411V
(3D Viewer)
Likely BenignGAPLikely Benign 1-6.290Likely Benign0.385AmbiguousLikely Benign0.212Likely Benign0.74Ambiguous0.00.82Ambiguous0.78Ambiguous0.99Ambiguous-0.86Neutral0.935Possibly Damaging0.858Possibly Damaging3.90Benign0.27Tolerated3.382843-0.3-14.03233.328.2-0.20.0-0.20.0XPotentially BenignThe sec-butyl side chain of Ile411, located in the hydrophobic space between an anti-parallel β sheet strand (res. Pro398-Ile411) and an α helix (res. Asp684-Gln702), packs against multiple residues (e.g., Met409, Arg259). In the variant simulations, the side chain of Val411 is able to favorably fill the same hydrophobic niche despite its slightly smaller size. In short, the residue swap has no apparent negative effect on the structure based on the simulations.
c.1195G>AA399T
(3D Viewer)
Likely BenignC2Benign 1-5.236Likely Benign0.114Likely BenignLikely Benign0.272Likely Benign1.24Ambiguous0.10.91Ambiguous1.08Ambiguous0.49Likely Benign-0.40Neutral0.131Benign0.039Benign5.41Benign0.69Tolerated3.382610-2.530.03211.4-41.40.00.00.60.4XPotentially PathogenicThe methyl group of Ala399, located in an anti-parallel β sheet strand (res. Ala399-Ile411), is swapped for a hydroxyl-containing threonine. In the variant simulations, the hydroxyl group of Thr399 can form H-bonds with the backbone atoms of the residues in the membrane-facing loops (e.g., Gly382) in the C2 domain. Consequently, the ability of the Thr399 side chain to form H-bonds with the membrane-facing loops could adversely affect the dynamics and stability of the SynGAP-membrane association. However, since the effects on the dynamics of the membrane-facing loops can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1198G>CV400L
(3D Viewer)
Likely BenignC2Benign 16-33438103-G-C221.36e-5-1.000Likely Benign0.137Likely BenignLikely Benign0.325Likely Benign-0.71Ambiguous0.20.39Likely Benign-0.16Likely Benign-0.29Likely Benign-0.60Neutral0.001Benign0.001Benign5.33Benign0.64Tolerated3.382721-0.414.03251.0-30.10.00.00.70.1XPotentially BenignThe iso-propyl side chain of Val400, located in an anti-parallel β sheet strand (res. Ala399-Ile411), hydrophobically packs against hydrophobic residues within the anti-parallel β sheet of the C2 domain (e.g., Ile268, Ala404, Leu325, Leu402). Val400 is swapped for another hydrophobic residue, leucine, whose branched hydrocarbon side chain is of a comparable size and thus packs favorably within the C2 domain. In short, the residue swap has no apparent negative effect on the structure based on the variant simulations.10.1016/j.ajhg.2020.11.011
c.1199T>AV400E
(3D Viewer)
Likely PathogenicC2Uncertain 1-13.686Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.810Likely Pathogenic3.70Destabilizing0.22.46Destabilizing3.08Destabilizing2.29Destabilizing-4.88Deleterious0.920Possibly Damaging0.335Benign5.31Benign0.00Affected3.3827-2-2-7.729.98249.1-38.8-0.10.11.00.0XXXPotentially PathogenicThe iso-propyl side chain of Val400, located in an anti-parallel β sheet strand (res. Ala399-Ile411), hydrophobically packs against hydrophobic residues within the anti-parallel β sheet of the C2 domain (e.g., Ile268, Ala404, Leu325, Leu402). In the variant simulations, the negatively charged carboxylate group of the Glu400 side chain is not suitable for occupying the hydrophobic niche. Consequently, the side chain escapes the center of the C2 domain and interacts with the backbone amide groups of Leu402 in the same β strand and/or Ile269 and Glu270 in a neighboring β strand (res. Arg259-Arg272). This residue swap disrupts the hydrophobic packing and generally has extensive negative effects on the C2 domain structure. At a minimum, the residue swap could affect the C2 domain stability and membrane association.
c.1205T>GL402R
(3D Viewer)
Likely PathogenicC2Likely Pathogenic1-13.800Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.522Likely Pathogenic4.10Destabilizing0.23.82Destabilizing3.96Destabilizing2.24Destabilizing-4.69Deleterious0.967Probably Damaging0.459Possibly Damaging3.69Benign0.00Affected3.3828-3-2-8.343.03259.5-55.40.00.01.40.0XXXPotentially PathogenicThe iso-butyl side chain of Leu402, located in an anti-parallel β sheet strand (res. Ala399-Ile411), packs with residues inside the hydrophobic core of the C2 domain (e.g., Ile268, Ala404, Leu266, Val400). In the variant simulations, the positively charged guanidinium group of the Arg402 side chain is not suitable for the hydrophobic niche. Consequently, the side chain moves outward from the hydrophobic C2 domain core and stacks with the phenol ring of Tyr363 or forms H-bonds with the carboxamide group of the Gln361 side chain in the β sheet strand (res. Thr359-Tyr364). This movement induces extensive negative effects on the C2 domain structure.
c.1213C>TR405C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33438118-C-T63.72e-6-9.206Likely Pathogenic0.713Likely PathogenicLikely Benign0.427Likely Benign0.72Ambiguous0.11.51Ambiguous1.12Ambiguous1.21Destabilizing-7.27Deleterious1.000Probably Damaging1.000Probably Damaging3.61Benign0.02Affected3.3828-4-37.0-53.05221.382.6-0.10.0-0.20.3XXPotentially PathogenicThe guanidinium group of Arg405, located in an anti-parallel β sheet strand of the C2 domain (res. Ala399-Ile411), forms a salt bridge with the carboxylate group of the Glu446 side chain from an opposing α helix (res. Val441-Ser457) in the GAP domain. The positively charged Arg405 side chain also stacks with the aromatic ring of the Phe358 side chain from a loop preceding the β strand (res. Thr359-Thr366), which could assist in maintaining the anti-parallel strand arrangement.In the variant simulations, the thiol-containing side chain of Cys405 is neutral and smaller compared to the arginine side chain. The lack of Arg405-Phe358 stacking affects the loop structure, causing it to assume a β strand form—an effect that could be exacerbated during protein folding. Moreover, the inability of Cys405 to form a salt bridge with Glu446 could affect the tertiary structure assembly, although this is not apparent based on the variant simulations.
c.1214G>AR405H
(3D Viewer)
Likely PathogenicC2Conflicting 26-33438119-G-A42.48e-6-9.081Likely Pathogenic0.706Likely PathogenicLikely Benign0.371Likely Benign2.79Destabilizing0.61.85Ambiguous2.32Destabilizing1.26Destabilizing-4.54Deleterious1.000Probably Damaging0.991Probably Damaging3.65Benign0.01Affected3.3828201.3-19.05214.0102.2-0.10.0-0.70.1XPotentially PathogenicThe guanidinium group of Arg405, located in an anti-parallel β sheet strand of the C2 domain (res. Pro398-Ile411), forms a salt bridge with the carboxylate group of the Glu446 side chain from an opposing α helix (res. Val441-Ser457) in the GAP domain. The positively charged Arg405 side chain also stacks with the aromatic ring of the Phe358 side chain from a loop preceding the β strand (res. Thr359-Thr366), which could assist in maintaining the anti-parallel strand arrangement.In the variant simulations, the imidazole ring of His405 does not stack with the aromatic ring of Phe358 nor form any lasting H-bonds with the loop residues. The imidazole ring of His405 (neutral and epsilon protonated in the simulations) is unable to form a salt bridge with Glu446, which could affect the tertiary structure assembly, although this is not apparent based on the variant simulations.
c.1285C>TR429W
(3D Viewer)
GAPConflicting 56-33438190-C-T654.03e-5-10.666Likely Pathogenic0.500AmbiguousLikely Benign0.282Likely Benign0.31Likely Benign0.1-0.13Likely Benign0.09Likely Benign0.52Ambiguous-3.19Deleterious1.000Probably Damaging0.990Probably Damaging3.41Benign0.03Affected3.38252-33.630.03252.345.50.00.00.20.1XPotentially PathogenicThe guanidinium group of Arg429, located in an α helix (res. Met414-Glu436), either forms a salt bridge with the carboxylate group of an acidic residue (Asp474, Asp467) or a H-bond with the hydroxyl group of Ser471 in an opposing α helix (res. Ala461-Phe476). In the variant simulations, the indole ring of the Trp429 side chain cannot form ionic interactions with the acidic residues. Although it forms a H-bond with Ser471, the bonding is not as strong as that of arginine. The residue swap could affect the tertiary structure assembly during folding; however, no large-scale negative effects were seen during the simulations.
c.1286G>AR429Q
(3D Viewer)
Likely BenignGAPUncertain 26-33438191-G-A106.20e-6-8.227Likely Pathogenic0.143Likely BenignLikely Benign0.156Likely Benign0.45Likely Benign0.10.36Likely Benign0.41Likely Benign0.98Ambiguous-1.25Neutral1.000Probably Damaging0.979Probably Damaging3.47Benign0.58Tolerated3.3825111.0-28.06235.859.50.00.0-0.30.4XPotentially PathogenicThe guanidinium group of the Arg429 side chain, located in an α helix (res. Met414-Glu436), either forms a salt bridge with the carboxylate group of an acidic residue (Asp474, Asp467) or an H-bond with the hydroxyl group of Ser471 in an opposing α helix (res. Ala461-Phe476). In the variant simulations, Gln429 cannot form ionic interactions with the acidic residues; however, the carboxamide group can form multiple H-bonds. The H-bonding coordination of the Asn429 side chain varied between the replica simulations. In one simulation, three H-bonds were formed simultaneously with the Asp467 side chain, the backbone carbonyl group of Asn426, and the amide group of Met430 at the end of the same α helix. The residue swap could affect the tertiary structure assembly during folding due to weaker bond formation, but no large-scale negative effects were seen during the simulations.
c.1312G>AA438T
(3D Viewer)
Likely BenignGAPConflicting 36-33438217-G-A169.91e-6-5.339Likely Benign0.085Likely BenignLikely Benign0.021Likely Benign0.21Likely Benign0.0-0.07Likely Benign0.07Likely Benign0.36Likely Benign-0.81Neutral0.300Benign0.011Benign4.18Benign0.14Tolerated3.382610-2.530.03214.2-42.7-0.30.1-0.40.1XPotentially BenignThe methyl group of Ala438, located in a four-residue loop connecting two α helices (res. Asn440-Thr458 and Pro413-Glu436), packs against hydrophobic residues from a nearby α helix or loop residues (e.g., Leu703, Val699). In the variant simulations, the methyl group of Thr438 is able to establish similar hydrophobic packing. Moreover, the hydroxyl group also H-bonds with nearby residues, such as the carbonyl group of the neighboring loop residue Pro437. Accordingly, the residue swap does not generate an apparent negative effect on the protein structure based on the simulations.
c.1763T>CL588P
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.771Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.932Likely Pathogenic5.61Destabilizing0.512.91Destabilizing9.26Destabilizing2.33Destabilizing-6.97Deleterious1.000Probably Damaging1.000Probably Damaging-1.42Pathogenic0.00Affected3.3834-3-3-5.4-16.04
c.1976C>TS659F
(3D Viewer)
Likely PathogenicGAPUncertain 1-10.925Likely Pathogenic0.662Likely PathogenicLikely Benign0.194Likely Benign-0.81Ambiguous0.1-0.25Likely Benign-0.53Ambiguous0.32Likely Benign-4.59Deleterious0.806Possibly Damaging0.171Benign3.39Benign0.05Affected3.3828-3-23.660.10221.3-61.20.00.00.60.4XPotentially BenignIn the WT simulations, the hydroxyl group of Ser659, located in a kink in the middle of the long α-helix (res. Ser641-Glu666), forms a hydrogen bond with the carboxylate group of Glu656. However, the phenol ring of the Phe659 side chain cannot form a similar hydrogen bond. Instead, it interacts with the hydrophobic isopropyl side chain of Val555 from the opposing α-helix (res. Ala533-Val560). This residue swap may therefore cause issues during protein folding.
c.1763T>AL588H
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-16.947Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.939Likely Pathogenic4.20Destabilizing0.23.69Destabilizing3.95Destabilizing2.26Destabilizing-6.97Deleterious1.000Probably Damaging1.000Probably Damaging-1.42Pathogenic0.00Affected3.3834-2-3-7.023.98214.320.90.00.00.00.2XXXPotentially PathogenicThe isobutyl group of the Leu588 side chain, located in an α helix (res. Glu582-Met603), packs against hydrophobic residues in the inter-helix hydrophobic space (e.g., Ile584, Trp572, Phe484, Met470, Val473, Ile483).In the variant simulations, the imidazole ring of His588 is aromatic but contains polar delta and epsilon nitrogen atoms that are not suited for the hydrophobic niche. The protonated epsilon nitrogen forms a hydrogen bond with the backbone carbonyl group of Ala469, which can disrupt the continuity of the opposing α helix (res. Phe476-Lys460).While the residue swap could affect the tertiary assembly and the underlying protein folding process, it is difficult to determine if the mutation would be tolerated based solely on the variant simulations.
c.1947G>CM649I
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.361Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.449Likely Benign2.42Destabilizing0.21.96Ambiguous2.19Destabilizing1.01Destabilizing-3.99Deleterious0.672Possibly Damaging0.093Benign3.40Benign0.02Affected3.3827212.6-18.03243.721.50.00.10.00.1XPotentially BenignThe thioether side chain of Met649, located on an α helix (res. Ser641-Glu666), bridges Phe652, Phe648, and Phe639 in an inter-helix hydrophobic cavity in the WT simulations. In the variant simulations, the sec-butyl side chain of Ile649 maintains hydrophobic interactions with nearby residues, with no significant effects on the protein structure.However, methionine is known as a bridging motif for aromatic residues, and these Met-aromatic interactions are lost in the variant. Indeed, in the second variant simulation,the bridging of Phe652, Phe648 and Phe639 is completely lost. In reality, the effect could be more severe on the structure during the protein folding.
c.1991T>CL664S
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33441250-T-C16.20e-7-16.498Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.543Likely Pathogenic3.75Destabilizing0.23.63Destabilizing3.69Destabilizing2.77Destabilizing-5.99Deleterious1.000Probably Damaging0.996Probably Damaging2.85Benign0.00Affected3.3828-3-2-4.6-26.08215.550.10.00.0-0.20.2XPotentially BenignThe iso-butyl side chain of L664, located on an α-helix (res. Ser641-Glu666), hydrophobically interacts with residues in the inter-helix space between three helices (res. Glu617-Asn635, res. Glu582-Met603, and res. Ser641-Glu666), such as Ile589, Phe663, and Met660. In the variant simulations, the hydroxyl group of Ser664 forms hydrogen bonds with the backbone carbonyl oxygen of another helix residue, such as Met660 or Gln661. This interaction is known to destabilize hydrogen bonding in the α-helix, but this effect was not observed in the simulations. Additionally, Ser664 occasionally forms hydrogen bonds with the carboxylate group of Asp586 on another α-helix (res. Glu582-Met603), which could minimally influence the tertiary structure assembly. Despite these interactions, no major negative effects on the protein structure were observed during the simulations.
c.1997A>GE666G
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33441256-A-G106.20e-6-12.261Likely Pathogenic0.911Likely PathogenicAmbiguous0.522Likely Pathogenic1.57Ambiguous0.11.46Ambiguous1.52Ambiguous0.93Ambiguous-6.25Deleterious1.000Probably Damaging0.970Probably Damaging3.37Benign0.02Affected3.38280-23.1-72.06173.998.50.00.0-0.70.0XPotentially PathogenicIn the WT simulations, the carboxylate group of Glu666, located on the α-helix (res. Ser641-Glu666), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), such as Lys566, Thr672, and Asn669. In the variant simulations, the carbonyl group of Gly666 occasionally forms hydrogen bonds with Lys566 and Asn669. However, Gly666 lacks a side chain and thus cannot maintain as well-coordinated a hydrogen-bond network as Glu666 in the WT, which may affect the tertiary structure assembly.
c.1998G>CE666D
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.820Likely Pathogenic0.704Likely PathogenicLikely Benign0.197Likely Benign0.88Ambiguous0.00.37Likely Benign0.63Ambiguous1.05Destabilizing-2.69Deleterious0.992Probably Damaging0.603Possibly Damaging3.43Benign0.06Tolerated3.3828320.0-14.03237.216.50.00.0-0.30.1XPotentially PathogenicThe carboxylate group of Glu666, located on the α-helix (res. Ser641-Glu666), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), such as Lys566, Thr672, and Asn669, in the WT simulations. In the variant simulations, the shorter side chain of Asp666 cannot maintain these interactions as efficiently as Glu666 in the WT, resulting in a less coordinated hydrogen-bond network.
c.2003C>TS668F
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-15.047Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.643Likely Pathogenic16.72Destabilizing5.011.07Destabilizing13.90Destabilizing0.00Likely Benign-5.98Deleterious0.999Probably Damaging0.935Probably Damaging3.18Benign0.00Affected3.3828-3-23.660.10250.9-59.6-0.10.10.00.1XXXPotentially PathogenicIn the WT simulations, the hydroxyl side chain of Ser668, located on an α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), forms hydrogen bonds with the backbone carbonyl groups of Leu664, Tyr665, and Glu666, as well as the guanidinium group of Arg573 on a nearby α-helix (res. Arg563-Glu578). In the variant simulations, the side chain of Phe668 cannot maintain the same hydrogen-bond network. Due to its larger size, it moves away to avoid steric hindrance. In the WT simulations, a network of hydrogen bonds between several residues (e.g., Asn669, Lys566, and Glu666) keeps both α-helices and the proceeding loop (res. Asn669-Asp684) tightly connected, but this setup is not present in the variant simulations. Additionally, in the variant simulations, the side chain of Arg573 shifts to form a more stable salt bridge with the carboxylate group of Glu582 instead of hydrogen bonding with Ser668 as in the WT simulations.
c.860A>CD287A
(3D Viewer)
Likely PathogenicC2Uncertain 1-14.686Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.484Likely Benign0.30Likely Benign0.1-0.04Likely Benign0.13Likely Benign0.40Likely Benign-7.35Deleterious1.000Probably Damaging0.998Probably Damaging1.58Pathogenic0.01Affected3.3823-205.3-44.01
c.862G>AD288N
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437767-G-A21.24e-6-10.535Likely Pathogenic0.521AmbiguousLikely Benign0.321Likely Benign-0.39Likely Benign0.10.01Likely Benign-0.19Likely Benign-0.03Likely Benign-3.73Deleterious0.999Probably Damaging0.997Probably Damaging1.78Pathogenic0.05Affected3.3823120.0-0.98
c.910G>AD304N
(3D Viewer)
C2Uncertain 1-6.194Likely Benign0.391AmbiguousLikely Benign0.345Likely Benign0.30Likely Benign0.1-0.08Likely Benign0.11Likely Benign0.21Likely Benign-4.18Deleterious0.999Probably Damaging0.997Probably Damaging1.81Pathogenic0.03Affected3.3823120.0-0.98
c.791T>AL264Q
(3D Viewer)
Likely PathogenicC2Uncertain 1-15.729Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.678Likely Pathogenic3.43Destabilizing0.12.41Destabilizing2.92Destabilizing2.48Destabilizing-5.52Deleterious1.000Probably Damaging0.999Probably Damaging0.49Pathogenic0.00Affected3.3818-2-2-7.314.97254.7-7.60.00.00.00.3XXXPotentially PathogenicThe iso-butyl branched hydrocarbon side chain of Leu264, located at the end of an anti-parallel β sheet strand (res. Arg259-Arg272), packs against multiple hydrophobic residues such as Leu266, Phe314, Leu317, and Leu323 in the WT simulations. In the variant simulations, the hydrophilic carboxamide group of the Gln264 side chain is not suitable for the hydrophobic niche, causing the hydrophobic residues to make room for the swapped residue. Additionally, the carboxamide group of Gln264 forms hydrogen bonds with the backbone amide groups of Arg405 and Lys256 in the β sheet and the carbonyl group of Val350 in an α helical section of a nearby loop (res. Pro359-Phe358). The residue swap disrupts the packing of the C2 domain, which could adversely affect the C2 domain structure during folding. This disruption could potentially weaken the stability of the SynGAP-membrane association.
c.929A>GE310G
(3D Viewer)
Likely PathogenicC2Pathogenic 1-14.132Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.848Likely Pathogenic2.38Destabilizing0.73.56Destabilizing2.97Destabilizing0.36Likely Benign-6.43Deleterious1.000Probably Damaging0.996Probably Damaging1.12Pathogenic0.00Affected3.3819-203.1-72.06
c.958G>AV320I
(3D Viewer)
Likely BenignC2Uncertain 1-5.220Likely Benign0.111Likely BenignLikely Benign0.027Likely Benign-0.27Likely Benign0.20.66Ambiguous0.20Likely Benign0.01Likely Benign-0.21Neutral0.198Benign0.114Benign1.77Pathogenic0.45Tolerated3.3823340.314.03
c.958G>CV320L
(3D Viewer)
C2Uncertain 16-33437863-G-C63.72e-6-6.207Likely Benign0.362AmbiguousLikely Benign0.096Likely Benign-0.26Likely Benign0.21.33Ambiguous0.54Ambiguous0.51Ambiguous-1.02Neutral0.900Possibly Damaging0.373Benign1.78Pathogenic0.92Tolerated3.382321-0.414.03245.8-10.20.30.90.10.3XPotentially BenignThe isopropyl side chain of Val310, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Thr305-Asn315, res. Ala322-Asp330), hydrophobically packs with the side chains of nearby residues (e.g., Leu286, Val350, Pro318). The hydrophobic Leu320 side chain mostly forms the same interactions; hence, the residue swap does not seem to negatively affect the protein structure based on the variant simulations.
c.812C>AA271D
(3D Viewer)
Likely PathogenicC2Pathogenic 1-18.590Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.706Likely Pathogenic4.71Destabilizing0.42.67Destabilizing3.69Destabilizing1.59Destabilizing-5.52Deleterious1.000Probably Damaging0.999Probably Damaging0.62Pathogenic0.00Affected3.38190-2-5.344.01226.2-63.40.00.00.90.1XXXXPotentially PathogenicThe methyl group of Ala271, located near the end of an anti-parallel β sheet strand (res. Arg259-Arg272), packs against multiple hydrophobic residues such as Val400, Val306, and Leu274 in the WT simulations. In the variant simulations, the carboxylate group of Asp271 is not suitable for the hydrophobic niche, causing the hydrophobic residues to make room for the swapped residue. Additionally, the carboxylate group of the Asp271 side chain forms hydrogen bonds with the backbone amide groups of Arg272 and Ala399 in the β sheet, or even forms a salt bridge with the amino group of the Lys394 side chain. This directly affects the integrity of the anti-parallel β sheet at the end. In short, the residue swap disrupts the C2 domain packing during folding, which could weaken the stability of the SynGAP-membrane association.
c.815G>AR272Q
(3D Viewer)
C2Uncertain 26-33437720-G-A148.67e-6-9.559Likely Pathogenic0.286Likely BenignLikely Benign0.321Likely Benign0.73Ambiguous0.10.15Likely Benign0.44Likely Benign1.00Destabilizing-1.81Neutral0.999Probably Damaging0.994Probably Damaging1.88Pathogenic0.03Affected3.3819111.0-28.06255.752.90.00.0-0.20.1XUncertainThe guanidinium group of Arg272, located at the end of an anti-parallel β sheet strand (res. Arg259-Arg272), is stably maintained in an upright and outward position via stacking with the indole ring of the Trp362 side chain in another β strand (res. Thr359-Pro364). In the WT simulations, Arg272 forms hydrogen bonds with the glycine-rich Ω loop residues (res. Val365-Pro398, e.g., Gly380) and creates a salt bridge with the carboxylate group of the Asp304 side chain.In the variant simulations, the carboxamide group of the Gln272 side chain does not stack with the indole ring of Trp362 as stably as the guanidinium group of Arg272 in the WT. Consequently, the Gln272 side chain is freer to interact with the loop residues than Arg272, potentially negatively affecting the dynamic SynGAP-membrane association. Additionally, Arg272 faces the RasGTPase interface, so the residue swap could impact the SynGAP-Ras complex formation and GTPase activation.
c.819G>TE273D
(3D Viewer)
Likely BenignC2Benign 16-33437724-G-T21.24e-6-1.811Likely Benign0.058Likely BenignLikely Benign0.092Likely Benign0.26Likely Benign0.1-0.48Likely Benign-0.11Likely Benign-0.63Ambiguous1.99Neutral0.004Benign0.010Benign2.00Pathogenic1.00Tolerated3.3818320.0-14.03223.122.10.20.00.00.1XPotentially BenignThe negatively charged residue Glu273, located in a β hairpin loop (res. Glu273-Lys278) that connects two anti-parallel β sheet strands, is replaced with another negatively charged residue, aspartate. Because the C2 domain loop faces the membrane surface, the potentially crucial role of the carboxylate group of Glu273 or Asp273 on SynGAP-membrane association cannot be fully explored via solvent-only simulations.As a minor note, the neighboring residue Arg272, which stacks with the indole ring of the Trp362 side chain and directly faces RasGTPase, forms a salt bridge more often with Asp273 than with the non-mutated Glu273 in the simulations. Regardless, due to the similar physicochemical properties of the WT and variant residues at the membrane interface, the residue swap is likely to be well tolerated.
c.821T>AL274Q
(3D Viewer)
Likely PathogenicC2Uncertain 1-15.518Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.774Likely Pathogenic2.54Destabilizing0.31.74Ambiguous2.14Destabilizing1.97Destabilizing-5.42Deleterious1.000Probably Damaging0.999Probably Damaging0.00Pathogenic0.00Affected3.3819-2-2-7.314.97245.91.80.00.00.10.2XXXPotentially PathogenicThe aliphatic side chain of Leu274, located in a β hairpin loop (res. Glu273-Lys278) connecting two anti-parallel β sheet strands, packs against multiple hydrophobic residues facing the β sheet (e.g., Ala271, Leu327, Tyr280, Val306). The hydrophilic carboxamide group of the Gln274 side chain is not suitable for this hydrophobic niche, causing nearby residues to adjust to make room for the hydrophilic glutamine. Additionally, a new hydrogen bond forms with the backbone carboxyl group of Arg272 in another β strand (res. Glu273-Arg259).As a result, the backbone amide group of Ala399 and the carbonyl group of Arg272, which connect two β strands at the β sheet end, form fewer hydrogen bonds in the variant than in the WT simulations. Although no major secondary structure disruption is observed in the variant simulations, the residue swap could profoundly affect the C2 domain folding, as the hydrophobic packing of Leu274 is crucial for maintaining the loop's contact with the rest of the C2 domain. Lastly, because the Leu274-containing loop faces the membrane surface, the residue swap could also negatively impact the SynGAP-membrane association.
c.961C>TR321C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33437866-C-T95.58e-6-10.025Likely Pathogenic0.387AmbiguousLikely Benign0.495Likely Benign0.57Ambiguous0.10.56Ambiguous0.57Ambiguous0.18Likely Benign-4.59Deleterious1.000Probably Damaging0.998Probably Damaging1.89Pathogenic0.01Affected3.3823-3-47.0-53.05
c.859G>CD287H
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-14.518Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.589Likely Pathogenic0.48Likely Benign0.30.32Likely Benign0.40Likely Benign0.63Ambiguous-6.43Deleterious1.000Probably Damaging0.999Probably Damaging1.51Pathogenic0.00Affected3.38231-10.322.05235.63.80.11.20.10.1XXPotentially PathogenicThe carboxylate group of Asp287, located at the beginning of a β hairpin loop connecting two anti-parallel β sheet strands (res. Arg279-Leu286, res. Met289-Pro298), maintains a salt bridge with the guanidinium group of Arg324 in the β sheet during the WT simulations. In the variant simulations, the imidazole ring of the His287 side chain is unable to form a salt bridge with Arg324 or establish any other stable compensatory interactions, which could weaken the beta sandwich assembly of the C2 domain. This destabilization of the C2 domain could adversely affect the stability of the SynGAP-membrane association.
c.859G>TD287Y
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-12.877Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.663Likely Pathogenic0.21Likely Benign0.20.48Likely Benign0.35Likely Benign0.27Likely Benign-8.27Deleterious1.000Probably Damaging0.999Probably Damaging1.51Pathogenic0.00Affected3.3823-4-32.248.09257.8-44.4-0.61.60.20.3XXPotentially PathogenicThe carboxylate group of Asp287, located at the beginning of a β hairpin loop linking two anti-parallel β sheet strands (res. Arg279-Leu286, res. Met289-Pro298), maintains a salt bridge with the guanidinium group of Arg324 in the β sheet during the WT simulations. In the variant simulations, the phenol group of the Tyr287 side chain is unable to form a salt bridge with the guanidinium group of Arg324, which could weaken the tertiary structure assembly of the C2 domain. However, the phenol group of Tyr287 frequently stacks with the Arg324 guanidinium side chain, which could help maintain the tertiary structure, especially compared to the D287H variant. The destabilization of the C2 domain could adversely affect the stability of the SynGAP-membrane association.
c.865A>GM289V
(3D Viewer)
Likely BenignC2Benign 1-4.239Likely Benign0.117Likely BenignLikely Benign0.150Likely Benign1.09Ambiguous0.1-0.27Likely Benign0.41Likely Benign0.24Likely Benign-0.36Neutral0.136Benign0.054Benign1.80Pathogenic1.00Tolerated3.3823212.3-32.06204.251.00.00.00.20.0XPotentially BenignThe hydrophobic residue Met289, located in a β hairpin linking two anti-parallel β sheet strands (res. Met289-Arg299, res. Arg272-Leu286), is swapped for another hydrophobic residue, valine. In the variant simulations, the branched hydrocarbon side chain of Val289 packs against the phenol group of the Tyr291 side chain but is unable to form methionine-aromatic interactions. β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. However, based on the simulations, the residue swap does not cause adverse effects on the structure.
c.872A>GY291C
(3D Viewer)
Likely PathogenicC2Uncertain 1-8.997Likely Pathogenic0.967Likely PathogenicLikely Pathogenic0.505Likely Pathogenic2.90Destabilizing0.43.51Destabilizing3.21Destabilizing1.35Destabilizing-7.37Deleterious1.000Probably Damaging0.999Probably Damaging1.76Pathogenic0.01Affected3.38230-23.8-60.04205.266.10.10.0-0.40.4XXPotentially PathogenicThe phenol group of the Tyr291 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), packs against hydrophobic residues of the C2 and PH domains (e.g., Leu317, Leu286, Leu284, Pro208, Val209). The phenol ring of Tyr291 also forms favorable Met-aromatic stacking with the methyl group of Met289. In the variant simulation, the thiol group of the Cys291 side chain is not as suitable for the hydrophobic inter-domain space as the phenol ring of Tyr291. Consequently, the structural unity of the PH domain is weakened and ultimately unfolds in the second simulation. Moreover, the residue swap might result in severe detrimental effects on the C2 domain structure and the C2-PH domain tertiary structure assembly during folding.
c.877C>TR293C
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437782-C-T31.86e-6-12.844Likely Pathogenic0.985Likely PathogenicLikely Pathogenic0.579Likely Pathogenic1.38Ambiguous0.10.62Ambiguous1.00Ambiguous0.02Likely Benign-7.35Deleterious1.000Probably Damaging0.998Probably Damaging1.46Pathogenic0.00Affected3.3823-4-37.0-53.05226.096.50.00.00.10.1XXXPotentially PathogenicThe guanidinium group of the Arg293 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), packs against the phenol ring of the Tyr281 side chain or forms a salt bridge with the carboxylate group of Glu283 on the outer side of the C2 domain. The positively charged guanidinium side chain of arginine is on the outside surface of the hydrophobic C2 domain, resulting in a twist in the β strand. Although this twist is maintained in the variant simulations, replacing the positively charged residue with a more hydrophobic one, such as cysteine, could remove the twist during protein folding.Because Arg293 is positioned at the C2 and PH domain interface, the residue swap could significantly impact the tertiary structure assembly. Notably, Arg293 is located at the SynGAP-Ras interface, and its role in complex formation cannot be fully understood through solvent-only simulations.
c.878G>CR293P
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-16.275Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.497Likely Benign3.62Destabilizing0.49.06Destabilizing6.34Destabilizing0.47Likely Benign-6.43Deleterious1.000Probably Damaging0.999Probably Damaging1.45Pathogenic0.01Affected3.38230-22.9-59.07202.3132.00.10.00.10.1XXXPotentially PathogenicThe guanidinium group of the Arg293 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), packs against the phenol ring of the Tyr281 side chain or forms a salt bridge with the carboxylate group of Glu283 on the outer side of the C2 domain. In the WT simulations, the positively charged side chain of arginine remains outside the hydrophobic C2 domain, resulting in a twist in the β strand. The backbone amide bond of Arg293 potentially maintains this twist by forming a hydrogen bond with the carbonyl group of His210 or the hydroxyl group of Ser211 in the anti-parallel β sheet.Although this twist is also maintained in the variant simulations, replacing the positively charged residue with proline, which lacks the backbone amide group altogether, causes the β strand to unfold. Because Arg293 is positioned at the C2 and PH domain interface, the residue swap could significantly impact the tertiary structure assembly. Notably, Arg293 is located at the SynGAP-Ras interface, and its role in complex formation cannot be fully understood through solvent-only simulations.
c.917T>AV306D
(3D Viewer)
Likely PathogenicC2Uncertain 1-18.289Likely Pathogenic0.986Likely PathogenicLikely Pathogenic0.530Likely Pathogenic4.40Destabilizing0.34.29Destabilizing4.35Destabilizing2.44Destabilizing-5.44Deleterious1.000Probably Damaging0.999Probably Damaging1.74Pathogenic0.00Affected3.3819-2-3-7.715.96212.3-18.3-0.20.40.00.2XXXPotentially PathogenicThe isopropyl group of Val396, located at the beginning of an anti-parallel β sheet strand (res. Thr305-Asn315), packs against multiple hydrophobic residues (e.g., Leu274, Trp308, Ala271) in the WT simulations. However, in the variant simulations, the negatively charged carboxylate group of the Asp306 side chain is not suitable for this hydrophobic niche. Consequently, the side chain moves out to interact with Ser300 in the β strand (res. Met289-Arg299) and the guanidinium group of Arg299 in the β hairpin loop.In the third simulation, the residue swap disrupts the C2 domain secondary structure and tertiary assembly to a large degree when the amino group of the Lys297 side chain rotates to form a salt bridge with Asp306. This drastic effect could potentially reflect the challenge presented by the residue swap during the C2 domain folding. Because the residue swap affects the C2 domain structure, the SynGAP-membrane association could also be impacted. However, this is beyond the scope of the solvent-only simulations to unravel.
c.922T>CW308R
(3D Viewer)
Likely PathogenicC2Pathogenic 1-12.264Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.868Likely Pathogenic5.40Destabilizing0.54.27Destabilizing4.84Destabilizing1.88Destabilizing-12.87Deleterious1.000Probably Damaging0.999Probably Damaging0.48Pathogenic0.00Affected3.38192-3-3.6-30.03290.4-26.7-0.10.10.00.2XXXPotentially PathogenicThe indole ring of Trp308, located in an anti-parallel β sheet strand (res. Thr305-Asn315), packs against multiple hydrophobic residues (e.g., Ile268, Val306, Cys282). The indole group of Trp308 also hydrogen bonds with the backbone atoms of the C2 domain residues forming the anti-parallel β sheet (e.g., Tyr280, Thr294). The guanidinium group of Arg308 is comparably sized to the tryptophan it replaced; however, it is also positively charged.In the variant simulations, the charged side chain remains buried deep in the hydrophobic part of the C2 domain, where it forms new hydrogen bonds with the backbone carbonyl atoms of surrounding residues (e.g., Val306, Ile268). However, the residue swap is likely to disrupt the hydrophobic packing during folding. At a minimum, the residue swap could affect the C2 domain stability and membrane association.
c.924G>CW308C
(3D Viewer)
Likely PathogenicC2Pathogenic/Likely path. 2-12.791Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.738Likely Pathogenic5.56Destabilizing0.34.38Destabilizing4.97Destabilizing1.26Destabilizing-11.95Deleterious1.000Probably Damaging0.999Probably Damaging0.48Pathogenic0.00Affected3.3819-8-23.4-83.07230.860.5-0.30.1-0.40.4XPotentially PathogenicThe indole ring of Trp308, located in an anti-parallel β sheet strand (res. Thr305-Asn315), packs against multiple hydrophobic residues (e.g., Ile268, Val306, Cys282). The indole group of Trp308 also hydrogen bonds with the backbone atoms of the C2 domain residues forming the anti-parallel β sheet (e.g., Tyr280, Thr294). The introduced Cys308 is smaller than the tryptophan it replaced. The thiol group of the Cys308 side chain is well-suited for the inner hydrophobic part of the C2 domain. Although the negative effects are essentially missing from the simulations, the side chain size difference between the residues is likely to disrupt the hydrophobic packing during folding. At a minimum, the residue swap could affect the C2 domain stability and membrane association.
c.928G>AE310K
(3D Viewer)
Likely PathogenicC2Conflicting 4-14.601Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.764Likely Pathogenic1.97Ambiguous1.23.66Destabilizing2.82Destabilizing1.02Destabilizing-3.68Deleterious1.000Probably Damaging0.995Probably Damaging1.19Pathogenic0.01Affected3.381901-0.4-0.94213.458.00.10.00.20.1XPotentially PathogenicThe carboxylate group of Glu310, located in an anti-parallel β sheet strand (res. Thr305-Asn315), is ideally positioned to interact with the side chain hydroxyl and backbone amide groups of Thr295 on a twisted anti-parallel β strand (res. Met289-Arg299). Because the carboxylate group can also interact with the GAP domain residues (e.g., Gln612, Tyr614), Glu310 plays a key role in maintaining the tertiary assembly between the C2 and GAP domains. In the variant simulations, the amino group of the Lys310 side chain hydrogen bonds with the GAP domain residues and forms a salt bridge with Glu613. Although no apparent negative effects are seen due to the residue swap, it is possible that the loss of hydrogen bonding with the hydroxyl group of the Thr295 side chain causes problems during folding, potentially compromising the twisting of the β sheet.
c.930G>CE310D
(3D Viewer)
Likely PathogenicC2Likely Pathogenic1-11.218Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.666Likely Pathogenic1.87Ambiguous0.52.39Destabilizing2.13Destabilizing1.04Destabilizing-2.76Deleterious0.997Probably Damaging0.992Probably Damaging1.19Pathogenic0.02Affected3.3819320.0-14.03232.627.20.10.00.10.1XPotentially BenignThe carboxylate group of Glu310, located in an anti-parallel β sheet strand (res. Thr305-Asn315), is ideally positioned to interact with the hydroxyl and backbone amide groups of Thr295 on a twisted anti-parallel β strand. Because the carboxylate group can also interact with the GAP domain residues (e.g., Gln612, Tyr614), Glu310 potentially plays a key role in maintaining the tertiary assembly between the C2 and GAP domains. In the variant simulations, the carboxylate group of Asp310 can form the same interactions as glutamate; however, due to its one hydrocarbon shorter length, the connections are less stable or less optimal.
c.953C>TP318L
(3D Viewer)
Likely PathogenicC2Uncertain 36-33437858-C-T31.86e-6-10.090Likely Pathogenic0.958Likely PathogenicLikely Pathogenic0.624Likely Pathogenic1.33Ambiguous0.10.26Likely Benign0.80Ambiguous0.43Likely Benign-8.96Deleterious1.000Probably Damaging0.999Probably Damaging1.82Pathogenic0.03Affected3.3823-3-35.416.04228.6-68.9-0.70.7-0.40.1XPotentially BenignThe cyclic five-membered pyrrolidine ring of Pro318, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Asp330-Ala322, res. Thr305-Asn315), packs against the hydrophobic side chain of Ile205 at the end of the anti-parallel β sheet in the PH domain. In the variant simulations, the iso-butyl side chain of Leu318 is unable to do the same, potentially weakening the PH and C2 domain association. Importantly, the residue swap could also affect loop formation during folding, as proline can make tighter turns than leucine. Because the residue swap could affect the C2 domain stability, it could also negatively impact the SynGAP-membrane association.
c.962G>AR321H
(3D Viewer)
C2Uncertain 16-33437867-G-A84.96e-6-8.751Likely Pathogenic0.136Likely BenignLikely Benign0.323Likely Benign0.48Likely Benign0.1-0.36Likely Benign0.06Likely Benign0.59Ambiguous-1.43Neutral1.000Probably Damaging0.998Probably Damaging1.92Pathogenic0.25Tolerated3.3823201.3-19.05218.586.91.10.00.30.0XPotentially BenignThe guanidinium group of Arg321, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Thr305-Asn315, res. Ala322-Asp330), faces outward without forming any stable interactions in the WT simulations. Similarly, in the variant simulations, the imidazole ring of His321 also points outward without making any stable intra-protein interactions. Thus, the residue swap does not seem to cause adverse effects on the protein structure based on the simulations. However, β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant.
c.980T>CL327P
(3D Viewer)
Likely PathogenicC2Pathogenic 3-16.602Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.658Likely Pathogenic5.38Destabilizing0.14.00Destabilizing4.69Destabilizing2.62Destabilizing-5.97Deleterious1.000Probably Damaging0.999Probably Damaging1.52Pathogenic0.01Affected3.3823-3-3-5.4-16.04221.769.40.10.00.60.1XPotentially PathogenicThe backbone amide group of Leu327, located in the middle of an anti-parallel β sheet strand (res. Ala322-Asp330), forms a hydrogen bond with the carbonyl group of Gly344 on a neighboring β strand (res. Lys336-Pro349) in the WT simulations. In contrast, in the variant simulations, the introduction of Pro327 destabilizes the hydrogen bonding between the two anti-parallel β strands because proline lacks the backbone amide group altogether. Additionally, in the WT simulations, the iso-butyl side chain of Leu327 packs against multiple hydrophobic residues (e.g., Leu274, V400, Val343), whereas the less bulky cyclic five-membered pyrrolidine ring of Pro327 cannot fill the same space as effectively. Thus, although no large-scale unfolding is observed during the variant simulations, the residue swap is likely to cause severe problems for the correct C2 domain folding, which could also affect the SynGAP-membrane association.10.1016/j.ajhg.2020.11.011
c.1067G>AR356H
(3D Viewer)
Likely PathogenicC2Likely Benign 16-33437972-G-A95.66e-6-11.453Likely Pathogenic0.614Likely PathogenicLikely Benign0.314Likely Benign0.59Ambiguous0.1-0.27Likely Benign0.16Likely Benign1.17Destabilizing-4.43Deleterious0.999Probably Damaging0.987Probably Damaging1.70Pathogenic0.01Affected3.3922021.3-19.05
c.1066C>TR356C
(3D Viewer)
Likely PathogenicC2Likely Benign 16-33437971-C-T53.10e-6-11.827Likely Pathogenic0.774Likely PathogenicLikely Benign0.312Likely Benign0.76Ambiguous0.01.19Ambiguous0.98Ambiguous0.84Ambiguous-7.12Deleterious1.000Probably Damaging0.990Probably Damaging1.67Pathogenic0.00Affected3.3922-4-37.0-53.05212.391.0-0.10.3-0.30.1XPotentially PathogenicArg356 is located in a loop that includes a short helical section and connects two anti-parallel β sheet strands (res. Gly341-Pro349, res. Thr359-Pro364). In the WT simulations, the guanidinium group of Arg356 alternately forms salt bridges with the carboxylate groups of the GAP domain residues, Glu446 and Glu698. Arg356 also forms hydrogen bonds with the hydroxyl group of the GAP domain residue Thr691 and interacts with Met409 at the C2-GAP interface.In the variant simulations, the Cys356 mutation fails to maintain any of the Arg356 interactions and only occasionally forms weak hydrogen bonds with nearby C2 domain residues (e.g., Gln407). Although no negative structural effects are observed during the simulations, Arg356 is located at the C2 and GAP domain interface, making the residue swap potentially detrimental to the tertiary structure assembly.
c.1084T>CW362R
(3D Viewer)
Likely PathogenicC2Pathogenic 2-14.004Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.706Likely Pathogenic2.64Destabilizing0.33.90Destabilizing3.27Destabilizing1.10Destabilizing-12.87Deleterious0.999Probably Damaging0.996Probably Damaging1.28Pathogenic0.00Affected3.39242-3-3.6-30.03287.5-34.1-0.20.1-0.60.2XXXPotentially PathogenicThe indole ring of Trp362, located on the surface of an anti-parallel β sheet (res. Thr359-Pro364) in the C2 domain, stacks with nearby residues (e.g., Arg401, Arg272). In the variant simulations, the guanidinium group of the introduced residue Arg362 forms a salt bridge with the carboxylate group of Glu273 and, like Trp362, stacks with other arginine residues (e.g., Arg401, Arg272). This residue is at both the C2-membrane interface and the C2-RasGTPase interface, so the residue swap could potentially affect both interactions. However, these phenomena cannot be addressed using solvent-only simulations. Notably, Arg272, which stacks with both the non-mutated Trp362 and the mutated Arg362, forms a salt bridge directly with Asp105 of Ras in the WT simulations. Therefore, the residue swap could affect the C2 domain stability, the SynGAP-membrane association, and the SynGAP-Ras association.10.1016/j.ajhg.2020.11.011
c.1436G>AR479Q
(3D Viewer)
Likely BenignGAPUncertain 16-33438468-G-A74.34e-6-7.109In-Between0.259Likely BenignLikely Benign0.191Likely Benign0.54Ambiguous0.10.57Ambiguous0.56Ambiguous0.49Likely Benign-1.16Neutral1.000Probably Damaging0.991Probably Damaging3.42Benign0.31Tolerated3.3932111.0-28.06
c.1423C>TR475W
(3D Viewer)
Likely PathogenicGAPUncertain 16-33438455-C-T16.20e-7-13.235Likely Pathogenic0.962Likely PathogenicLikely Pathogenic0.725Likely Pathogenic1.44Ambiguous0.4-0.92Ambiguous0.26Likely Benign0.56Ambiguous-7.56Deleterious1.000Probably Damaging0.995Probably Damaging-1.45Pathogenic0.00Affected3.39282-33.630.03266.939.60.00.00.00.1XXXPotentially PathogenicIn the WT simulations, the guanidinium group of Arg475, located near the end of an α-helix (res. Ala461-Phe476), stacks with the phenyl ring of Phe476 and forms a salt bridge with Glu472. Additionally, Arg475 occasionally forms another salt bridge with the carboxylate group of Glu486 on the α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. Therefore, Arg475 potentially plays a key role in positioning the loop by interacting with Glu486, which is necessary for the positioning of the “arginine finger” (Arg485) and, ultimately, for RasGTPase activation.In the variant simulations, Trp475 moves and stacks with Arg479 on the proceeding α-α loop, disrupting the terminal end of the α-helix. Lastly, the potential effect of the residue swap on the SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.1424G>AR475Q
(3D Viewer)
Likely PathogenicGAPUncertain 26-33438456-G-A53.10e-6-12.087Likely Pathogenic0.721Likely PathogenicLikely Benign0.632Likely Pathogenic0.71Ambiguous0.10.12Likely Benign0.42Likely Benign0.82Ambiguous-3.65Deleterious1.000Probably Damaging0.991Probably Damaging-1.32Pathogenic0.01Affected3.3928111.0-28.06253.652.70.00.0-0.80.0XXXPotentially PathogenicIn the WT simulations, the guanidinium group of Arg475, located near the end of an α-helix (res. Ala461-Phe476), stacks with the phenyl ring of Phe476 and forms a salt bridge with Glu472. Additionally, Arg475 occasionally forms another salt bridge with the carboxylate group of Glu486 on the α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. Therefore, Arg475 potentially plays a key role in positioning the loop by interacting with Glu486, which is necessary for the positioning of the “arginine finger” (Arg485) and, ultimately, for RasGTPase activation. In the variant simulations, Asn475 forms a hydrogen bond with Arg479 on the proceeding α-α loop. The absence of Phe476/Arg475 stacking and the Arg475-Glu472 salt bridge weakens the integrity of the terminal end of the α-helix during the variant simulations. Lastly, the potential effect of the residue swap on the SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.1964T>AL655Q
(3D Viewer)
Likely BenignGAPUncertain 1-5.278Likely Benign0.144Likely BenignLikely Benign0.139Likely Benign-0.01Likely Benign0.00.69Ambiguous0.34Likely Benign-0.15Likely Benign0.61Neutral0.955Possibly Damaging0.602Possibly Damaging3.59Benign0.65Tolerated3.3924-2-2-7.314.97229.9-8.60.00.00.40.0XPotentially BenignThe iso-butyl side chain of Leu655, located on the surface of an α helix (res. Ser641-Glu666), is not involved in any interactions in the WT simulations. In the variant simulations, the carboxamide side chain of Gln655 dynamically interacts with neighboring residues (e.g., Glu651, Glu656, Arg544) on the protein surface, with no negative structural effects.
c.1970G>TW657L
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.411Likely Pathogenic0.960Likely PathogenicLikely Pathogenic0.213Likely Benign0.14Likely Benign0.10.73Ambiguous0.44Likely Benign0.87Ambiguous-10.86Deleterious0.277Benign0.078Benign3.52Benign0.14Tolerated3.3924-2-24.7-73.05
c.1973G>AG658D
(3D Viewer)
GAPUncertain 16-33441232-G-A31.86e-6-7.786In-Between0.442AmbiguousLikely Benign0.144Likely Benign-0.40Likely Benign0.1-0.59Ambiguous-0.50Ambiguous0.46Likely Benign-2.64Deleterious0.008Benign0.005Benign3.53Benign0.38Tolerated3.39241-1-3.158.04219.8-84.30.00.00.20.1XPotentially PathogenicGly658, located on the outer surface of an α helix (res. Ser641-Glu666), weakens the helix integrity at that spot, which is necessary for the kink in the middle of the long helix. In the variant simulations, the carboxylic acid side chain of Asp658 is on the surface of the α helix and is not involved in any interactions. However, aspartate is not as effective a breaker of the secondary structure element as glycine, which may lead to misfolding.
c.1966G>CE656Q
(3D Viewer)
GAPUncertain 16-33441225-G-C16.20e-7-9.145Likely Pathogenic0.766Likely PathogenicLikely Benign0.249Likely Benign-0.14Likely Benign0.0-0.81Ambiguous-0.48Likely Benign0.25Likely Benign-2.29Neutral0.980Probably Damaging0.528Possibly Damaging3.46Benign0.02Affected3.3924220.0-0.98224.31.70.00.10.10.0XPotentially BenignThe carboxylate side chain of Glu656, located on an α helix (res. Ser641-Glu666), frequently forms a hydrogen bond with the nearby residue Ser659 on the same α helix. In the variant simulations, the carboxamide side chain of Gln656 alternatively forms a hydrogen bond with either Ser659 or Glu548 on an opposing helix (res. Ala533-Val560).Although the frequent interaction between Gln656 and Glu548 may strengthen or stabilize the tertiary structure assembly, the effect is likely to be marginal.
c.767A>GN256S
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-10.640Likely Pathogenic0.950Likely PathogenicAmbiguous0.707Likely Pathogenic0.31Likely Benign0.20.36Likely Benign0.34Likely Benign0.48Likely Benign-4.33Deleterious0.997Probably Damaging0.970Probably Damaging5.87Benign0.02Affected3.3915112.7-27.03
c.772C>TR258C
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437677-C-T16.20e-7-10.285Likely Pathogenic0.790Likely PathogenicAmbiguous0.771Likely Pathogenic1.17Ambiguous0.41.76Ambiguous1.47Ambiguous0.87Ambiguous-6.79Deleterious1.000Probably Damaging0.993Probably Damaging5.77Benign0.00Affected3.3915-3-47.0-53.05
c.892C>TP298S
(3D Viewer)
Likely BenignC2Benign 16-33437797-C-T53.10e-6-6.342Likely Benign0.144Likely BenignLikely Benign0.189Likely Benign1.38Ambiguous0.21.41Ambiguous1.40Ambiguous0.58Ambiguous-1.20Neutral0.991Probably Damaging0.898Possibly Damaging2.03Pathogenic0.85Tolerated3.3920-110.8-10.04
c.745G>AA249T
(3D Viewer)
Likely BenignPHUncertain 1-3.564Likely Benign0.805Likely PathogenicAmbiguous0.487Likely Benign1.50Ambiguous0.61.39Ambiguous1.45Ambiguous0.30Likely Benign-0.96Neutral0.990Probably Damaging0.815Possibly Damaging5.65Benign0.40Tolerated3.391510-2.530.03214.5-43.30.00.00.50.2XPotentially BenignThe methyl group of Ala249, located on the surface of an α helix (res. Ala236-Val250) facing an anti-parallel β sheet strand (res. Ile205-Val209), packs against nearby hydrophobic residues such as Leu200, Leu246, and Val250. In the variant simulations, the hydroxyl group of Thr249, which is not suitable for hydrophobic packing, forms a stable hydrogen bond with the backbone carbonyl of Asn245 in the same helix. Although this interaction could theoretically weaken the structural integrity of the α helix, this destabilizing effect is not observed in the variant simulations.
c.762G>CK254N
(3D Viewer)
Likely PathogenicPHUncertain 1-13.306Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.757Likely Pathogenic0.73Ambiguous0.21.87Ambiguous1.30Ambiguous1.19Destabilizing-4.23Deleterious0.384Benign0.070Benign5.93Benign0.01Affected3.3915100.4-14.07215.3-21.0-1.01.70.20.3XPotentially PathogenicThe amino group of Lys254, located in an α-β loop connecting the PH and C2 domains (res. Lys251-Arg258), forms salt bridges with the carboxylate groups of Glu244 and Asp684. Since the neutral carboxamide group of the Asn254 side chain cannot form salt bridges with acidic residues, the residue swap potentially weakens the tertiary structure assembly and/or influences the loop positioning. Regardless, in both the variant and WT simulations, all hydrogen bonds formed by the residue’s side chain were broken, and the residue rotated outwards. The partially α helical conformation of the loop, which extends to a nearby α helix (res. Met414-Asn426), is dynamic, making it unclear if the mutation affects it.
c.773G>AR258H
(3D Viewer)
C2Benign/Likely benign 36-33437678-G-A106.20e-6-10.533Likely Pathogenic0.525AmbiguousLikely Benign0.830Likely Pathogenic1.60Ambiguous0.61.00Ambiguous1.30Ambiguous1.47Destabilizing-4.06Deleterious1.000Probably Damaging0.991Probably Damaging5.77Benign0.01Affected3.3915201.3-19.05212.581.80.10.0-0.50.2XPotentially PathogenicThe guanidinium group of Arg258, located at the end of an α-β loop connecting the PH domain to the C2 domain (res. Lys251-Arg258), forms hydrogen bonds with the carboxamide groups of Asn727 and Asn729 side chains, as well as with the backbone carbonyl groups of Ala724, Leu725, and Asn727 in the WT simulations. Although the imidazole group of His258 can act as a hydrogen bond donor/acceptor, the swapped residue is unable to maintain an equally well-coordinated hydrogen bond network for linking the C2 and GAP domains in the variant simulations.
c.775C>TR259W
(3D Viewer)
Likely PathogenicC2Uncertain 1-12.186Likely Pathogenic0.985Likely PathogenicLikely Pathogenic0.691Likely Pathogenic1.95Ambiguous0.80.51Ambiguous1.23Ambiguous0.51Ambiguous-7.35Deleterious1.000Probably Damaging0.993Probably Damaging5.76Benign0.00Affected3.39152-33.630.03254.040.00.20.20.20.4XXXPotentially PathogenicThe guanidinium group of Arg259, located at the beginning of an anti-parallel β sheet strand (res. Arg259-Arg272), forms salt bridges with the carboxylate groups of Asp684 at the end of an α helix (res. Ile683-Gln702, GAP domain) and Asp261 on the same β strand. The Arg259 side chain also frequently forms hydrogen bonds with the backbone carbonyl groups of Ser257, Asn256, and Asp255. In the variant simulations, the indole ring of the Trp259 side chain cannot form salt bridges or maintain hydrogen bonding with the carboxylate group of Asp684 or other nearby residues. Notably, the amino group of the Lys254 side chain maintains a salt bridge with Asp684 and Glu244 throughout the variant simulations, while it forms a cation-π bond with the indole ring of Trp259 in the variant. This salt bridge is not maintained in the WT simulations. Additionally, the partially or loosely α helical conformation of a lysine-containing loop (res. Lys251-Ser257), which extends to a nearby α helix (res. Met414-Asn426), could be stabilized due to the residue swap. Moreover, the bulky size of the Trp259 side chain requires nearby residues to adjust their positioning to accommodate the introduced residue, weakening the tertiary structure assembly between the C2, PH, and GAP domains. The residue swap potentially causes more severe effects during protein folding or for the SynGAP-membrane interaction than the solvent-only simulations imply.
c.971G>AR324Q
(3D Viewer)
Likely BenignC2Uncertain 36-33437876-G-A31.86e-6-5.001Likely Benign0.173Likely BenignLikely Benign0.307Likely Benign0.56Ambiguous0.10.63Ambiguous0.60Ambiguous1.02Destabilizing-1.17Neutral0.999Probably Damaging0.994Probably Damaging1.92Pathogenic0.41Tolerated3.3922111.0-28.06
c.835C>TR279W
(3D Viewer)
Likely PathogenicC2Uncertain 1-11.417Likely Pathogenic0.942Likely PathogenicAmbiguous0.485Likely Benign2.00Destabilizing0.81.47Ambiguous1.74Ambiguous0.80Ambiguous-6.29Deleterious1.000Probably Damaging0.998Probably Damaging1.88Pathogenic0.00Affected3.39182-33.630.03270.038.30.10.00.30.0UncertainThe guanidinium group of Arg279, located at the beginning of an anti-parallel β sheet strand (res. Arg279-Leu286), can form hydrogen bond with the backbone carbonyl groups of nearby loop residues (e.g., Ser296, Ser331, and As332) and form salt bridges with the carboxylate groups of Asp330 and Asp332. In the WT simulations, Arg279 sporadically forms a salt bridge even with the carboxylate group of Glu613, loosely connecting the C2 domain and GAP domain. Meanwhile, the indole ring of the Trp279 side chain is unable to hydrogen bond with the loop residues in the variant simulations. The lack of hydrogen bond or salt bridge formation with the loop residues could be significant, as Arg279 and the loops face the polar head group region of the membrane. Thus, although Trp279 could interact with the membrane surface as a “lipid anchor,” any changes to the wider loop dynamics could still adversely affect the formation of a stable SynGAP-membrane association. However, no definite conclusions on the effect of the residue swap on the SynGAP-membrane association can be drawn from solvent-only simulations.
c.844T>AC282S
(3D Viewer)
Likely PathogenicC2Uncertain 1-11.846Likely Pathogenic0.958Likely PathogenicLikely Pathogenic0.460Likely Benign1.55Ambiguous0.11.23Ambiguous1.39Ambiguous1.62Destabilizing-9.19Deleterious0.997Probably Damaging0.994Probably Damaging1.64Pathogenic0.03Affected3.39180-1-3.3-16.06233.214.8-0.10.0-0.20.3XPotentially BenignThe thiol-containing side chain of Cys282, located at the beginning of an anti-parallel β sheet strand (res. Arg279-Leu286), packs against multiple hydrophobic residues (e.g., Ile268, Leu284, Trp308, Leu327). In the variant simulations, the hydroxyl-containing side chain of Ser282 is more hydrophilic and, hence, not as favorable as Cys282 for this hydrophobic niche. Due to this polarity difference, the residue swap could potentially weaken the hydrophobic packing of the C2 domain during the folding process.Moreover, because the C2 domain interacts with the membrane, there could also be a negative effect on the stability of the SynGAP-membrane association. However, no large-scale structural changes were observed during the variant simulations. The hydroxyl group of Ser282 forms a hydrogen bond with the backbone carbonyl group of His326 in another β strand (res. Ala322-Arg329), which competes directly with the backbone amide group of Glu283 within the secondary structure element.
c.844T>CC282R
(3D Viewer)
Likely PathogenicC2Pathogenic 2-16.378Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.466Likely Benign3.13Destabilizing0.61.58Ambiguous2.36Destabilizing1.70Destabilizing-11.03Deleterious0.999Probably Damaging0.998Probably Damaging1.63Pathogenic0.00Affected3.3918-4-3-7.053.05297.4-98.2-0.10.10.50.0XXXPotentially PathogenicThe thiol-containing side chain of Cys282, located at the beginning of an anti-parallel β sheet strand (res. Arg279-Leu286), is packed against multiple hydrophobic residues (e.g., Ile268, Leu284, Trp308, Leu327). In the variant simulations, the bulky side chain of Arg282 with its positively charged guanidinium group is not suitable for this hydrophobic niche. Consequently, the hydrophobic residues must either make room to accommodate Arg282 or it must escape the hydrophobic C2 domain core.As a result, new hydrogen bonds are formed with the backbone carbonyl groups of the surrounding β sheet residues Ala399, Leu325, and His326, which decreases the unity of the secondary structure elements. Notably, it is likely that the residue swap causes major problems during the C2 domain folding that are not visible in the variant simulations. In fact, even increased lability in the C2 domain could adversely affect the establishment of a stable SynGAP-membrane association.
c.895C>TR299C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33437800-C-T31.86e-6-6.326Likely Benign0.572Likely PathogenicLikely Benign0.344Likely Benign1.85Ambiguous0.40.61Ambiguous1.23Ambiguous0.76Ambiguous-3.54Deleterious1.000Probably Damaging0.998Probably Damaging1.65Pathogenic0.06Tolerated3.3919-4-37.0-53.05210.791.30.10.00.00.2XXPotentially PathogenicThe guanidinium group of Arg299, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), forms hydrogen bonds that stabilize the tight turn. In the WT simulations, the Arg299 side chain hydrogen bonds with the loop backbone carbonyl groups (e.g., Ser302, Thr305, Leu274, Gly303), the hydroxyl group of Ser300, and even forms a salt bridge with the carboxylate group of Asp304.In the variant simulations, the thiol group of the Cys299 side chain is unable to form any of these well-coordinated or strong interactions, which could affect the initial formation of the secondary hairpin loop during folding. β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Moreover, the positively charged Arg299 side chain faces the polar head group region of the inner leaflet membrane and could directly anchor the C2 domain to the membrane. In short, the residue swap could negatively affect both protein folding and the stability of the SynGAP-membrane association.
c.896G>AR299H
(3D Viewer)
C2Conflicting 26-33437801-G-A106.20e-6-7.731In-Between0.388AmbiguousLikely Benign0.238Likely Benign3.97Destabilizing1.00.94Ambiguous2.46Destabilizing1.41Destabilizing-3.35Deleterious1.000Probably Damaging0.998Probably Damaging1.69Pathogenic0.02Affected3.3919201.3-19.05211.272.5-0.10.2-0.20.3XPotentially PathogenicThe guanidinium group of Arg299, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), forms hydrogen bonds that stabilize the tight turn. In the WT simulations, the Arg299 side chain hydrogen bonds with the loop backbone carbonyl groups (e.g., Ser302, Thr305, Leu274, Gly303), the hydroxyl group of Ser300, and even forms a salt bridge with the carboxylate group of Asp304.In the variant simulations, the imidazole ring of His299 (epsilon protonated state) hydrogen bonds with the carbonyl group of Asp304 and the hydroxyl group of Ser300. However, it does not form as many or as strong interactions as arginine, which could affect the initial formation of the secondary hairpin loop during folding. β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant.Additionally, His299 prefers to hydrophobically interact with other hydrophobic residues inside the C2 domain core (e.g., Val306, Leu274), which destabilizes the C2 domain. Indeed, the β strand partially unfolds during the second simulation. Moreover, the positively charged Arg299 side chain faces the polar head group region of the inner leaflet membrane and could directly anchor the C2 domain to the membrane. In short, the residue swap could negatively affect both protein folding and the stability of the SynGAP-membrane association.
c.968T>GL323R
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-14.568Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.692Likely Pathogenic3.75Destabilizing0.44.47Destabilizing4.11Destabilizing2.15Destabilizing-4.70Deleterious0.999Probably Damaging0.969Probably Damaging0.59Pathogenic0.01Affected3.3922-3-2-8.343.03261.8-61.6-0.40.20.80.2XXXPotentially PathogenicThe iso-butyl side chain of Leu323, located at the beginning of an anti-parallel β sheet strand (res. Ala322-Asp330), packs against multiple hydrophobic leucine residues (e.g., Leu264, Leu266, Leu284, Leu286). In contrast, in the variant simulations, the positively charged guanidinium group of the Arg323 side chain is unsuitable for the hydrophobic niche. Consequently, the side chain either rotates away from the center of the C2 domain or, if it remains within the C2 domain core, it reorients nearby residues to form hydrogen bonds. Regardless, the residue swap extensively disrupts the C2 domain structure.
c.970C>TR324W
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437875-C-T21.24e-6-12.906Likely Pathogenic0.694Likely PathogenicLikely Benign0.481Likely Benign1.49Ambiguous0.30.56Ambiguous1.03Ambiguous0.66Ambiguous-3.12Deleterious1.000Probably Damaging0.998Probably Damaging1.82Pathogenic0.16Tolerated3.39222-33.630.03256.639.10.00.10.30.2XPotentially PathogenicThe guanidinium group of Arg324, located at the end of an anti-parallel β sheet strand (res. Ala322-Asp330), faces outward and frequently forms a salt bridge with the carboxylate group of the Asp288 side chain, which is part of a β strand end (res. Met289-Pro298). In the variant simulations, the indole ring of the Trp324 side chain cannot maintain a similar interaction with the negatively charged carboxylate side chain of Asp288, potentially compromising the folding of the anti-parallel β sheet assembly. However, the residue swap does not appear to negatively impact the protein structure or its integrity based on the simulations.
c.1193C>TP398L
(3D Viewer)
C2Uncertain 16-33438098-C-T84.96e-6-7.518In-Between0.547AmbiguousLikely Benign0.599Likely Pathogenic1.48Ambiguous0.2-0.54Ambiguous0.47Likely Benign0.62Ambiguous-7.10Deleterious0.961Probably Damaging0.256Benign5.72Benign0.01Affected3.4016-3-35.416.04245.8-68.6-0.10.0-0.30.2XPotentially PathogenicPro398 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. Although the residue swap does not influence the nearby secondary structure elements, proline is often found at the ends of β sheets due to its disfavored status during folding.Additionally, the Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone. Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like leucine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Leu398 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1428C>GF476L
(3D Viewer)
GAPUncertain 26-33438460-C-G42.48e-6-10.109Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.180Likely Benign1.00Ambiguous0.11.04Ambiguous1.02Ambiguous0.75Ambiguous-1.10Neutral0.997Probably Damaging0.978Probably Damaging3.53Benign0.60Tolerated3.4022201.0-34.02235.916.10.00.1-0.20.0XPotentially BenignIn the WT simulations, the phenyl ring of Phe476, located at the end of an α-helix (res. Ala461-Phe476), packs with the hydrophobic side chains of Leu482 and Ile483. Additionally, Phe476 stacks with the Arg475 side chain on the preceding α-α loop connecting the two α-helices (res. Ala461-Phe476 and res. Leu489-Glu519) near the GAP-Ras interface.In the variant simulations, Leu476 can maintain hydrophobic packing with neighboring residues, although not as efficiently as the phenylalanine in the WT system. The absence of Phe476/Arg475 stacking weakens the integrity of the α-helix end in the variant simulations. Nonetheless, no large-scale adverse effects are observed in the simulations. Lastly, the potential effect of the residue swap on SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.2014A>GT672A
(3D Viewer)
Likely BenignGAPBenign 16-33441273-A-G31.86e-6-6.524Likely Benign0.109Likely BenignLikely Benign0.046Likely Benign0.51Ambiguous0.31.15Ambiguous0.83Ambiguous0.65Ambiguous-3.20Deleterious0.006Benign0.002Benign3.44Benign0.12Tolerated3.4025102.5-30.03188.542.5-0.10.30.20.0XPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. In the variant simulations, Ala672 can only form a hydrogen bond with Lys566 via its backbone carbonyl group. Consequently, it cannot maintain the Lys566-Glu666 salt bridge through hydrogen bonding, leading to a significant disruption of the intricate and stable hydrogen-bond network between the loop and the helices.
c.2015C>AT672K
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.192Likely Pathogenic0.698Likely PathogenicLikely Benign0.065Likely Benign0.20Likely Benign0.51.21Ambiguous0.71Ambiguous0.72Ambiguous-4.31Deleterious0.745Possibly Damaging0.051Benign3.40Benign0.07Tolerated3.40250-1-3.227.07195.17.00.40.70.40.1XXPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. In the variant simulations, Lys672 can only form a hydrogen bond with the amino group of the Lys566 side chain via its backbone carbonyl group. Consequently, it cannot maintain the Lys566-Glu666 salt bridge through hydrogen bonding. However, the amino group of Lys periodically forms a salt bridge with the carboxylate group of Glu666, which prevents a drastic disruption of the hydrogen-bond network that keeps the loop close to the helices.
c.2015C>TT672M
(3D Viewer)
GAPConflicting 26-33441274-C-T191.18e-5-9.472Likely Pathogenic0.174Likely BenignLikely Benign0.127Likely Benign0.31Likely Benign0.41.52Ambiguous0.92Ambiguous0.41Likely Benign-4.34Deleterious0.993Probably Damaging0.520Possibly Damaging3.39Benign0.00Affected3.4025-1-12.630.09231.9-52.91.10.10.50.0XXPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. Met672 can only form a hydrogen bond with the amino group of the Lys566 side chain via its backbone carbonyl group. Nevertheless, the Lys566-Glu666 salt bridge forms intermittently. This is possible because Asn669 keeps the carboxylate group of Glu666 in the vicinity through hydrogen bonding, and the hydrophobic side chain of Met stays mostly rotated away from the salt bridge. Consequently, no drastic disruption of the hydrogen-bond network that keeps the loop close to the helices occurs in the variant simulations.
c.694G>AA232T
(3D Viewer)
PHBenign 16-33435545-G-A16.20e-7-7.655In-Between0.874Likely PathogenicAmbiguous0.469Likely Benign0.47Likely Benign0.1-0.04Likely Benign0.22Likely Benign0.61Ambiguous-1.42Neutral0.608Possibly Damaging0.240Benign5.80Benign0.09Tolerated3.401410-2.530.03210.8-42.00.50.10.40.5XUncertainThe hydroxyl group of Thr232, located at the end of an anti-parallel β sheet strand (res. Thr228-Ala232), forms hydrogen bonds with nearby residues Glu217, Cys233, and Cys219 in the variant simulations. These hydrogen-bonding interactions at the β sheet surface contribute to the stability of the secondary structure element and prevent it from unfolding. The new hydrogen bond interactions may be more favorable for structural stability than the steric interactions of the methyl side chain of Ala with the side chains of Gln216 and Cys219 in the WT. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.700C>TR234W
(3D Viewer)
Likely PathogenicPHUncertain 16-33435551-C-T31.86e-6-12.625Likely Pathogenic0.947Likely PathogenicAmbiguous0.805Likely Pathogenic0.96Ambiguous0.30.69Ambiguous0.83Ambiguous0.13Likely Benign-5.52Deleterious0.997Probably Damaging0.803Possibly Damaging5.76Benign0.01Affected3.40142-33.630.03262.839.6-0.10.0-0.20.2XPotentially PathogenicThe guanidinium group of Arg234, located in a β-α loop between an anti-parallel β sheet strand (residues Gly227-Phe231) and an α helix (res. Ala236-Val250), forms a salt bridge with the carboxylate group of Glu238 in the α helix. Occasionally, it also bonds with the GAP domain residues Ser678 and Glu680. Thus, the positively charged Arg234 could contribute to the tertiary structure assembly between the PH and GAP domains. In contrast, the indole side chain of Trp234 in the variant is located on the protein surface in the variant simulations and is unable to form any interactions.
c.703T>CS235P
(3D Viewer)
Likely PathogenicPHLikely Pathogenic 1-14.857Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.870Likely Pathogenic4.02Destabilizing0.16.91Destabilizing5.47Destabilizing1.23Destabilizing-4.24Deleterious0.917Possibly Damaging0.446Benign5.47Benign0.01Affected3.40141-1-0.810.04201.517.00.10.0-0.60.0XPotentially PathogenicIn the WT, the hydroxyl group of Ser235, located in a β-α loop between an anti-parallel β sheet strand (res. Gly227-Phe231) and an α helix (residues Ala236-Val250), forms hydrogen bonds with the GAP domain loop residue Glu680 and with the backbone amide groups of Ala237 and Glu238 from the α helix. In the variant simulations, the pyrrolidine ring of Pro235 cannot stabilize the α helix end or maintain tertiary bonding interactions between the PH and GAP domains via hydrogen bonding as effectively as serine.
c.707C>TA236V
(3D Viewer)
PHBenign/Likely benign 26-33435558-C-T63.72e-6-8.752Likely Pathogenic0.267Likely BenignLikely Benign0.777Likely Pathogenic0.61Ambiguous0.21.08Ambiguous0.85Ambiguous0.64Ambiguous-3.55Deleterious0.981Probably Damaging0.446Benign5.79Benign0.03Affected3.4014002.428.05213.8-44.70.00.0-0.20.2XPotentially BenignThe methyl side chain of Ala236, located on an α helix (residues Ala236-Val250) facing an anti-parallel β sheet strand (residues Ile205-Val209), interacts hydrophobically with nearby residues such as Arg239 and Phe218. In the variant simulations, the isopropyl branched hydrocarbon side chain of Val236 maintains similar hydrophobic interactions as alanine in the WT, with an overall arrangement remarkably similar to Ala236. The residue swap does not affect the protein structure based on the simulations.
c.886T>GS296A
(3D Viewer)
Likely BenignC2Uncertain 1-6.847Likely Benign0.247Likely BenignLikely Benign0.209Likely Benign0.50Ambiguous0.3-0.26Likely Benign0.12Likely Benign0.35Likely Benign-1.79Neutral0.992Probably Damaging0.987Probably Damaging1.97Pathogenic0.65Tolerated3.4016112.6-16.00182.526.6-0.20.1-0.50.0XPotentially PathogenicThe hydroxyl group of the Ser296 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), stably hydrogen bonds with the carboxylate group of Asp330 in a neighboring β strand (res. Ala322-Asp332). The backbone carbonyl group of Ser296 also hydrogen bonds with the guanidinium group of Arg279 in another nearby β strand (res. Arg279-Cys285). In the variant simulations, the methyl group of the Ala296 side chain cannot hydrogen bond with Asp330, causing the carboxylate group positioning to fluctuate more than in the WT simulations.Although the residue swap does not seem to affect the anti-parallel β sheet assembly during the simulations, it is possible that the Ser296-Asp330 hydrogen bond plays a crucial role in maintaining the C2 domain fold. Notably, because Ser296 is located near the membrane interface, the potential effect of the residue swap on the SynGAP-membrane association cannot be addressed by solvent-only simulations.
c.913A>GT305A
(3D Viewer)
Likely BenignC2Conflicting 26-33437818-A-G138.05e-6-4.307Likely Benign0.078Likely BenignLikely Benign0.144Likely Benign1.30Ambiguous0.61.55Ambiguous1.43Ambiguous0.77Ambiguous-2.10Neutral0.939Possibly Damaging0.645Possibly Damaging1.76Pathogenic0.12Tolerated3.4020102.5-30.03177.943.5-0.20.10.40.0UncertainThe hydroxyl group of Thr305, located at the beginning of an anti-parallel β strand (res. Thr305-Asn315), hydrogen bonds with the carboxylate groups of Glu270 and Asp304 in the anti-parallel β strand and the adjacent β hairpin loop, respectively. In the variant simulations, the methyl group of the Ala305 side chain cannot hydrogen bond with either of the acidic residues, which could weaken the integrity of the tertiary structure and the β hairpin loop. Indeed, the guanidinium group of Arg299 does not acquire its central hairpin loop position due to the residue swap.β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Due to its location near the membrane surface, the residue swap could also affect the C2 loop dynamics and SynGAP-membrane association. However, this is beyond the scope of the solvent-only simulations to unravel.
c.2029A>TS677C
(3D Viewer)
Likely BenignGAPBenign 1-8.496Likely Pathogenic0.076Likely BenignLikely Benign0.153Likely Benign-0.51Ambiguous0.3-0.30Likely Benign-0.41Likely Benign0.15Likely Benign-2.41Neutral0.932Possibly Damaging0.222Benign3.25Benign0.04Affected3.4123-103.316.06
c.662A>TE221V
(3D Viewer)
Likely PathogenicPHLikely Pathogenic 1-14.954Likely Pathogenic0.987Likely PathogenicLikely Pathogenic0.875Likely Pathogenic-0.66Ambiguous0.2-0.89Ambiguous-0.78Ambiguous0.49Likely Benign-5.54Deleterious0.596Possibly Damaging0.203Benign5.86Benign0.00Affected3.4113-2-27.7-29.98234.550.60.00.0-0.40.2XUncertainThe introduced residue Val221 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the carboxylate group of Glu221, Val221 cannot form hydrogen bonds with Thr223 or a salt bridge with the amino group of the Lys207 side chain. Despite this, the WT simulations containing Glu221 do not show significant differences compared to the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.667A>GT223A
(3D Viewer)
PHUncertain 16-33435518-A-G31.86e-6-7.076In-Between0.316Likely BenignLikely Benign0.574Likely Pathogenic0.30Likely Benign0.10.77Ambiguous0.54Ambiguous0.74Ambiguous-3.36Deleterious0.231Benign0.058Benign5.74Benign0.09Tolerated3.4113102.5-30.03186.444.00.00.00.00.0XXUncertainThe introduced residue Ala223 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr223 side chain in the WT protein, the methyl side chain of Ala223 cannot form hydrogen bonds with nearby residues Thr228 and Lys207. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and partially unfolds in the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.667A>TT223S
(3D Viewer)
PHConflicting 26-33435518-A-T31.86e-6-7.714In-Between0.410AmbiguousLikely Benign0.535Likely Pathogenic0.26Likely Benign0.10.50Ambiguous0.38Likely Benign0.62Ambiguous-2.86Deleterious0.421Benign0.058Benign5.80Benign0.02Affected3.411311-0.1-14.03200.717.3-0.20.20.00.0XUncertainThe introduced residue Ser223 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Its hydroxyl group forms hydrogen bonds with nearby residues Thr228 and Lys207 in the variant simulations, similar to the hydroxyl group of Thr223 in the WT simulations. These hydrogen-bonding interactions at the β sheet surface contribute to the stability of the secondary structure element and may prevent it from unfolding. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.670A>GT224A
(3D Viewer)
PHUncertain 36-33435521-A-G21.24e-6-7.379In-Between0.651Likely PathogenicLikely Benign0.464Likely Benign0.33Likely Benign0.11.05Ambiguous0.69Ambiguous0.91Ambiguous-2.96Deleterious0.243Benign0.079Benign5.57Benign0.57Tolerated3.4113102.5-30.03169.041.4-0.51.1-0.40.0XXUncertainThe introduced residue Ala224 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr224 side chain in the WT model, the methyl side chain of Ala224 cannot form hydrogen bonds with nearby residues Ser204, Ser226, and Gly227. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and unfolds during the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.742C>TR248W
(3D Viewer)
Likely PathogenicPHUncertain 1-11.647Likely Pathogenic0.991Likely PathogenicLikely Pathogenic0.699Likely Pathogenic1.17Ambiguous0.3-0.20Likely Benign0.49Likely Benign0.89Ambiguous-6.98Deleterious1.000Probably Damaging0.948Probably Damaging5.62Benign0.00Affected3.41142-33.630.03266.442.30.00.00.30.1XPotentially PathogenicThe guanidinium group of Arg248, located on an α helix (res. Ala236-Val250), forms two very stable salt bridges with Asp255 (from a short α helical section, res. Lys254-Asn256) and Glu244 (from a nearby loop) in the WT simulations. In the variant simulations, the indole group of Trp248 cannot form any salt bridges, which could negatively affect the tertiary structure assembly of the PH domain. Instead, in the variant simulations, the indole ring of Trp248 stacks against Pro252, which makes a turn after the α helix.
c.743G>CR248P
(3D Viewer)
Likely PathogenicPHLikely Pathogenic 1-10.751Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.848Likely Pathogenic3.09Destabilizing0.68.87Destabilizing5.98Destabilizing1.21Destabilizing-5.97Deleterious0.998Probably Damaging0.878Possibly Damaging5.64Benign0.00Affected3.41140-22.9-59.07223.8126.60.00.0-0.20.1XXPotentially PathogenicThe guanidinium group of Arg248, located on an α helix (residues Ala236-Val250), forms two very stable salt bridges with Asp255 (from a short α helical section, res. Lys254-Asn256) and Glu244 (from a nearby loop) in the WT simulations. In the variant simulations, the pyrrolidine side chain of Pro248 cannot form any salt bridges, which could negatively affect the tertiary structure assembly of the PH domain. Additionally, Pro248 lacks a free amide group needed for hydrogen bonding with the backbone carbonyl group of Asn245, disrupting the continuity of the α helix.
c.986G>AR329H
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437891-G-A21.24e-6-10.154Likely Pathogenic0.769Likely PathogenicLikely Benign0.155Likely Benign2.53Destabilizing0.70.71Ambiguous1.62Ambiguous0.82Ambiguous-3.17Deleterious0.995Probably Damaging0.778Possibly Damaging4.04Benign0.05Affected3.4115201.3-19.05220.481.40.10.10.20.3UncertainThe guanidinium group of Arg329, located at the end of an anti-parallel β sheet strand (res. Ala322-Asp330), faces the negatively charged lipid bilayer surface. While the residue swap does not cause any apparent negative effects on the protein structure in the variant simulations, it could adversely affect the SynGAP-membrane association in reality. The positively charged Arg329 side chain forms hydrogen bonds with other loop residues (e.g., Ser371, Asp338) that are expected to dynamically interact with the membrane head group region. However, this phenomenon is beyond the scope of the solvent-only simulations to unravel. Notably, histidine can also be double protonated and positively charged, but this alternative protonation state was not considered in the variant simulations.
c.1108G>AG370S
(3D Viewer)
Likely BenignC2Uncertain 16-33438013-G-A159.31e-6-3.533Likely Benign0.081Likely BenignLikely Benign0.282Likely Benign2.83Destabilizing2.01.05Ambiguous1.94Ambiguous-0.02Likely Benign0.47Neutral0.000Benign0.000Benign1.33Pathogenic0.77Tolerated3.421910-0.430.03196.6-49.60.92.2-0.10.4UncertainGly370 is located in the Gly-rich Ω loop (res. Pro364- Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because, the Ω loop is assumed to be directly interacting with the membrane, it is only seen to move arbitrarily throughout the WT solvent simulations. The Ω loop is potentially playing a crucial loop in the SynGAP-membrane complex association, stability and dynamics, regardless, this aspect cannot be addressed through the solvent simulations only. The Ω-loops are known to have a major role in protein functions that requires flexibility and thus, they are rich in glycines, prolines and to a lesser extent, hydrophilic residues to ensure maximum flexibility. Thus, Ser370 in the variant is potentially tolerated in the Ω loop. However, since the effect on the Gly-rich Ω loop dynamics can only be well-studied through the SynGAP-membrane complex, no definite conclusions can be withdrawn.
c.2050G>CD684H
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.194Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.613Likely Pathogenic3.36Destabilizing1.02.95Destabilizing3.16Destabilizing0.55Ambiguous-6.98Deleterious1.000Probably Damaging0.972Probably Damaging3.36Benign0.00Affected3.4217-110.322.05
c.2060G>AR687Q
(3D Viewer)
Likely PathogenicGAPLikely Benign 1-10.002Likely Pathogenic0.575Likely PathogenicLikely Benign0.401Likely Benign0.92Ambiguous0.1-0.37Likely Benign0.28Likely Benign1.55Destabilizing-3.37Deleterious1.000Probably Damaging0.844Possibly Damaging3.91Benign0.03Affected3.4217111.0-28.06
c.2075T>AL692Q
(3D Viewer)
Likely PathogenicGAPPathogenic 1-13.873Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.596Likely Pathogenic3.24Destabilizing0.13.27Destabilizing3.26Destabilizing2.76Destabilizing-5.98Deleterious1.000Probably Damaging0.998Probably Damaging3.06Benign0.00Affected3.4217-2-2-7.314.97
c.2047A>GI683V
(3D Viewer)
Likely BenignGAPUncertain 16-33441306-A-G21.24e-6-7.588In-Between0.138Likely BenignLikely Benign0.112Likely Benign0.90Ambiguous0.00.60Ambiguous0.75Ambiguous0.76Ambiguous-0.78Neutral0.538Possibly Damaging0.080Benign3.35Benign0.14Tolerated3.421743-0.3-14.03215.629.10.00.0-0.70.1XPotentially BenignThe sec-butyl side chain of Ile683, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is sterically packed against His453 and Glu688. In the variant simulations, the iso-propyl side chain of Val683 has similar size and physicochemical properties as Ile630 in the WT, and thus, it is able to maintain similar interactions in the inter-helix space. Consequently, no negative structural effects are observed during the simulations due to the residue swap.
c.2068T>CS690P
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.568Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.431Likely Benign4.84Destabilizing0.34.40Destabilizing4.62Destabilizing1.42Destabilizing-4.77Deleterious0.998Probably Damaging0.790Possibly Damaging3.44Benign0.01Affected3.42171-1-0.810.04207.515.10.10.0-0.10.2XXPotentially PathogenicThe hydroxyl side chain of Ser690, located in an α-helix (res. Leu696-Leu685), forms a hydrogen bond with the backbone carbonyl group of Ser410 in an anti-parallel β-sheet of the C2 domain (res. Ile411-Ala399). In the variant simulations, the pyrrolidine side chain of Pro690 cannot form hydrogen bonds with the C2 domain residue, resulting in the loss of this inter-domain connection. Additionally, prolines lack a free amide group necessary for hydrogen bonding with the carbonyl group of Gly686, introducing a slight bend in the α-helix and compromising its integrity.
c.2075T>CL692P
(3D Viewer)
Likely PathogenicGAPUncertain 1-16.447Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.668Likely Pathogenic9.19Destabilizing0.113.20Destabilizing11.20Destabilizing1.69Destabilizing-6.98Deleterious1.000Probably Damaging0.999Probably Damaging3.06Benign0.00Affected3.4217-3-3-5.4-16.04186.262.8-0.20.1-0.70.3XPotentially PathogenicThe isobutyl side chain of Leu692, located in the middle of an α-helix (res. Leu685-Gln702), engages in hydrophobic packing with nearby residues (e.g., Leu441, Leu431, Leu696) in the inter-helix space. Prolines lack a free amide group necessary for hydrogen bonding with the carbonyl group of Glu688 in the same manner as Leu692 in the WT. Consequently, the residue swap with proline disrupts the continuity of the secondary structure element in the variant simulations. Additionally, the side chain of Pro692 is not as optimal as Leu692 for hydrophobic packing in the inter-helix space.
c.2071A>CT691P
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-13.801Likely Pathogenic0.905Likely PathogenicAmbiguous0.214Likely Benign5.04Destabilizing0.46.09Destabilizing5.57Destabilizing1.27Destabilizing-3.43Deleterious1.000Probably Damaging0.952Probably Damaging3.43Benign0.06Tolerated3.43140-1-0.9-3.99188.933.00.10.0-0.60.0XXPotentially PathogenicThe hydroxyl side chain of Thr691, located in an α-helix (res. Leu696-Leu685), can form hydrogen bonds with the backbone carbonyl and the side chain guanidinium group of Arg687. This interaction facilitates the simultaneous formation of salt bridges between Arg687 and Glu688 on the same α-helix. Additionally, Thr691 occasionally interacts with the thioether side chain of Met409 in an anti-parallel β-sheet of the C2 domain (res. Ile411-Ala399), although this interaction is not consistently maintained throughout the WT simulations. In the variant simulations, the pyrrolidine side chain of Pro691 lacks hydrogen bond donors, making a similar setup impossible. Moreover, proline lacks a free amide group necessary for hydrogen bonding with the carbonyl group of Arg687, introducing a slight bend in the α-helix and compromising its integrity.
c.680G>AG227E
(3D Viewer)
Likely PathogenicPHConflicting 26-33435531-G-A31.86e-6-9.186Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.792Likely Pathogenic2.56Destabilizing0.45.36Destabilizing3.96Destabilizing0.94Ambiguous-6.49Deleterious0.906Possibly Damaging0.360Benign5.72Benign0.01Affected3.43120-2-3.172.06237.7-112.10.10.30.00.3XXUncertainThe introduced residue Glu227 is located in a β hairpin loop connecting two anti-parallel β sheet strands (res. Cys219-Thr224 and Thr228-Ala232). In the variant simulations, the carboxylate group of Glu227 frequently forms a salt bridge with the amino group of the neighboring residue Lys229. Despite this interaction, the integrity of the secondary structure element is not compromised. However, the β hairpins are potential nucleation sites during the initial stages of protein folding. Additionally, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.611C>GS204C
(3D Viewer)
Likely BenignPHUncertain 1-6.613Likely Benign0.127Likely BenignLikely Benign0.148Likely Benign0.65Ambiguous0.4-1.13Ambiguous-0.24Likely Benign0.10Likely Benign-0.64Neutral0.978Probably Damaging0.753Possibly Damaging4.13Benign0.05Affected3.44100-13.316.06223.6-13.80.60.30.00.2XUncertainThe hydroxyl-containing Ser204, located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by the thiol-containing cysteine. In the WT simulations, Ser204 simultaneously forms hydrogen bonds with the backbone carbonyl of Asp201 and the hydroxyl group of Thr224, helping to stabilize the two anti-parallel β strands (res. Ile205-Lys207 and Cys219-Thr223) at the end of the β sheet. Since the thiol group of cysteine forms weaker hydrogen bonds than the hydroxyl group of serine, Cys204 does not maintain the hydrogen bond network as stably as Ser204 in the variant simulations. However, because the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.2086C>GL696V
(3D Viewer)
Likely PathogenicGAPUncertain 1-11.909Likely Pathogenic0.745Likely PathogenicLikely Benign0.351Likely Benign2.35Destabilizing0.11.85Ambiguous2.10Destabilizing1.46Destabilizing-2.79Deleterious0.992Probably Damaging0.970Probably Damaging3.16Benign0.00Affected3.4613120.4-14.03
c.2087T>CL696P
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-16.926Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.678Likely Pathogenic6.66Destabilizing0.210.84Destabilizing8.75Destabilizing2.13Destabilizing-6.58Deleterious1.000Probably Damaging1.000Probably Damaging3.00Benign0.00Affected3.4613-3-3-5.4-16.04180.665.90.10.0-0.60.1XPotentially PathogenicThe isobutyl side chain of Leu696, located in the middle of an α-helix (res. Leu685-Gln702), engages in hydrophobic packing with nearby residues (e.g., Leu441, Leu431, Leu692, Leu714) in the inter-helix space. Prolines lack a free amide group necessary for hydrogen bonding with the carbonyl group of Leu692 in the same manner as Leu696 in the WT. Consequently, the residue swap with proline disrupts the continuity of the secondary structure element in the variant simulations. Additionally, the side chain of Pro696 is not as optimal as Leu696 for hydrophobic packing in the inter-helix space.
c.2089T>CW697R
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33441348-T-C16.20e-7-10.020Likely Pathogenic0.941Likely PathogenicAmbiguous0.401Likely Benign1.14Ambiguous0.11.18Ambiguous1.16Ambiguous1.25Destabilizing-9.50Deleterious1.000Probably Damaging0.994Probably Damaging3.45Benign0.02Affected3.46132-3-3.6-30.03254.4-41.20.00.0-0.70.0XPotentially BenignThe indole ring of Trp697, located on the outer surface of an α-helix (res. Leu685-Val699), is not involved in any long-lasting interactions in the WT simulations. In the variant simulations, the positively charged guanidinium side chain of Arg697 occasionally forms hydrogen bonds with nearby residues, such as Ser722 and Asn719. However, similar to Trp697 in the WT, Arg697 does not form any long-lasting interactions and thus does not induce any negative structural effects in the simulations.
c.600G>CL200F
(3D Viewer)
PHUncertain 16-33435242-G-C21.24e-6-7.606In-Between0.592Likely PathogenicLikely Benign0.094Likely Benign1.00Ambiguous0.51.45Ambiguous1.23Ambiguous0.43Likely Benign-1.97Neutral0.997Probably Damaging0.916Probably Damaging4.02Benign0.17Tolerated3.46920-1.034.02250.4-15.10.60.20.50.0XUncertainLeu200, a hydrophobic residue located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by another hydrophobic residue, phenylalanine. Both the phenyl group of Phe200 and the branched iso-butyl hydrocarbon sidechain of Leu200 occupy an inward hydrophobic niche (e.g., Leu246, Val222, Phe231) during the simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.603T>AD201E
(3D Viewer)
Likely BenignPHBenign 1-2.640Likely Benign0.406AmbiguousLikely Benign0.165Likely Benign0.42Likely Benign0.21.99Ambiguous1.21Ambiguous0.23Likely Benign-0.69Neutral0.633Possibly Damaging0.108Benign4.30Benign1.00Tolerated3.469320.014.03258.7-24.80.90.1-0.30.2XUncertainAsp201, an acidic residue located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by another acidic residue, glutamate. The carboxylate groups of both Asp201 and Glu201 side chains form hydrogen bonds with the hydroxyl group of Ser221 in the simulations. Due to its shorter side chain, Asp201 can also hydrogen bond with the backbone amide groups of neighboring loop residues Ser204 and Asp203. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.603T>GD201E
(3D Viewer)
Likely BenignPHConflicting 26-33435245-T-G201.24e-5-2.640Likely Benign0.406AmbiguousLikely Benign0.165Likely Benign0.42Likely Benign0.21.99Ambiguous1.21Ambiguous0.23Likely Benign-0.69Neutral0.633Possibly Damaging0.108Benign4.30Benign1.00Tolerated3.469320.014.03258.7-24.80.90.1-0.30.2XUncertainAsp201, an acidic residue located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by another acidic residue, glutamate. The carboxylate groups of both Asp201 and Glu201 side chains form hydrogen bonds with the hydroxyl group of Ser221 in the simulations. Due to its shorter side chain, Asp201 can also hydrogen bond with the backbone amide groups of neighboring loop residues Ser204 and Asp203. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.2095G>AV699M
(3D Viewer)
GAPUncertain 26-33441354-G-A84.96e-6-8.869Likely Pathogenic0.484AmbiguousLikely Benign0.276Likely Benign-0.58Ambiguous0.10.29Likely Benign-0.15Likely Benign0.96Ambiguous-2.18Neutral0.994Probably Damaging0.806Possibly Damaging3.37Benign0.03Affected3.471021-2.332.06257.8-47.20.00.00.90.1XPotentially BenignThe isopropyl side chain of Val699, located on an α-helix (res. Leu685-Gln702), packs against hydrophobic residues (e.g., Leu703, Leu696, Leu435, Leu439) in the inter-helix space. In the variant simulations, the thioether side chain of Met699 has similar physicochemical properties to Val699 in the WT, and thus, it is able to maintain similar interactions. Consequently, the mutation causes no apparent changes in the structure.
c.2101C>TP701S
(3D Viewer)
Likely BenignGAPUncertain 16-33441360-C-T31.86e-6-4.375Likely Benign0.221Likely BenignLikely Benign0.132Likely Benign1.33Ambiguous0.00.12Likely Benign0.73Ambiguous-0.36Likely Benign0.78Neutral0.044Benign0.025Benign3.48Benign1.00Tolerated3.4710-110.8-10.0410.1016/j.ajhg.2020.11.011
c.2111G>CS704T
(3D Viewer)
Likely BenignGAPUncertain 1-4.930Likely Benign0.265Likely BenignLikely Benign0.071Likely Benign0.80Ambiguous0.00.15Likely Benign0.48Likely Benign0.29Likely Benign-1.72Neutral0.525Possibly Damaging0.107Benign3.45Benign0.07Tolerated3.4710110.114.03201.7-18.00.00.0-0.20.7XPotentially BenignSer704 is located at the end and outer surface of an α-helix (res. Thr704-Gly712), which is connected via a tight turn or loop to another α-helix (res. Asp684-Gln702). The hydroxyl side chain of Ser704 occasionally forms a hydrogen bond with the amide group of Ala707. Similarly, in the variant simulations, the hydroxyl side chain of Thr704 forms hydrogen bonds with the amide groups of Ala707 and Leu708. Thus, the residue swap does not cause any apparent structural change.
c.2113A>CK705Q
(3D Viewer)
Likely BenignGAPUncertain 16-33441372-A-C16.20e-7-5.787Likely Benign0.436AmbiguousLikely Benign0.142Likely Benign-0.10Likely Benign0.00.33Likely Benign0.12Likely Benign-0.02Likely Benign-0.24Neutral0.997Probably Damaging0.969Probably Damaging3.42Benign0.78Tolerated3.4710110.4-0.04
c.2115G>CK705N
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-9.767Likely Pathogenic0.925Likely PathogenicAmbiguous0.183Likely Benign0.74Ambiguous0.00.37Likely Benign0.56Ambiguous0.44Likely Benign-3.12Deleterious0.996Probably Damaging0.876Possibly Damaging3.37Benign0.02Affected3.4710100.4-14.07221.4-20.20.00.00.00.1XUncertainThe amino side chain of Lys705, located at the end and outer surface of an α-helix (res. Thr704-Gly712), does not form any interactions in the WT simulations. In the variant simulations, the carboxamide side chain of Asn705 briefly forms a salt bridge with Glu706. However, there is no apparent difference between the systems. Due to the model ending abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.2105A>GQ702R
(3D Viewer)
GAPUncertain 1-7.894In-Between0.348AmbiguousLikely Benign0.294Likely Benign-0.31Likely Benign0.10.63Ambiguous0.16Likely Benign0.13Likely Benign-3.14Deleterious0.909Possibly Damaging0.889Possibly Damaging3.43Benign0.02Affected3.471011-1.028.06270.3-52.90.00.00.00.1XPotentially PathogenicThe carboxamide side chain of Gln702 is located at the end and outer surface of an α-helix (res. Leu685-Gln702), where it does not directly form hydrogen bonds with any residues in the WT simulations. In the variant simulations, the positively charged guanidinium group of Arg702 forms a salt bridge with the negatively charged carboxylate group of Glu698 on the same helix and/or hydrogen bonds with the backbone carbonyl group of Ala438 on an opposite α-helix (res. Tyr428-Glu436). Consequently, the residue swap could strengthen the tertiary structure assembly, which could have either positive or negative effects on its function.
c.2111G>AS704N
(3D Viewer)
Likely BenignGAPBenign/Likely benign 36-33441370-G-A271.67e-5-5.917Likely Benign0.421AmbiguousLikely Benign0.058Likely Benign0.48Likely Benign0.1-0.12Likely Benign0.18Likely Benign0.54Ambiguous-0.49Neutral0.771Possibly Damaging0.275Benign3.39Benign0.08Tolerated3.471011-2.727.03233.2-29.1-0.10.0-0.10.1XPotentially BenignSer704 is located at the end and outer surface of an α-helix (res. Thr704-Gly712), which is connected via a tight turn or loop to another α-helix (res. Asp684-Gln702). The hydroxyl side chain of Ser704 occasionally forms a hydrogen bond with the amide group of Ala707. However, in the variant simulations, the carboxamide side chain of Asn704 achieves more lasting and numerous hydrogen-bonding interactions with the residues at the helix end, such as Glu706, Ala707, and Leu708. Consequently, the residue swap could strengthen the α-helix secondary structure integrity at the helix end, which could have either positive or negative effects on its function.
c.2116G>AE706K
(3D Viewer)
GAPUncertain 1-10.519Likely Pathogenic0.833Likely PathogenicAmbiguous0.080Likely Benign1.17Ambiguous0.10.51Ambiguous0.84Ambiguous0.08Likely Benign-1.51Neutral0.345Benign0.028Benign4.15Benign0.52Tolerated3.471001-0.4-0.94187.149.20.00.00.40.1XUncertainThe carboxylate side chain of Glu706, located at the end and outer surface of an α-helix (res. Thr704-Gly712), forms a salt bridge with Lys710 and a hydrogen bond with its own backbone amino group at the helix end in the WT simulations. Although Lys706 is unable to make these transient interactions in the variant simulations, there is no apparent negative effect on the protein structure due to the residue swap. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.597C>AN199K
(3D Viewer)
PHUncertain 1-8.198Likely Pathogenic0.686Likely PathogenicLikely Benign0.024Likely Benign-0.19Likely Benign0.10.03Likely Benign-0.08Likely Benign0.33Likely Benign-1.48Neutral0.276Benign0.083Benign4.27Benign0.13Tolerated3.47910-0.414.07207.821.5-0.11.50.10.0XUncertainAsn199, located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by a positively charged lysine. On the protein surface, both the carboxamide group of Asn199 and the amino group of Lys199 side chains can form hydrogen bonds with the backbone carbonyl groups of residues (e.g., Ala249) at the end of an α helix (res. Ala236-Lys251). However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.899C>TS300F
(3D Viewer)
Likely PathogenicC2Uncertain 1-10.222Likely Pathogenic0.353AmbiguousLikely Benign0.117Likely Benign-0.29Likely Benign0.40.16Likely Benign-0.07Likely Benign0.04Likely Benign-2.66Deleterious0.975Probably Damaging0.596Possibly Damaging1.52Pathogenic0.01Affected3.4719-3-23.660.10233.6-67.6-0.10.00.40.2XXPotentially PathogenicThe hydroxyl group of the Ser300 side chain, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), hydrogen bonds with the guanidinium group of Arg299 and the backbone amide group and side chain of Ser302. Thus, in the WT simulations, it contributes to the β hairpin stability. In the variant simulations, the phenol ring of Phe300 cannot form any side chain-related hydrogen bonds, and Arg299 is moved away from its central hairpin loop position.β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Due to its location near the membrane surface, the residue swap could also affect the C2 loop dynamics and SynGAP-membrane association. However, this is beyond the scope of the solvent-only simulations to unravel.
c.2131C>GL711V
(3D Viewer)
Likely PathogenicGAPUncertain16-33441596-C-G16.20e-7-10.045Likely Pathogenic0.709Likely PathogenicLikely Benign0.170Likely Benign3.48Destabilizing0.12.22Destabilizing2.85Destabilizing1.40Destabilizing-2.59Deleterious0.992Probably Damaging0.970Probably Damaging3.34Benign0.00Affected3.509120.4-14.03
c.2158G>AD720N
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33441623-G-A53.10e-6-9.135Likely Pathogenic0.654Likely PathogenicLikely Benign0.289Likely Benign0.01Likely Benign0.0-0.20Likely Benign-0.10Likely Benign0.46Likely Benign-3.74Deleterious1.000Probably Damaging0.995Probably Damaging2.18Pathogenic0.01Affected3.509120.0-0.98
c.2143C>TP715S
(3D Viewer)
GAPLikely Pathogenic 16-33441608-C-T16.20e-7-7.635In-Between0.787Likely PathogenicAmbiguous0.277Likely Benign3.54Destabilizing0.00.81Ambiguous2.18Destabilizing0.94Ambiguous-7.17Deleterious1.000Probably Damaging0.998Probably Damaging3.43Benign0.01Affected3.5091-10.8-10.04231.8-14.0-0.10.0-0.80.1XUncertainPro715, along with Gly712 and Pro713, are located in a hinge region of an α-helix making a ~90-degree turn (res. Lys705-Leu725). In the WT simulations, the pyrrolidine side chain of Pro715, lacking the backbone amide groups altogether, forces the tight helix turn to take place while also hydrophobically packing with nearby residues (e.g., Leu700, Leu708, Leu714, and Leu718). Leu715, with a normal amide backbone, could potentially affect protein folding and turn formation, although this was not observed in the variant simulations. Additionally, the hydroxyl group of the Ser715 side chain can form hydrogen bonds with the backbone carbonyl group of Gly712 and disrupt the hydrophobic packing arrangement of the leucine residues from the neighboring α-helices, impacting the GAP domain tertiary assembly.
c.2147G>AR716Q
(3D Viewer)
GAPConflicting 26-33441612-G-A42.48e-6-8.338Likely Pathogenic0.308Likely BenignLikely Benign0.210Likely Benign-0.01Likely Benign0.00.47Likely Benign0.23Likely Benign0.58Ambiguous-3.14Deleterious1.000Probably Damaging0.990Probably Damaging3.35Benign0.02Affected3.509111.0-28.06250.048.90.00.0-0.50.0XUncertainThe guanidinium group of Arg716, located on the outer surface of an α-helix (res. Leu714-Arg726), forms a salt bridge with the carboxylate group of Asp720. In the variant simulations, the carboxamide group of Gln716 also forms a hydrogen bond with the carboxylate group of Asp720, although this bond is weaker than the Arg716 salt bridge in the WT. Overall, no adverse effects on the protein structure are observed in the simulations. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.2162T>GI721S
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.032Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.466Likely Benign3.91Destabilizing0.13.96Destabilizing3.94Destabilizing2.28Destabilizing-5.26Deleterious1.000Probably Damaging1.000Probably Damaging2.21Pathogenic0.00Affected3.509-1-2-5.3-26.08203.349.3-0.10.0-1.10.0XUncertainThe sec-butyl side chain of Ile721, located on an α-helix (res. Leu714-Arg726), engages in hydrophobic packing with other residues in the hydrophobic inter-helix space, such as Phe420, Tyr417, His693, and Leu717. In the variant simulations, the hydroxyl side chain of Ser721 forms hydrogen bonds with nearby residues, such as Leu717 and His693. Although no major structural changes are observed during the variant simulations, the hydrophilic residue Ser721 could disrupt the hydrophobic packing during folding. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.2168C>TT723I
(3D Viewer)
Likely BenignGAPLikely Benign 16-33441633-C-T21.24e-6-2.591Likely Benign0.120Likely BenignLikely Benign0.045Likely Benign-0.39Likely Benign0.0-0.20Likely Benign-0.30Likely Benign0.26Likely Benign-2.09Neutral0.088Benign0.030Benign3.39Benign0.03Affected3.5080-15.212.05252.3-31.60.00.0-0.20.2XUncertainThe hydroxyl group of Thr723, located on the outer surface of an α-helix (res. Leu714-Arg726), continuously forms hydrogen bonds with the backbone carbonyl of Asn719 in the WT simulations, potentially lowering the stability of the α-helix. In the variant simulations, the sec-butyl side chain of Ile723 cannot form any hydrogen bonds, which, in theory, could increase the helix stability. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.1118G>TG373V
(3D Viewer)
Likely BenignC2Uncertain 16-33438023-G-T65.03e-6-6.062Likely Benign0.112Likely BenignLikely Benign0.428Likely Benign5.32Destabilizing3.20.82Ambiguous3.07Destabilizing0.09Likely Benign-0.98Neutral0.007Benign0.001Benign3.90Benign0.00Affected3.5316-1-34.642.08207.6-68.11.91.1-0.60.1UncertainGly373 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Val373 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on the Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.526A>GS176GUncertain 16-33435168-A-G16.20e-7-7.541In-Between0.360AmbiguousLikely Benign0.066Likely Benign-1.08Neutral0.131Benign0.039Benign4.08Benign0.22Tolerated3.546010.4-30.03
c.583G>CA195PLikely PathogenicLikely Pathogenic 1-9.715Likely Pathogenic0.978Likely PathogenicLikely Pathogenic0.152Likely Benign-3.03Deleterious0.997Probably Damaging0.916Probably Damaging4.00Benign0.04Affected3.5461-1-3.426.04
c.2186A>GN729S
(3D Viewer)
Likely BenignGAPUncertain 1-1.578Likely Benign0.066Likely BenignLikely Benign0.063Likely Benign0.14Likely Benign0.11.34Ambiguous0.74Ambiguous-0.36Likely Benign-0.42Neutral0.221Benign0.027Benign3.38Benign0.93Tolerated3.597112.7-27.03
c.2195G>AR732KLikely BenignConflicting 26-33441660-G-A42.48e-6-5.278Likely Benign0.240Likely BenignLikely Benign0.045Likely Benign-0.82Neutral0.973Probably Damaging0.943Probably Damaging2.69Benign0.21Tolerated3.597320.6-28.01
c.2195G>CR732TUncertain 1-8.545Likely Pathogenic0.434AmbiguousLikely Benign0.075Likely Benign-1.96Neutral0.999Probably Damaging0.892Possibly Damaging2.59Benign0.12Tolerated3.597-1-13.8-55.08
c.323A>GK108RLikely BenignUncertain 16-33432188-A-G63.72e-6-2.892Likely Benign0.148Likely BenignLikely Benign0.184Likely Benign0.37Neutral0.993Probably Damaging0.956Probably Damaging4.22Benign1.00Tolerated3.61532-0.628.01
c.335G>CG112ALikely BenignUncertain 16-33432200-G-C159.30e-6-2.456Likely Benign0.119Likely BenignLikely Benign0.114Likely Benign-2.34Neutral0.231Benign0.054Benign4.07Benign0.00Affected3.615102.214.03
c.371C>TA124VLikely BenignConflicting 26-33432236-C-T95.58e-6-4.259Likely Benign0.138Likely BenignLikely Benign0.073Likely Benign-1.52Neutral0.173Benign0.009Benign4.07Benign0.03Affected3.615002.428.05
c.373C>TP125SLikely BenignUncertain 1-3.769Likely Benign0.238Likely BenignLikely Benign0.121Likely Benign-3.57Deleterious0.580Possibly Damaging0.140Benign2.86Benign0.02Affected3.6151-10.8-10.04
c.391G>CG131RUncertain 1-6.564Likely Benign0.983Likely PathogenicLikely Pathogenic0.099Likely Benign-3.82Deleterious0.983Probably Damaging0.656Possibly Damaging3.92Benign0.00Affected3.615-2-3-4.199.14
c.401G>AS134NLikely BenignUncertain 1-5.534Likely Benign0.813Likely PathogenicAmbiguous0.075Likely Benign-1.62Neutral0.001Benign0.002Benign3.90Benign0.00Affected3.61511-2.727.03
c.404G>AR135QUncertain 16-33432701-G-A53.84e-6-8.011Likely Pathogenic0.853Likely PathogenicAmbiguous0.087Likely Benign-1.94Neutral0.327Benign0.100Benign3.76Benign0.02Affected3.615111.0-28.06
c.406C>TR136WLikely PathogenicUncertain 2-10.453Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.237Likely Benign-4.71Deleterious0.965Probably Damaging0.416Benign3.45Benign0.00Affected3.6152-33.630.03
c.407G>AR136QBenign 16-33432704-G-A139.17e-6-11.146Likely Pathogenic0.950Likely PathogenicAmbiguous0.190Likely Benign-2.26Neutral0.957Probably Damaging0.342Benign3.52Benign0.01Affected3.615111.0-28.06
c.407G>CR136PLikely PathogenicUncertain 1-11.952Likely Pathogenic0.981Likely PathogenicLikely Pathogenic0.277Likely Benign-3.72Deleterious0.910Possibly Damaging0.578Possibly Damaging3.47Benign0.00Affected3.6150-22.9-59.07
c.416G>AS139NLikely BenignUncertain 16-33432713-G-A32.22e-6-4.584Likely Benign0.688Likely PathogenicLikely Benign0.109Likely Benign-0.75Neutral0.149Benign0.047Benign4.14Benign0.24Tolerated3.61511-2.727.03
c.431C>TT144MLikely PathogenicUncertain 26-33432728-C-T21.30e-6-11.228Likely Pathogenic0.922Likely PathogenicAmbiguous0.118Likely Benign-3.16Deleterious0.913Possibly Damaging0.333Benign3.73Benign0.00Affected3.615-1-12.630.09
c.451G>CD151HLikely PathogenicUncertain 16-33432748-G-C21.26e-6-11.747Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.335Likely Benign-3.90Deleterious0.999Probably Damaging0.995Probably Damaging3.86Benign0.00Affected3.615-110.322.05
c.453C>AD151ELikely BenignUncertain 1-5.662Likely Benign0.886Likely PathogenicAmbiguous0.142Likely Benign-2.02Neutral0.984Probably Damaging0.967Probably Damaging3.99Benign0.11Tolerated3.615320.014.03
c.455G>AR152QUncertain 16-33432752-G-A53.14e-6-10.336Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.181Likely Benign-2.34Neutral0.997Probably Damaging0.968Probably Damaging3.89Benign0.00Affected3.615111.0-28.06
c.458C>AT153NLikely BenignConflicting 3-0.739Likely Benign0.226Likely BenignLikely Benign0.161Likely Benign0.88Neutral0.888Possibly Damaging0.537Possibly Damaging4.23Benign0.81Tolerated3.61500-2.813.00
c.514C>TR172WLikely PathogenicUncertain 26-33435156-C-T95.58e-6-10.258Likely Pathogenic0.878Likely PathogenicAmbiguous0.228Likely Benign-3.61Deleterious0.997Probably Damaging0.803Possibly Damaging3.95Benign0.00Affected3.6152-33.630.03
c.515G>AR172QUncertain 16-33435157-G-A31.86e-6-7.245In-Between0.465AmbiguousLikely Benign0.135Likely Benign-1.72Neutral0.804Possibly Damaging0.091Benign4.04Benign0.04Affected3.615111.0-28.06
c.2200C>TP734SLikely BenignUncertain 26-33441665-C-T21.24e-6-4.291Likely Benign0.077Likely BenignLikely Benign0.030Likely Benign-2.44Neutral0.344Benign0.048Benign2.77Benign0.11Tolerated3.6461-10.8-10.0410.1016/j.ajhg.2020.11.011
c.2291A>GN764SLikely BenignBenign 1-3.149Likely Benign0.159Likely BenignLikely Benign0.058Likely Benign-0.84Neutral0.992Probably Damaging0.846Possibly Damaging2.65Benign0.61Tolerated3.646112.7-27.03
c.2294G>AS765NLikely BenignUncertain 1-5.098Likely Benign0.378AmbiguousLikely Benign0.094Likely Benign-0.94Neutral0.985Probably Damaging0.950Probably Damaging4.11Benign0.06Tolerated3.64611-2.727.03
c.2299A>GI767VLikely BenignUncertain 1-2.791Likely Benign0.064Likely BenignLikely Benign0.096Likely Benign0.10Neutral0.072Benign0.029Benign4.21Benign1.00Tolerated3.64643-0.3-14.03
c.2300T>CI767TLikely BenignUncertain 1-3.749Likely Benign0.252Likely BenignLikely Benign0.138Likely Benign-0.78Neutral0.625Possibly Damaging0.249Benign4.12Benign0.46Tolerated3.6460-1-5.2-12.05
c.2302G>AD768NLikely BenignUncertain 16-33442460-G-A22.57e-6-6.892Likely Benign0.453AmbiguousLikely Benign0.048Likely Benign-0.77Neutral0.106Benign0.009Benign4.07Benign0.96Tolerated3.646120.0-0.98
c.2302G>TD768YLikely PathogenicUncertain 16-33442460-G-T-9.866Likely Pathogenic0.824Likely PathogenicAmbiguous0.234Likely Benign-2.86Deleterious0.989Probably Damaging0.806Possibly Damaging4.01Benign0.07Tolerated3.646-4-32.248.09
c.2324G>AR775QLikely BenignConflicting 36-33442482-G-A111.41e-5-4.476Likely Benign0.229Likely BenignLikely Benign0.085Likely Benign-0.63Neutral0.969Probably Damaging0.863Possibly Damaging4.17Benign0.16Tolerated3.646111.0-28.0610.1016/j.ajhg.2020.11.011
c.2324G>CR775PLikely BenignBenign 1-5.072Likely Benign0.452AmbiguousLikely Benign0.168Likely Benign-0.79Neutral0.971Probably Damaging0.944Probably Damaging4.13Benign0.07Tolerated3.646-202.9-59.07
c.2339C>GS780CLikely BenignUncertain 46-33442891-C-G169.94e-6-7.603In-Between0.278Likely BenignLikely Benign0.078Likely Benign-1.41Neutral0.065Benign0.043Benign2.59Benign0.10Tolerated3.646-103.316.06
c.2343G>AM781ILikely BenignBenign 1-2.484Likely Benign0.323Likely BenignLikely Benign0.101Likely Benign0.05Neutral0.000Benign0.001Benign2.89Benign1.00Tolerated3.646122.6-18.03
c.2349G>AM783ILikely BenignBenign 16-33442901-G-A63.72e-6-3.560Likely Benign0.418AmbiguousLikely Benign0.042Likely Benign-0.54Neutral0.004Benign0.006Benign2.87Benign0.22Tolerated3.646122.6-18.03
c.2350G>AA784TLikely BenignBenign 1-3.579Likely Benign0.089Likely BenignLikely Benign0.046Likely Benign1.23Neutral0.001Benign0.006Benign2.92Benign1.00Tolerated3.64610-2.530.03
c.2353C>TR785CLikely PathogenicSH3-binding motifUncertain 16-33442905-C-T291.80e-5-5.887Likely Benign0.662Likely PathogenicLikely Benign0.126Likely Benign-5.06Deleterious0.144Benign0.046Benign2.22Pathogenic0.00Affected3.646-4-37.0-53.05
c.2354G>AR785HSH3-binding motifUncertain 26-33442906-G-A42.50e-6-4.782Likely Benign0.388AmbiguousLikely Benign0.129Likely Benign-2.61Deleterious0.999Probably Damaging0.947Probably Damaging2.25Pathogenic0.01Affected3.646201.3-19.05
c.2359C>AP787TLikely PathogenicSH3-binding motifLikely Benign 16-33442911-C-A171.05e-5-4.813Likely Benign0.603Likely PathogenicLikely Benign0.258Likely Benign-4.40Deleterious1.000Probably Damaging0.999Probably Damaging2.46Pathogenic0.01Affected3.6460-10.93.99
c.2359C>TP787SSH3-binding motifUncertain 16-33442911-C-T31.86e-6-4.203Likely Benign0.564AmbiguousLikely Benign0.221Likely Benign-3.81Deleterious1.000Probably Damaging0.999Probably Damaging2.48Pathogenic0.02Affected3.646-110.8-10.04
c.2362T>AS788TLikely BenignSH3-binding motifUncertain 26-33442914-T-A42.49e-6-4.288Likely Benign0.288Likely BenignLikely Benign0.092Likely Benign-2.25Neutral0.979Probably Damaging0.982Probably Damaging1.55Pathogenic0.02Affected3.646110.114.03
c.2369C>AT790NSH3-binding motifConflicting 36-33442921-C-A694.28e-5-5.243Likely Benign0.276Likely BenignLikely Benign0.103Likely Benign-2.54Deleterious0.999Probably Damaging0.997Probably Damaging2.27Pathogenic0.02Affected3.64600-2.813.00
c.2369C>GT790SLikely BenignSH3-binding motifUncertain 1-3.914Likely Benign0.123Likely BenignLikely Benign0.134Likely Benign-1.83Neutral0.997Probably Damaging0.989Probably Damaging2.39Pathogenic0.33Tolerated3.64611-0.1-14.03
c.1172G>TG391V
(3D Viewer)
Likely BenignC2Likely Benign 16-33438077-G-T31.86e-6-6.642Likely Benign0.133Likely BenignLikely Benign0.595Likely Pathogenic4.23Destabilizing1.34.81Destabilizing4.52Destabilizing-0.11Likely Benign-0.98Neutral0.994Probably Damaging0.887Possibly Damaging1.32Pathogenic0.10Tolerated3.698-1-34.642.08228.6-69.00.00.8-0.50.3UncertainGly387 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. This loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Val391 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.380G>AR127QLikely BenignUncertain 16-33432245-G-A63.72e-6-1.711Likely Benign0.320Likely BenignLikely Benign0.037Likely Benign-1.04Neutral0.006Benign0.001Benign4.04Benign0.02Affected3.744111.0-28.06
c.382C>AP128TLikely BenignUncertain 16-33432247-C-A16.20e-7-4.217Likely Benign0.267Likely BenignLikely Benign0.075Likely Benign-0.96Neutral0.952Possibly Damaging0.500Possibly Damaging4.19Benign0.35Tolerated3.744-100.93.99
c.470G>AR157HUncertain 16-33432767-G-A16.20e-7-10.235Likely Pathogenic0.604Likely PathogenicLikely Benign0.254Likely Benign-2.23Neutral0.999Probably Damaging0.987Probably Damaging3.80Benign0.00Affected3.744201.3-19.05
c.484C>GR162GLikely BenignUncertain 1-6.985Likely Benign0.664Likely PathogenicLikely Benign0.190Likely Benign-0.73Neutral0.487Possibly Damaging0.272Benign4.09Benign0.78Tolerated3.744-2-34.1-99.14
c.484C>TR162CPathogenic 2-8.157Likely Pathogenic0.787Likely PathogenicAmbiguous0.150Likely Benign-2.05Neutral0.988Probably Damaging0.513Possibly Damaging4.00Benign0.11Tolerated3.744-4-37.0-53.05
c.485G>AR162HUncertain 16-33432782-G-A21.24e-6-9.730Likely Pathogenic0.480AmbiguousLikely Benign0.167Likely Benign-1.13Neutral0.957Probably Damaging0.513Possibly Damaging4.03Benign0.12Tolerated3.744201.3-19.05
c.491G>AR164QUncertain 16-33432788-G-A21.24e-6-11.208Likely Pathogenic0.600Likely PathogenicLikely Benign0.184Likely Benign-1.86Neutral0.957Probably Damaging0.342Benign3.82Benign0.00Affected3.744111.0-28.06
c.505G>AD169NUncertain 1-10.713Likely Pathogenic0.761Likely PathogenicLikely Benign0.110Likely Benign-2.04Neutral0.079Benign0.052Benign4.07Benign0.01Affected3.744210.0-0.98
c.508C>TR170WLikely PathogenicUncertain 2-11.660Likely Pathogenic0.978Likely PathogenicLikely Pathogenic0.241Likely Benign-4.28Deleterious0.999Probably Damaging0.849Possibly Damaging3.84Benign0.00Affected3.7442-33.630.03
c.509G>AR170QPathogenic/Likely path. 6-9.021Likely Pathogenic0.798Likely PathogenicAmbiguous0.221Likely Benign-2.31Neutral0.947Possibly Damaging0.342Benign3.91Benign0.00Affected3.744111.0-28.0610.1016/j.ajhg.2020.11.011
c.2405G>AG802DLikely BenignSH3-binding motifUncertain 16-33442957-G-A16.20e-7-5.083Likely Benign0.476AmbiguousLikely Benign0.153Likely Benign-0.38Neutral0.126Benign0.138Benign2.72Benign0.09Tolerated3.7751-1-3.158.04
c.2408A>GK803RLikely BenignSH3-binding motifUncertain 1-2.281Likely Benign0.097Likely BenignLikely Benign0.018Likely Benign-1.52Neutral0.103Benign0.038Benign2.38Pathogenic0.00Affected3.77532-0.628.01
c.2414T>CL805PSH3-binding motifUncertain 1-4.661Likely Benign0.444AmbiguousLikely Benign0.272Likely Benign-3.40Deleterious0.975Probably Damaging0.767Possibly Damaging2.36Pathogenic0.00Affected3.775-3-3-5.4-16.04
c.2420A>GY807CSH3-binding motifUncertain 16-33442972-A-G16.20e-7-7.228In-Between0.204Likely BenignLikely Benign0.243Likely Benign-3.89Deleterious0.997Probably Damaging0.934Probably Damaging2.42Pathogenic0.01Affected3.7750-23.8-60.04
c.2420A>TY807FLikely BenignSH3-binding motifUncertain 1-3.667Likely Benign0.073Likely BenignLikely Benign0.057Likely Benign0.14Neutral0.012Benign0.022Benign2.92Benign0.98Tolerated3.775734.1-16.00
c.2459A>GY820CLikely PathogenicUncertain 1-8.797Likely Pathogenic0.744Likely PathogenicLikely Benign0.113Likely Benign-3.16Deleterious1.000Probably Damaging0.983Probably Damaging2.68Benign0.06Tolerated3.7750-23.8-60.04
c.2474C>TS825LLikely PathogenicUncertain 16-33443026-C-T16.20e-7-4.987Likely Benign0.910Likely PathogenicAmbiguous0.249Likely Benign-4.30Deleterious0.999Probably Damaging0.994Probably Damaging1.94Pathogenic0.01Affected3.775-2-34.626.08
c.2485G>AE829KLikely PathogenicPathogenic 1-7.527In-Between0.807Likely PathogenicAmbiguous0.194Likely Benign-2.65Deleterious0.994Probably Damaging0.900Possibly Damaging2.27Pathogenic0.00Affected3.77501-0.4-0.94
c.2493G>CE831DLikely BenignUncertain 16-33443045-G-C16.19e-7-3.055Likely Benign0.063Likely BenignLikely Benign0.073Likely Benign1.23Neutral0.002Benign0.002Benign2.64Benign0.77Tolerated3.775320.0-14.03
c.2503C>AL835MLikely BenignBenign 1-4.153Likely Benign0.121Likely BenignLikely Benign0.068Likely Benign-0.45Neutral0.999Probably Damaging0.977Probably Damaging2.67Benign0.12Tolerated3.77524-1.918.03
c.2506A>GS836GLikely BenignUncertain 16-33443058-A-G42.48e-6-4.749Likely Benign0.112Likely BenignLikely Benign0.066Likely Benign-1.65Neutral0.006Benign0.019Benign2.54Benign0.39Tolerated3.775100.4-30.03
c.2514C>AN838KLikely PathogenicUncertain 2-8.470Likely Pathogenic0.862Likely PathogenicAmbiguous0.097Likely Benign-2.78Deleterious0.997Probably Damaging0.995Probably Damaging2.69Benign0.16Tolerated3.77510-0.414.07
c.2518A>TS840CLikely PathogenicUncertain 1-8.799Likely Pathogenic0.904Likely PathogenicAmbiguous0.376Likely Benign-3.96Deleterious0.999Probably Damaging0.975Probably Damaging1.50Pathogenic0.00Affected3.7750-13.316.06
c.2521G>AV841MUncertain 16-33443073-G-A31.86e-6-7.000In-Between0.651Likely PathogenicLikely Benign0.119Likely Benign-0.74Neutral0.999Probably Damaging0.998Probably Damaging2.54Benign0.02Affected3.77512-2.332.06
c.2522T>CV841AUncertain 16-33443074-T-C31.86e-6-8.152Likely Pathogenic0.901Likely PathogenicAmbiguous0.183Likely Benign-2.13Neutral0.992Probably Damaging0.989Probably Damaging2.57Benign0.02Affected3.77500-2.4-28.05
c.2525C>AS842YLikely PathogenicLikely Pathogenic 1-16.124Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.191Likely Benign-4.28Deleterious0.944Possibly Damaging0.676Possibly Damaging1.97Pathogenic0.00Affected3.775-3-2-0.576.10
c.2548G>AG850RLikely BenignUncertain 1-5.082Likely Benign0.398AmbiguousLikely Benign0.194Likely Benign-0.07Neutral0.010Benign0.010Benign4.30Benign0.01Affected3.775-3-2-4.199.14
c.2573G>AS858NLikely BenignUncertain 16-33443125-G-A21.24e-6-4.311Likely Benign0.121Likely BenignLikely Benign0.107Likely Benign-0.67Neutral0.448Benign0.846Possibly Damaging4.13Benign0.02Affected3.77511-2.727.03
c.2578G>AV860ILikely BenignBenign 16-33443130-G-A211.30e-5-4.516Likely Benign0.095Likely BenignLikely Benign0.039Likely Benign-0.42Neutral0.009Benign0.006Benign4.24Benign0.00Affected3.775430.314.03
c.2619C>GS873RUncertain 16-33443171-C-G16.20e-7-5.856Likely Benign0.976Likely PathogenicLikely Pathogenic0.192Likely Benign-2.74Deleterious0.997Probably Damaging0.995Probably Damaging2.67Benign0.06Tolerated3.7750-1-3.769.11
c.2623G>AA875TLikely BenignUncertain 16-33443175-G-A16.20e-7-3.793Likely Benign0.179Likely BenignLikely Benign0.110Likely Benign-1.56Neutral0.972Probably Damaging0.864Possibly Damaging2.72Benign0.26Tolerated3.77501-2.530.03

Found 757 rows. Show 200 rows per page. Page 2/4 |