SynGap Missense Server

Table of SynGAP1 Isoform α2 (UniProt Q96PV0-1) Missense Variants.

c.dna Variant SGM Consensus Domain ClinVar gnomAD ESM1b AlphaMissense REVEL FoldX Rosetta Foldetta PremPS PROVEAN PolyPhen-2 HumDiv PolyPhen-2 HumVar FATHMM SIFT PAM Physical SASA Normalized B-factor backbone Normalized B-factor sidechain SynGAP Structural Annotation DOI
Clinical Status Review Subm. ID Allele count Allele freq. LLR score Prediction Pathogenicity Class Optimized Score Prediction Average ΔΔG Prediction StdDev ΔΔG Prediction ΔΔG Prediction ΔΔG Prediction Score Prediction pph2_prob Prediction pph2_prob Prediction Nervous System Score Prediction Prediction Status Conservation Sequences PAM250 PAM120 Hydropathy Δ MW Δ Average Δ Δ StdDev Δ StdDev Secondary Tertiary bonds Inside out GAP-Ras interface At membrane No effect MD Alert Verdict Description
c.1971G>CW657CLikely PathogenicGAPUncertain 1-12.035Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.463Likely Benign2.74Destabilizing0.31.69Ambiguous2.22Destabilizing1.30Destabilizing-11.06Deleterious1.000Probably Damaging0.982Probably Damaging3.43Benign0.03Affected-8-23.4-83.07
c.924G>CW308C
(3D Viewer)
Likely PathogenicC2Pathogenic/Likely path. 2-12.791Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.738Likely Pathogenic5.56Destabilizing0.34.38Destabilizing4.97Destabilizing1.26Destabilizing-11.95Deleterious1.000Probably Damaging0.999Probably Damaging0.48Pathogenic0.00Affected3.3819-8-23.4-83.07230.860.5-0.30.1-0.40.4XPotentially PathogenicThe indole ring of Trp308, located in an anti-parallel β sheet strand (res. Thr305-Asn315), packs against multiple hydrophobic residues (e.g., Ile268, Val306, Cys282). The indole group of Trp308 also hydrogen bonds with the backbone atoms of the C2 domain residues forming the anti-parallel β sheet (e.g., Tyr280, Thr294). The introduced Cys308 is smaller than the tryptophan it replaced. The thiol group of the Cys308 side chain is well-suited for the inner hydrophobic part of the C2 domain. Although the negative effects are essentially missing from the simulations, the side chain size difference between the residues is likely to disrupt the hydrophobic packing during folding. At a minimum, the residue swap could affect the C2 domain stability and membrane association.
c.1714T>GW572G
(3D Viewer)
Likely PathogenicGAPUncertain 1-17.692Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.900Likely Pathogenic6.57Destabilizing0.27.57Destabilizing7.07Destabilizing1.83Destabilizing-11.98Deleterious1.000Probably Damaging1.000Probably Damaging-1.24Pathogenic0.00Affected3.3735-7-20.5-129.16195.2127.90.00.0-1.00.0XPotentially PathogenicThe introduced residue Gly572, located in an α-helix (res. Arg563-Glu578), is considerably smaller than the tryptophan it replaced. The indole ring of the Trp572 side chain lies in a hydrophobic inter-helix space, where it makes extensive hydrophobic interactions with nearby residues such as Met470, Phe569, Leu588, and Ile589. In the variant simulations, all these favorable packing interactions are completely removed, as the introduced residue Gly572 essentially lacks a side chain altogether. Although not observed in the simulations, the residue swap could also weaken the integrity of the helix (res. Arg563-Glu578), as glycine is known as an “α-helix breaker.” Overall, the residue swap is highly likely to cause critical protein folding problems that are underestimated based on the effects seen in the variant simulations.
c.121C>TR41CLikely BenignConflicting 36-33423530-C-T74.34e-6-4.745Likely Benign0.207Likely BenignLikely Benign0.093Likely Benign-1.10Neutral0.976Probably Damaging0.919Probably Damaging4.13Benign0.00Affected4.321-4-37.0-53.05
c.1066C>TR356C
(3D Viewer)
Likely PathogenicC2Likely Benign 16-33437971-C-T53.10e-6-11.827Likely Pathogenic0.774Likely PathogenicLikely Benign0.312Likely Benign0.76Ambiguous0.01.19Ambiguous0.98Ambiguous0.84Ambiguous-7.12Deleterious1.000Probably Damaging0.990Probably Damaging1.67Pathogenic0.00Affected3.3922-4-37.0-53.05212.391.0-0.10.3-0.30.1XPotentially PathogenicArg356 is located in a loop that includes a short helical section and connects two anti-parallel β sheet strands (res. Gly341-Pro349, res. Thr359-Pro364). In the WT simulations, the guanidinium group of Arg356 alternately forms salt bridges with the carboxylate groups of the GAP domain residues, Glu446 and Glu698. Arg356 also forms hydrogen bonds with the hydroxyl group of the GAP domain residue Thr691 and interacts with Met409 at the C2-GAP interface.In the variant simulations, the Cys356 mutation fails to maintain any of the Arg356 interactions and only occasionally forms weak hydrogen bonds with nearby C2 domain residues (e.g., Gln407). Although no negative structural effects are observed during the simulations, Arg356 is located at the C2 and GAP domain interface, making the residue swap potentially detrimental to the tertiary structure assembly.
c.1213C>TR405C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33438118-C-T63.72e-6-9.206Likely Pathogenic0.713Likely PathogenicLikely Benign0.427Likely Benign0.72Ambiguous0.11.51Ambiguous1.12Ambiguous1.21Destabilizing-7.27Deleterious1.000Probably Damaging1.000Probably Damaging3.61Benign0.02Affected3.3828-4-37.0-53.05221.382.6-0.10.0-0.20.3XXPotentially PathogenicThe guanidinium group of Arg405, located in an anti-parallel β sheet strand of the C2 domain (res. Ala399-Ile411), forms a salt bridge with the carboxylate group of the Glu446 side chain from an opposing α helix (res. Val441-Ser457) in the GAP domain. The positively charged Arg405 side chain also stacks with the aromatic ring of the Phe358 side chain from a loop preceding the β strand (res. Thr359-Thr366), which could assist in maintaining the anti-parallel strand arrangement.In the variant simulations, the thiol-containing side chain of Cys405 is neutral and smaller compared to the arginine side chain. The lack of Arg405-Phe358 stacking affects the loop structure, causing it to assume a β strand form—an effect that could be exacerbated during protein folding. Moreover, the inability of Cys405 to form a salt bridge with Glu446 could affect the tertiary structure assembly, although this is not apparent based on the variant simulations.
c.1453C>TR485C
(3D Viewer)
Likely PathogenicGAPUncertain 26-33438485-C-T95.58e-6-14.294Likely Pathogenic0.976Likely PathogenicLikely Pathogenic0.597Likely Pathogenic1.00Ambiguous0.10.26Likely Benign0.63Ambiguous0.44Likely Benign-7.96Deleterious1.000Probably Damaging1.000Probably Damaging1.90Pathogenic0.00Affected3.3735-4-37.0-53.05225.599.6-0.10.0-0.30.2XUncertainThe guanidinium group of Arg485 is located in a short helical structure (res. Glu480-Leu482) within an α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. The side chain of Arg485 acts as the “arginine finger” of SynGAP, playing a crucial role in Ras-GTPase activation. Consequently, the residue swap inhibits the conversion of GTP to GDP at the enzyme’s active site. Although no negative effects on the protein structure are observed during the simulations, no definite conclusions can be drawn due to the critical role of Arg485 in GTPase activation.
c.1579G>TD527Y
(3D Viewer)
Likely PathogenicGAPUncertain 1-15.386Likely Pathogenic0.978Likely PathogenicLikely Pathogenic0.905Likely Pathogenic-0.77Ambiguous0.21.89Ambiguous0.56Ambiguous-0.14Likely Benign-8.79Deleterious1.000Probably Damaging0.999Probably Damaging-2.41Pathogenic0.00Affected3.3735-4-32.248.09270.9-45.70.10.1-0.10.0XPotentially PathogenicAsp527 is located on an α-α loop between the two α-helices (res. Gly502-Tyr518 and Ala533-Val560). In the WT simulations, the carboxylate group of the Asp527 side chain forms hydrogen bonds with the backbone atoms of loop residues (e.g., Ile529, Lys530) facing the membrane surface. In the variant simulations, Tyr527 is a bulkier residue that faces away from the loop and stacks with Phe646 in a nearby α-helix (res. Ser614-Ser668). Regardless, no negative structural effects are observed during the variant simulations. However, due to its location near the SynGAP-membrane interface, the effect of the residue swap cannot be fully addressed using the SynGAP solvent-only simulations.
c.1639T>CC547R
(3D Viewer)
Likely PathogenicGAPUncertain 1-16.967Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.900Likely Pathogenic7.76Destabilizing0.85.83Destabilizing6.80Destabilizing1.69Destabilizing-11.60Deleterious1.000Probably Damaging0.998Probably Damaging-1.33Pathogenic0.02Affected3.3735-4-3-7.053.05267.4-90.30.00.0-0.10.1XXXXPotentially PathogenicCys547 is located in an α-helix (res. Ala533-Val560). The thiol side chain of Cys is situated in a hydrophobic inter-helix space, where it packs hydrophobically with other residues such as Ile626, Leu551, and Phe652. Additionally, the thiol side chain of Cys547 weakly hydrogen bonds with the carbonyl group of Leu543 in the same α-helix. In the variant simulations, the bulkier, positively charged guanidinium group of Arg547 must rotate out of the hydrophobic space. Consequently, it forms ionic interactions with the carboxylate groups of Glu548 in the same helix and Glu656 in the neighboring α-helix (res. Glu666-Asp644). This causes the two helices to slightly separate, significantly affecting the secondary structure integrity of the latter helix. These negative structural effects could be more pronounced during protein folding and are likely to be undermined in the MD simulations.
c.2206C>TR736CConflicting 36-33441671-C-T84.96e-6-7.113In-Between0.120Likely BenignLikely Benign0.190Likely Benign-2.06Neutral0.999Probably Damaging0.825Possibly Damaging2.48Pathogenic0.00Affected4.073-4-37.0-53.05
c.1723C>TR575C
(3D Viewer)
Likely PathogenicGAPConflicting 36-33440775-C-T231.43e-5-11.179Likely Pathogenic0.630Likely PathogenicLikely Benign0.715Likely Pathogenic1.39Ambiguous0.20.50Ambiguous0.95Ambiguous0.73Ambiguous-5.43Deleterious1.000Probably Damaging1.000Probably Damaging-1.30Pathogenic0.02Affected3.3735-4-37.0-53.05227.799.20.00.00.00.1XPotentially PathogenicThe guanidinium group of Arg575, located in an α-helix (res. Arg563-Glu578), forms salt bridges with the carboxylate groups of Asp463 and Asp467, and it also hydrogen bonds with the hydroxyl group of Ser466 on an opposing α-helix (res. Ala461-Phe476) in the WT simulations. In the variant simulations, the thiol group of the Cys575 side chain, which is neither positively charged nor particularly hydrophilic, packs against the hydrophobic Met470 on an opposing α-helix (res. Ala461-Arg475). Additionally, although the thiol group is not an effective hydrogen bonder, the Cys575 side chain rotates to hydrogen bond with the backbone carbonyl group of Ser571 in the same α-helix, which could theoretically lower the helix integrity. Overall, the residue swap has the potential to substantially affect the tertiary structure assembly during the protein folding process.
c.1786C>TR596C
(3D Viewer)
Likely PathogenicGAPConflicting 26-33440838-C-T63.72e-6-10.805Likely Pathogenic0.972Likely PathogenicLikely Pathogenic0.633Likely Pathogenic2.94Destabilizing0.01.49Ambiguous2.22Destabilizing-0.03Likely Benign-7.96Deleterious1.000Probably Damaging1.000Probably Damaging2.41Pathogenic0.00Affected3.3735-4-37.0-53.05230.797.9-0.10.0-0.30.4XXPotentially PathogenicThe guanidinium group of Arg596, located in an α helix (res. Glu582-Met603), forms a salt bridge with the carboxylate group of Glu495 from another α helix (res. Leu489-Glu519). In the WT simulations, the side chain of Arg596 hydrogen bonds with the backbone carbonyl groups of Asn487, Glu486, Arg485, and Phe484. Additionally, Arg596 can hydrogen bond with the carboxamide group of the Asn487 side chain on an opposing loop that links two α helices (res. Ala461-Arg475, res. Leu489-Glu519).In the variant simulations, the thiol group of the Cys596 side chain is unable to form salt bridges or any of the hydrogen bonds that the Arg596 side chain can. Thus, the residue swap could affect the tertiary structure assembly more profoundly than observed in the simulations. Notably, Arg596 plays a key role in positioning the aforementioned loop, which is crucial for the placement of the “arginine finger” or the Arg485 side chain during RasGTPase activation.
c.2302G>TD768YLikely PathogenicUncertain 16-33442460-G-T-9.866Likely Pathogenic0.824Likely PathogenicAmbiguous0.234Likely Benign-2.86Deleterious0.989Probably Damaging0.806Possibly Damaging4.01Benign0.07Tolerated3.646-4-32.248.09
c.2353C>TR785CLikely PathogenicSH3-binding motifUncertain 16-33442905-C-T291.80e-5-5.887Likely Benign0.662Likely PathogenicLikely Benign0.126Likely Benign-5.06Deleterious0.144Benign0.046Benign2.22Pathogenic0.00Affected3.646-4-37.0-53.05
c.2443C>TR815CLikely PathogenicSH3-binding motifUncertain 16-33442995-C-T53.10e-6-9.373Likely Pathogenic0.828Likely PathogenicAmbiguous0.174Likely Benign-3.89Deleterious1.000Probably Damaging0.998Probably Damaging2.59Benign0.00Affected4.324-4-37.0-53.05
c.2668C>TR890CBenign 16-33443220-C-T95.58e-6-5.786Likely Benign0.402AmbiguousLikely Benign0.200Likely Benign-3.38Deleterious1.000Probably Damaging0.971Probably Damaging3.94Benign0.04Affected4.324-4-37.0-53.05
c.2713C>TR905CConflicting 26-33443265-C-T159.31e-6-5.578Likely Benign0.723Likely PathogenicLikely Benign0.194Likely Benign-3.14Deleterious1.000Probably Damaging0.980Probably Damaging2.57Benign0.01Affected3.775-4-37.0-53.05
c.3055C>TR1019CLikely PathogenicConflicting 26-33443607-C-T106.19e-6-7.386In-Between0.646Likely PathogenicLikely Benign0.168Likely Benign-4.00Deleterious0.999Probably Damaging0.880Possibly Damaging2.36Pathogenic0.00Affected3.775-4-37.0-53.0510.1016/j.ajhg.2020.11.011
c.3820C>TR1274CUncertain 16-33447868-C-T-6.467Likely Benign0.439AmbiguousLikely Benign0.170Likely Benign-5.22Deleterious1.000Probably Damaging0.996Probably Damaging2.46Pathogenic0.00Affected3.775-4-37.0-53.05
c.3922C>TR1308CConflicting 26-33451796-C-T42.48e-6-4.994Likely Benign0.421AmbiguousLikely Benign0.352Likely Benign-4.89Deleterious0.999Probably Damaging0.993Probably Damaging2.31Pathogenic0.00Affected3.775-4-37.0-53.05
c.467T>GF156CLikely PathogenicUncertain 1-13.658Likely Pathogenic0.988Likely PathogenicLikely Pathogenic0.297Likely Benign-3.54Deleterious0.999Probably Damaging0.990Probably Damaging3.92Benign0.00Affected-4-2-0.3-44.04
c.484C>TR162CPathogenic 2-8.157Likely Pathogenic0.787Likely PathogenicAmbiguous0.150Likely Benign-2.05Neutral0.988Probably Damaging0.513Possibly Damaging4.00Benign0.11Tolerated3.744-4-37.0-53.05
c.844T>CC282R
(3D Viewer)
Likely PathogenicC2Pathogenic 2-16.378Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.466Likely Benign3.13Destabilizing0.61.58Ambiguous2.36Destabilizing1.70Destabilizing-11.03Deleterious0.999Probably Damaging0.998Probably Damaging1.63Pathogenic0.00Affected3.3918-4-3-7.053.05297.4-98.2-0.10.10.50.0XXXPotentially PathogenicThe thiol-containing side chain of Cys282, located at the beginning of an anti-parallel β sheet strand (res. Arg279-Leu286), is packed against multiple hydrophobic residues (e.g., Ile268, Leu284, Trp308, Leu327). In the variant simulations, the bulky side chain of Arg282 with its positively charged guanidinium group is not suitable for this hydrophobic niche. Consequently, the hydrophobic residues must either make room to accommodate Arg282 or it must escape the hydrophobic C2 domain core.As a result, new hydrogen bonds are formed with the backbone carbonyl groups of the surrounding β sheet residues Ala399, Leu325, and His326, which decreases the unity of the secondary structure elements. Notably, it is likely that the residue swap causes major problems during the C2 domain folding that are not visible in the variant simulations. In fact, even increased lability in the C2 domain could adversely affect the establishment of a stable SynGAP-membrane association.
c.859G>TD287Y
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-12.877Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.663Likely Pathogenic0.21Likely Benign0.20.48Likely Benign0.35Likely Benign0.27Likely Benign-8.27Deleterious1.000Probably Damaging0.999Probably Damaging1.51Pathogenic0.00Affected3.3823-4-32.248.09257.8-44.4-0.61.60.20.3XXPotentially PathogenicThe carboxylate group of Asp287, located at the beginning of a β hairpin loop linking two anti-parallel β sheet strands (res. Arg279-Leu286, res. Met289-Pro298), maintains a salt bridge with the guanidinium group of Arg324 in the β sheet during the WT simulations. In the variant simulations, the phenol group of the Tyr287 side chain is unable to form a salt bridge with the guanidinium group of Arg324, which could weaken the tertiary structure assembly of the C2 domain. However, the phenol group of Tyr287 frequently stacks with the Arg324 guanidinium side chain, which could help maintain the tertiary structure, especially compared to the D287H variant. The destabilization of the C2 domain could adversely affect the stability of the SynGAP-membrane association.
c.877C>TR293C
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437782-C-T31.86e-6-12.844Likely Pathogenic0.985Likely PathogenicLikely Pathogenic0.579Likely Pathogenic1.38Ambiguous0.10.62Ambiguous1.00Ambiguous0.02Likely Benign-7.35Deleterious1.000Probably Damaging0.998Probably Damaging1.46Pathogenic0.00Affected3.3823-4-37.0-53.05226.096.50.00.00.10.1XXXPotentially PathogenicThe guanidinium group of the Arg293 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), packs against the phenol ring of the Tyr281 side chain or forms a salt bridge with the carboxylate group of Glu283 on the outer side of the C2 domain. The positively charged guanidinium side chain of arginine is on the outside surface of the hydrophobic C2 domain, resulting in a twist in the β strand. Although this twist is maintained in the variant simulations, replacing the positively charged residue with a more hydrophobic one, such as cysteine, could remove the twist during protein folding.Because Arg293 is positioned at the C2 and PH domain interface, the residue swap could significantly impact the tertiary structure assembly. Notably, Arg293 is located at the SynGAP-Ras interface, and its role in complex formation cannot be fully understood through solvent-only simulations.
c.895C>TR299C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33437800-C-T31.86e-6-6.326Likely Benign0.572Likely PathogenicLikely Benign0.344Likely Benign1.85Ambiguous0.40.61Ambiguous1.23Ambiguous0.76Ambiguous-3.54Deleterious1.000Probably Damaging0.998Probably Damaging1.65Pathogenic0.06Tolerated3.3919-4-37.0-53.05210.791.30.10.00.00.2XXPotentially PathogenicThe guanidinium group of Arg299, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), forms hydrogen bonds that stabilize the tight turn. In the WT simulations, the Arg299 side chain hydrogen bonds with the loop backbone carbonyl groups (e.g., Ser302, Thr305, Leu274, Gly303), the hydroxyl group of Ser300, and even forms a salt bridge with the carboxylate group of Asp304.In the variant simulations, the thiol group of the Cys299 side chain is unable to form any of these well-coordinated or strong interactions, which could affect the initial formation of the secondary hairpin loop during folding. β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Moreover, the positively charged Arg299 side chain faces the polar head group region of the inner leaflet membrane and could directly anchor the C2 domain to the membrane. In short, the residue swap could negatively affect both protein folding and the stability of the SynGAP-membrane association.
c.1003C>TR335C
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437908-C-T16.20e-7-14.354Likely Pathogenic0.938Likely PathogenicAmbiguous0.277Likely Benign0.53Ambiguous0.10.85Ambiguous0.69Ambiguous0.46Likely Benign-5.69Deleterious1.000Probably Damaging0.998Probably Damaging1.67Pathogenic0.01Affected3.3822-3-47.0-53.05
c.1025A>CY342S
(3D Viewer)
Likely PathogenicC2Uncertain 2-7.996In-Between0.925Likely PathogenicAmbiguous0.407Likely Benign3.03Destabilizing0.12.87Destabilizing2.95Destabilizing0.93Ambiguous-6.60Deleterious1.000Probably Damaging0.998Probably Damaging1.75Pathogenic0.04Affected3.3725-3-20.5-76.10200.177.80.00.0-0.20.1Potentially PathogenicThe phenol ring of Tyr342, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), faces outward in the C2 domain. In the WT simulations, the phenol ring of Tyr342 contributes to a triple tyrosine stack (Tyr342, Tyr328, and Tyr281) that links together three anti-parallel β sheet strands. Additionally, it shields Gly344 from the solvent, reducing its exposure and providing stability for the β-sandwich. This motif also contributes to a twist formation in the β sheet.In the variant simulations, the Ser342 side chain cannot participate in the stack formation. Instead, the hydroxyl group of the Ser342 side chain forms a hydrogen bond with the imidazole ring of His326 in a neighboring β strand (res. Ala322-Asp330). This disrupts the formation of a hydrogen bond between His326 and the carboxylate group of the Glu283 side chain from another β strand (res. Arg279-Cys285). Although these changes in surface interactions could weaken the characteristic twist that strengthens the β sheet fold, no major structural effects are observed in the variant simulations. The residue swap could also affect the SynGAP-membrane association, as the hydroxyl group of Ser342 could form hydrogen bonds with membrane-facing loop residues. However, this phenomenon cannot be addressed using solvent-only simulations.
c.1058T>CL353P
(3D Viewer)
Likely PathogenicC2Uncertain 1-7.913In-Between0.936Likely PathogenicAmbiguous0.464Likely Benign4.63Destabilizing0.110.19Destabilizing7.41Destabilizing2.17Destabilizing-3.70Deleterious0.947Possibly Damaging0.454Possibly Damaging1.29Pathogenic0.02Affected3.3725-3-3-5.4-16.04
c.1126G>TG376CC2Uncertain 1-7.686In-Between0.125Likely BenignLikely Benign0.560Likely Pathogenic2.56Destabilizing0.50.22Likely Benign1.39Ambiguous0.16Likely Benign-1.15Neutral1.000Probably Damaging1.000Probably Damaging1.32Pathogenic0.01Affected-3-32.946.09
c.113C>TP38LLikely BenignConflicting 46-33423522-C-T84.96e-6-2.469Likely Benign0.197Likely BenignLikely Benign0.141Likely Benign-2.56Deleterious0.983Probably Damaging0.931Probably Damaging4.02Benign0.00Affected4.321-3-35.416.04
c.1121C>AS374Y
(3D Viewer)
C2Uncertain 1-7.774In-Between0.344AmbiguousLikely Benign0.310Likely Benign0.71Ambiguous1.20.66Ambiguous0.69Ambiguous-0.02Likely Benign-1.18Neutral0.875Possibly Damaging0.271Benign5.41Benign0.01Affected4.3213-3-2-0.576.10237.3-76.90.50.40.50.3UncertainSer374 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus, large and relatively hydrophobic residues like tyrosine are rarely tolerated. Additionally, the hydroxyl group of Tyr374 frequently forms various hydrogen bonds with other loop residues in the variant simulations. Although no negative structural effects are observed in the variant simulations, Tyr374 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1136C>TS379L
(3D Viewer)
Likely BenignC2Benign 16-33438041-C-T84.05e-5-5.641Likely Benign0.173Likely BenignLikely Benign0.469Likely Benign0.39Likely Benign0.23.38Destabilizing1.89Ambiguous-0.52Ambiguous-0.85Neutral0.015Benign0.002Benign3.83Benign0.04Affected4.3211-3-24.626.08251.9-48.10.61.10.00.5UncertainSer379 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like leucine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Leu379 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1352T>CL451P
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-14.549Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.750Likely Pathogenic6.92Destabilizing0.28.57Destabilizing7.75Destabilizing2.58Destabilizing-6.81Deleterious1.000Probably Damaging1.000Probably Damaging2.43Pathogenic0.00Affected3.3734-3-3-5.4-16.04
c.1154C>TS385L
(3D Viewer)
Likely BenignC2Uncertain 26-33438059-C-T94.60e-5-6.018Likely Benign0.167Likely BenignLikely Benign0.304Likely Benign0.16Likely Benign0.10.08Likely Benign0.12Likely Benign-0.26Likely Benign-0.68Neutral0.829Possibly Damaging0.706Possibly Damaging4.63Benign0.01Affected4.323-3-24.626.08244.6-50.10.00.6-0.10.1UncertainSer385 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like leucine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Leu385 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effects on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1193C>TP398L
(3D Viewer)
C2Uncertain 16-33438098-C-T84.96e-6-7.518In-Between0.547AmbiguousLikely Benign0.599Likely Pathogenic1.48Ambiguous0.2-0.54Ambiguous0.47Likely Benign0.62Ambiguous-7.10Deleterious0.961Probably Damaging0.256Benign5.72Benign0.01Affected3.4016-3-35.416.04245.8-68.6-0.10.0-0.30.2XPotentially PathogenicPro398 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. Although the residue swap does not influence the nearby secondary structure elements, proline is often found at the ends of β sheets due to its disfavored status during folding.Additionally, the Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone. Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like leucine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Leu398 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1205T>GL402R
(3D Viewer)
Likely PathogenicC2Likely Pathogenic1-13.800Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.522Likely Pathogenic4.10Destabilizing0.23.82Destabilizing3.96Destabilizing2.24Destabilizing-4.69Deleterious0.967Probably Damaging0.459Possibly Damaging3.69Benign0.00Affected3.3828-3-2-8.343.03259.5-55.40.00.01.40.0XXXPotentially PathogenicThe iso-butyl side chain of Leu402, located in an anti-parallel β sheet strand (res. Ala399-Ile411), packs with residues inside the hydrophobic core of the C2 domain (e.g., Ile268, Ala404, Leu266, Val400). In the variant simulations, the positively charged guanidinium group of the Arg402 side chain is not suitable for the hydrophobic niche. Consequently, the side chain moves outward from the hydrophobic C2 domain core and stacks with the phenol ring of Tyr363 or forms H-bonds with the carboxamide group of the Gln361 side chain in the β sheet strand (res. Thr359-Tyr364). This movement induces extensive negative effects on the C2 domain structure.
c.1499T>CL500P
(3D Viewer)
Likely PathogenicGAPPathogenic 1-15.898Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.894Likely Pathogenic5.91Destabilizing0.38.90Destabilizing7.41Destabilizing1.92Destabilizing-6.96Deleterious1.000Probably Damaging1.000Probably Damaging-1.37Pathogenic0.01Affected3.3735-3-3-5.4-16.04
c.1259T>CF420S
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-13.231Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.544Likely Pathogenic5.34Destabilizing0.15.73Destabilizing5.54Destabilizing2.14Destabilizing-7.43Deleterious0.998Probably Damaging0.938Probably Damaging3.09Benign0.00Affected3.3729-3-2-3.6-60.10213.357.80.00.0-0.40.1XPotentially PathogenicIn the WT, the phenyl ring of the Phe420 side chain, located on an α helix (res. Met414-Glu436), packs against hydrophobic residues in the interhelix area of the GAP domain (e.g., Leu689, Leu714, Leu717, Leu718). Although no large-scale adverse effects are seen in the variant simulations, the polar hydroxyl group of Ser420 is not suitable for the hydrophobic inter-helix space. Thus, the residue swap could affect protein folding. In theory, the introduced hydroxyl group could also lower the α helix integrity by H-bonding with the backbone atoms of neighboring residues in the same α helix. However, no such effect is seen in the variant simulations.
c.1513T>GY505D
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-14.078Likely Pathogenic0.993Likely PathogenicLikely Pathogenic0.718Likely Pathogenic4.98Destabilizing0.14.72Destabilizing4.85Destabilizing2.49Destabilizing-9.95Deleterious1.000Probably Damaging1.000Probably Damaging2.60Benign0.00Affected3.3735-3-4-2.2-48.09
c.155C>TS52LUncertain 16-33423564-C-T16.20e-7-7.199In-Between0.688Likely PathogenicLikely Benign0.087Likely Benign-1.41Neutral0.829Possibly Damaging0.706Possibly Damaging4.10Benign0.00Affected4.321-3-24.626.08
c.1292T>CL431P
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-14.222Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.659Likely Pathogenic6.78Destabilizing0.311.59Destabilizing9.19Destabilizing2.29Destabilizing-6.39Deleterious1.000Probably Damaging0.998Probably Damaging2.91Benign0.05Affected3.3729-3-3-5.4-16.04222.462.80.10.00.10.0XPotentially PathogenicThe iso-butyl side chain of Leu431, located in an α helix (res. Met414-Glu436), packs against other hydrophobic residues in an interhelix space (e.g., Val434, Leu435, Leu696, Leu711) in the WT simulations. While the backbone amide group of Leu431 forms an H-bond with the carbonyl group of His427, the cyclic five-membered pyrrolidine ring of Pro431, lacking the necessary amide group, cannot do the same. Thus, although the cyclic five-membered pyrrolidine ring of Pro431 packs almost as favorably as the side chain of Leu431 in the hydrophobic niche, the residue swap causes the α helix to partially unfold in the variant simulations.
c.1667A>TN556I
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33438910-A-T-13.391Likely Pathogenic0.929Likely PathogenicAmbiguous0.761Likely Pathogenic0.64Ambiguous0.00.17Likely Benign0.41Likely Benign0.26Likely Benign-7.52Deleterious1.000Probably Damaging0.999Probably Damaging-1.35Pathogenic0.02Affected3.3735-3-28.0-0.94
c.1394T>CL465P
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-14.824Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.778Likely Pathogenic7.18Destabilizing0.310.85Destabilizing9.02Destabilizing2.73Destabilizing-6.96Deleterious1.000Probably Damaging1.000Probably Damaging2.29Pathogenic0.00Affected3.3734-3-3-5.4-16.04211.165.90.10.0-0.20.0XPotentially PathogenicThe iso-butyl side chain of Leu465, located in the middle of an α helix (res. Ala461–Phe476), packs with hydrophobic residues (e.g., Phe464, Met468, Tyr497, Ile494) in an inter-helix space formed with two other α helices (res. Ala461–Phe476 and res. Thr488-Gly502). In the variant simulations, the cyclic five-membered pyrrolidine ring of Pro465 is not as optimal as the side chain of Leu465 for filling the three α helix hydrophobic niche. Although the residue swap does not cause a large-scale conformational shift during the simulations, the H-bond between the backbone amide group of Leu465 and the backbone carbonyl group of Ala461 is lost. This, in turn, breaks the continuity of the α helix secondary structure element.
c.1726T>CC576R
(3D Viewer)
Likely PathogenicGAPConflicting 2-14.886Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.579Likely Pathogenic7.20Destabilizing1.04.09Destabilizing5.65Destabilizing1.64Destabilizing-10.88Deleterious0.999Probably Damaging0.996Probably Damaging3.38Benign0.00Affected3.3735-3-4-7.053.05
c.1763T>CL588P
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.771Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.932Likely Pathogenic5.61Destabilizing0.512.91Destabilizing9.26Destabilizing2.33Destabilizing-6.97Deleterious1.000Probably Damaging1.000Probably Damaging-1.42Pathogenic0.00Affected3.3834-3-3-5.4-16.04
c.1778T>CL593P
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.961Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.777Likely Pathogenic5.75Destabilizing0.910.77Destabilizing8.26Destabilizing2.43Destabilizing-6.77Deleterious1.000Probably Damaging1.000Probably Damaging2.77Benign0.00Affected-3-3-5.4-16.04
c.1466T>CL489P
(3D Viewer)
Likely PathogenicGAPConflicting 2-13.520Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.939Likely Pathogenic2.50Destabilizing0.14.69Destabilizing3.60Destabilizing1.73Destabilizing-6.74Deleterious1.000Probably Damaging1.000Probably Damaging-1.56Pathogenic0.00Affected3.3735-3-3-5.4-16.04209.961.90.10.00.60.1XPotentially PathogenicThe iso-butyl side chain of Leu489, located in the α-helix (res. Leu489-Glu519) within an inter-helix space of four helices (res. Ala461-Phe476, res. Val441-Ser457, and res. Met414-Glu436), packs with hydrophobic residues (e.g., Cys432, Ala448, Lys444, Ala493, Val447, Met468). In the variant simulations, Pro489 is located near the beginning of the α-helix, so the residue swap with Leu489 does not affect the continuity of the secondary structure element. However, the side chain of proline is not as optimal as that of leucine for maintaining hydrophobic packing with nearby residues (e.g., Ala448, Lys444). Additionally, the consistently maintained hydrogen bond interaction between the backbone amide group of Leu489 and the carbonyl of Glu436 is lost due to the residue swap, potentially affecting the tertiary structure integrity.
c.1784T>CL595P
(3D Viewer)
Likely PathogenicGAPUncertain 1-11.856Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.747Likely Pathogenic2.09Destabilizing0.85.88Destabilizing3.99Destabilizing1.78Destabilizing-6.97Deleterious1.000Probably Damaging1.000Probably Damaging2.72Benign0.00Affected3.3735-3-3-5.4-16.04
c.1517T>CL506P
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic1-12.088Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.737Likely Pathogenic5.48Destabilizing0.710.19Destabilizing7.84Destabilizing2.50Destabilizing-6.96Deleterious1.000Probably Damaging1.000Probably Damaging1.55Pathogenic0.00Affected3.3735-3-3-5.4-16.04182.664.90.10.00.20.1XPotentially PathogenicLeu506 is located in the middle of an α-helix (res. Gly502-Tyr518) within the inter-helix space of two helices (res. Gly502-Tyr518 and res. Glu582-Met603). In the WT simulations, the iso-butyl side chain of Leu506 hydrophobically packs with residues in the inter-helix space (e.g., Ile510, Phe597, Leu598, Ala601). In the variant simulations, the cyclic five-membered pyrrolidine ring of Pro506 is not as optimal as Leu506 for hydrophobic packing with nearby residues. Additionally, Pro506 cannot maintain the hydrogen bond with the backbone oxygen of Gly502 as Leu506 does in the WT, which disrupts the secondary structure element.
c.1531G>AG511R
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-11.327Likely Pathogenic0.991Likely PathogenicLikely Pathogenic0.416Likely Benign1.94Ambiguous0.31.32Ambiguous1.63Ambiguous0.94Ambiguous-7.72Deleterious1.000Probably Damaging1.000Probably Damaging3.26Benign0.06Tolerated3.3735-3-2-4.199.14279.4-159.90.00.00.70.1XXPotentially PathogenicGly511 is located in an α-helix (res. Gly502-Tyr518), facing hydrophobic residues in an inter-helix space (e.g., Leu610, Ile514) in the WT simulations. In contrast, in the variant simulations, the bulkier and positively charged guanidinium side chain of Arg511 forms a salt bridge with the carboxylate group of Glu217 or hydrogen bonds with the backbone carbonyl group of Leu610. Although the residue swap introduces a third positively charged residue in close vicinity (Arg511, Lys507, Arg515), the protein structure seems to remain stable in the variant simulations. Importantly, according to ClinVar, the residue swap alters the last nucleotide of an exon and is predicted to destroy the splice donor site, resulting in aberrant splicing and pathogenic status.10.1016/j.ajhg.2020.11.011
c.1531G>CG511R
(3D Viewer)
Likely PathogenicGAPPathogenic 1-11.327Likely Pathogenic0.991Likely PathogenicLikely Pathogenic0.415Likely Benign1.94Ambiguous0.31.32Ambiguous1.63Ambiguous0.94Ambiguous-7.72Deleterious1.000Probably Damaging1.000Probably Damaging3.26Benign0.06Tolerated3.3735-3-2-4.199.14279.4-159.90.00.00.70.1XXPotentially PathogenicGly511 is located in an α-helix (res. Gly502-Tyr518), facing hydrophobic residues in an inter-helix space (e.g., Leu610, Ile514) in the WT simulations. In contrast, in the variant simulations, the bulkier and positively charged guanidinium side chain of Arg511 forms a salt bridge with the carboxylate group of Glu217 or hydrogen bonds with the backbone carbonyl group of Leu610. Although the residue swap introduces a third positively charged residue in close vicinity (Arg511, Lys507, Arg515), the protein structure seems to remain stable in the variant simulations. Importantly, according to ClinVar, the residue swap alters the last nucleotide of an exon and is predicted to destroy the splice donor site, resulting in aberrant splicing and pathogenic status.10.1016/j.ajhg.2020.11.011
c.1976C>TS659F
(3D Viewer)
Likely PathogenicGAPUncertain 1-10.925Likely Pathogenic0.662Likely PathogenicLikely Benign0.194Likely Benign-0.81Ambiguous0.1-0.25Likely Benign-0.53Ambiguous0.32Likely Benign-4.59Deleterious0.806Possibly Damaging0.171Benign3.39Benign0.05Affected3.3828-3-23.660.10221.3-61.20.00.00.60.4XPotentially BenignIn the WT simulations, the hydroxyl group of Ser659, located in a kink in the middle of the long α-helix (res. Ser641-Glu666), forms a hydrogen bond with the carboxylate group of Glu656. However, the phenol ring of the Phe659 side chain cannot form a similar hydrogen bond. Instead, it interacts with the hydrophobic isopropyl side chain of Val555 from the opposing α-helix (res. Ala533-Val560). This residue swap may therefore cause issues during protein folding.
c.1652T>CL551P
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-14.620Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.953Likely Pathogenic6.66Destabilizing0.16.58Destabilizing6.62Destabilizing2.66Destabilizing-4.70Deleterious1.000Probably Damaging1.000Probably Damaging-1.60Pathogenic0.01Affected3.3735-3-3-5.4-16.04208.660.90.10.0-0.30.0XPotentially PathogenicL551 is located on an α-helix (res. Ala533-Val560). The iso-butyl side chain of Leu551 hydrophobically packs with nearby hydrophobic residues such as Cys547, Phe652, Leu633, and Ile630 in the inter-helix space. In the variant simulations, the pyrrolidine side chain of Pro551 is not as optimal as leucine for hydrophobic packing with the nearby residues. Moreover, Pro551 lacks the amide group, and thus, it cannot form a hydrogen bond with the backbone carbonyl group of Cys547, which disrupts the continuity of the secondary structure element.
c.1685C>TP562L
(3D Viewer)
Likely PathogenicGAPPathogenic/Likely path. 106-33440737-C-T-13.438Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.829Likely Pathogenic3.54Destabilizing0.80.17Likely Benign1.86Ambiguous-0.14Likely Benign-9.95Deleterious1.000Probably Damaging1.000Probably Damaging0.58Pathogenic0.00Affected3.3735-3-35.416.04228.8-68.5-0.10.00.10.2XPotentially PathogenicPro562 is located on an α-α loop between two α-helices (res. Ala533-Val560 and res. Arg563-Glu578). The cyclic pyrrolidine side chain of Pro562 hydrophobically packs with other residues in the inter-helix space, such as Leu565, Ile501, and Phe561. In the variant simulations, Leu562 packs more favorably with the nearby hydrophobic residues, and the backbone amide group of Leu562 (absent in proline) does not form any intra-protein hydrogen bonds. However, prolines are well-suited for unstructured regions like loops, and thus, Pro562 in the WT is necessary at the end of the helix to induce a tight turn during folding. Although no negative structural effects are observed during the simulations, the residue swap could potentially cause extensive damage to the protein structure during folding.10.1016/j.ajhg.2020.11.011
c.1706T>CF569S
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 2-13.384Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.916Likely Pathogenic5.70Destabilizing0.15.38Destabilizing5.54Destabilizing2.45Destabilizing-7.97Deleterious1.000Probably Damaging1.000Probably Damaging-1.32Pathogenic0.00Affected3.3734-3-2-3.6-60.10213.767.9-0.10.0-1.00.1XPotentially PathogenicPhe569 is located on an α-helix (res. Arg563-Glu578). In the WT simulations, the phenyl side chain of Phe569 packs with hydrophobic residues such as Trp572, Leu565, Ile589, Ile667, and Phe561, originating from three different α-helices (res. Ala533-Val560, res. Arg563-Glu578, and res. Ser641-Glu666). In the variant simulations, the acceptor/donor hydroxyl group of Ser569 forms hydrogen bonds with the carbonyl groups of Glu567 and Lys566 on the same α-helix, which could affect the α-helix integrity, although this is not observed in the simulations. While the simulations do not show large-scale effects, the residue swap could have a substantial impact on the protein structure due to the fundamental role of hydrophobic packing during protein folding.
c.1718G>TR573L
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-13.120Likely Pathogenic0.993Likely PathogenicLikely Pathogenic0.833Likely Pathogenic1.30Ambiguous0.61.11Ambiguous1.21Ambiguous0.80Ambiguous-5.74Deleterious1.000Probably Damaging1.000Probably Damaging-1.41Pathogenic0.01Affected3.3735-3-28.3-43.03237.460.70.00.0-0.70.3XXPotentially PathogenicThe guanidinium group of Arg573, located in an α-helix (res. Arg563-Glu578), forms a salt bridge with the carboxylate groups of Glu582 and/or Asp586 from a nearby α-helix (res. Glu582-Met603) in the WT simulations. Additionally, the Arg573 side chain stacks planarly with the aromatic phenol ring of Tyr665 and hydrogen bonds with the hydroxyl group of Ser668 from another α-helix (res. Ser641-Ser668). In the variant simulations, the aliphatic iso-butyl group of the Leu573 side chain fails to establish any of these interactions, which, in turn, lowers the integrity of the opposing α-helix end (res. Glu582-Met603). Overall, the residue swap has the potential to substantially affect the tertiary structure assembly during the protein folding process.10.1016/j.ajhg.2020.11.011
c.2224C>TR742WLikely BenignUncertain 16-33441689-C-T63.72e-6-7.725In-Between0.133Likely BenignLikely Benign0.079Likely Benign-1.71Neutral0.992Probably Damaging0.684Possibly Damaging2.66Benign0.01Affected4.322-323.630.03
c.2243T>GL748RLikely BenignConflicting 26-33441708-T-G31.86e-6-3.331Likely Benign0.245Likely BenignLikely Benign0.055Likely Benign-0.67Neutral0.912Possibly Damaging0.448Possibly Damaging2.73Benign0.02Affected4.322-3-2-8.343.03
c.2255C>TS752LLikely BenignUncertain 26-33441720-C-T63.72e-6-3.386Likely Benign0.182Likely BenignLikely Benign0.195Likely Benign-2.09Neutral0.993Probably Damaging0.641Possibly Damaging1.51Pathogenic0.01Affected3.995-3-24.626.08
c.1787G>TR596L
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.197Likely Pathogenic0.992Likely PathogenicLikely Pathogenic0.756Likely Pathogenic1.51Ambiguous0.3-0.58Ambiguous0.47Likely Benign-0.02Likely Benign-6.97Deleterious1.000Probably Damaging1.000Probably Damaging2.45Pathogenic0.00Affected3.3735-3-28.3-43.03234.263.4-0.10.0-0.50.6XXPotentially PathogenicThe guanidinium group of Arg596, located in an α helix (res. Glu582-Met603), forms a salt bridge with the carboxylate group of Glu495 from another α helix (res. Leu489-Glu519). In the WT simulations, the side chain of Arg596 hydrogen bonds with the backbone carbonyl groups of Asn487, Glu486, Arg485, and Phe484. Additionally, Arg596 can hydrogen bond with the carboxamide group of the Asn487 side chain on an opposing loop that links two α helices (res. Ala461-Arg475, res. Leu489-Glu519).However, in the variant simulations, the branched hydrocarbon side chain of Leu596 cannot form any of the hydrogen bonds or salt bridges maintained by the considerably bulkier and positively charged Arg596 side chain. Instead, Leu596 packs hydrophobically with the phenyl ring of Phe484 in the linker loop or residues from the opposing helix (e.g., Ile494, Thr491).Thus, the residue swap could affect the tertiary structure assembly more profoundly than observed in the simulations. Notably, Arg596 plays a key role in positioning the aforementioned loop, which is crucial for the placement of the “arginine finger” or the Arg485 side chain during RasGTPase activation.10.1016/j.ajhg.2020.11.011
c.233G>TR78LLikely BenignUncertain 1-3.389Likely Benign0.635Likely PathogenicLikely Benign0.062Likely Benign-1.59Neutral0.385Benign0.021Benign3.84Benign0.00Affected-3-28.3-43.03
c.1811C>TS604L
(3D Viewer)
Likely PathogenicGAPUncertain 16-33440863-C-T63.72e-6-14.683Likely Pathogenic0.965Likely PathogenicLikely Pathogenic0.639Likely Pathogenic-0.94Ambiguous0.1-1.24Ambiguous-1.09Ambiguous-0.31Likely Benign-5.97Deleterious1.000Probably Damaging0.991Probably Damaging3.09Benign0.00Affected3.3735-3-24.626.08234.0-49.60.00.10.30.5XXPotentially PathogenicSer604 is located in a short turn between an α helix (res. Glu582-Met603) and a short α helical section (res. Ser606-Phe608). In the WT simulations, the hydroxyl side chain of Ser604 periodically hydrogen bonds with the backbone carbonyl groups of other α helix residues (e.g., Pro600, Met603). Serine weakens the α helix secondary structure, and thus, Ser604 along with Pro605 breaks the α helix, facilitating the turn in the WT structure.In contrast, in the variant simulations, Leu604 forms a few hydrophobic interactions (e.g., Leu607, Phe608). More importantly, the helix end is more stable than with Ser604 in the WT. The residue swap could have a more profound effect on the actual folding process, for example, by preventing the bending at the α helix end, than what the simulations suggest.Moreover, Ser604 directly hydrogen bonds with Ras residues Ser65 and Ala66 in the WT SynGAP-Ras complex. The hydrophobic leucine cannot maintain these interactions with Ras at the GAP-Ras interface. Thus, the effect of the residue swap on the complex formation with the GTPase cannot be fully explored in the solvent-only simulations.
c.2381C>TP794LLikely BenignSH3-binding motifBenign/Likely benign 26-33442933-C-T734.52e-5-3.808Likely Benign0.079Likely BenignLikely Benign0.075Likely Benign-0.80Neutral0.761Possibly Damaging0.321Benign4.24Benign0.03Affected4.073-3-35.416.04
c.1898T>CL633P
(3D Viewer)
Likely PathogenicGAPPathogenic/Likely path. 2-15.669Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.693Likely Pathogenic6.60Destabilizing0.210.15Destabilizing8.38Destabilizing2.42Destabilizing-6.97Deleterious1.000Probably Damaging1.000Probably Damaging2.70Benign0.00Affected3.3734-3-3-5.4-16.04193.265.10.00.00.10.0XPotentially PathogenicThe iso-butyl side chain of Leu633, located in the middle of an α helix (res. Glu617-Asn635), packs hydrophobically with nearby residues (e.g., Leu653, Val629, Leu551) in the WT simulations.In the variant simulations, the pyrrolidine side chain of Pro633 is not as optimal for hydrophobic packing as Leu633 in the WT. Additionally, proline lacks a free backbone amide group, so Pro633 cannot form a hydrogen bond with the backbone carbonyl group of Val629, which disrupts the continuity of the secondary structure element.
c.2393C>TP798LLikely BenignSH3-binding motifUncertain 26-33442945-C-T63.72e-6-5.640Likely Benign0.074Likely BenignLikely Benign0.042Likely Benign-0.86Neutral0.981Probably Damaging0.631Possibly Damaging4.21Benign0.00Affected4.321-3-35.416.04
c.2414T>CL805PSH3-binding motifUncertain 1-4.661Likely Benign0.444AmbiguousLikely Benign0.272Likely Benign-3.40Deleterious0.975Probably Damaging0.767Possibly Damaging2.36Pathogenic0.00Affected3.775-3-3-5.4-16.04
c.1991T>CL664S
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33441250-T-C16.20e-7-16.498Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.543Likely Pathogenic3.75Destabilizing0.23.63Destabilizing3.69Destabilizing2.77Destabilizing-5.99Deleterious1.000Probably Damaging0.996Probably Damaging2.85Benign0.00Affected3.3828-3-2-4.6-26.08215.550.10.00.0-0.20.2XPotentially BenignThe iso-butyl side chain of L664, located on an α-helix (res. Ser641-Glu666), hydrophobically interacts with residues in the inter-helix space between three helices (res. Glu617-Asn635, res. Glu582-Met603, and res. Ser641-Glu666), such as Ile589, Phe663, and Met660. In the variant simulations, the hydroxyl group of Ser664 forms hydrogen bonds with the backbone carbonyl oxygen of another helix residue, such as Met660 or Gln661. This interaction is known to destabilize hydrogen bonding in the α-helix, but this effect was not observed in the simulations. Additionally, Ser664 occasionally forms hydrogen bonds with the carboxylate group of Asp586 on another α-helix (res. Glu582-Met603), which could minimally influence the tertiary structure assembly. Despite these interactions, no major negative effects on the protein structure were observed during the simulations.
c.2443C>GR815GSH3-binding motifUncertain 1-7.983In-Between0.854Likely PathogenicAmbiguous0.146Likely Benign-3.22Deleterious0.999Probably Damaging0.997Probably Damaging2.62Benign0.02Affected4.324-3-24.1-99.14
c.2003C>TS668F
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-15.047Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.643Likely Pathogenic16.72Destabilizing5.011.07Destabilizing13.90Destabilizing0.00Likely Benign-5.98Deleterious0.999Probably Damaging0.935Probably Damaging3.18Benign0.00Affected3.3828-3-23.660.10250.9-59.6-0.10.10.00.1XXXPotentially PathogenicIn the WT simulations, the hydroxyl side chain of Ser668, located on an α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), forms hydrogen bonds with the backbone carbonyl groups of Leu664, Tyr665, and Glu666, as well as the guanidinium group of Arg573 on a nearby α-helix (res. Arg563-Glu578). In the variant simulations, the side chain of Phe668 cannot maintain the same hydrogen-bond network. Due to its larger size, it moves away to avoid steric hindrance. In the WT simulations, a network of hydrogen bonds between several residues (e.g., Asn669, Lys566, and Glu666) keeps both α-helices and the proceeding loop (res. Asn669-Asp684) tightly connected, but this setup is not present in the variant simulations. Additionally, in the variant simulations, the side chain of Arg573 shifts to form a more stable salt bridge with the carboxylate group of Glu582 instead of hydrogen bonding with Ser668 as in the WT simulations.
c.250C>GR84GUncertain 1-6.627Likely Benign0.989Likely PathogenicLikely Pathogenic0.139Likely Benign-2.64Deleterious0.962Probably Damaging0.726Possibly Damaging3.68Benign0.00Affected4.321-3-24.1-99.14
c.2075T>CL692P
(3D Viewer)
Likely PathogenicGAPUncertain 1-16.447Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.668Likely Pathogenic9.19Destabilizing0.113.20Destabilizing11.20Destabilizing1.69Destabilizing-6.98Deleterious1.000Probably Damaging0.999Probably Damaging3.06Benign0.00Affected3.4217-3-3-5.4-16.04186.262.8-0.20.1-0.70.3XPotentially PathogenicThe isobutyl side chain of Leu692, located in the middle of an α-helix (res. Leu685-Gln702), engages in hydrophobic packing with nearby residues (e.g., Leu441, Leu431, Leu696) in the inter-helix space. Prolines lack a free amide group necessary for hydrogen bonding with the carbonyl group of Glu688 in the same manner as Leu692 in the WT. Consequently, the residue swap with proline disrupts the continuity of the secondary structure element in the variant simulations. Additionally, the side chain of Pro692 is not as optimal as Leu692 for hydrophobic packing in the inter-helix space.
c.2087T>CL696P
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-16.926Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.678Likely Pathogenic6.66Destabilizing0.210.84Destabilizing8.75Destabilizing2.13Destabilizing-6.58Deleterious1.000Probably Damaging1.000Probably Damaging3.00Benign0.00Affected3.4613-3-3-5.4-16.04180.665.90.10.0-0.60.1XPotentially PathogenicThe isobutyl side chain of Leu696, located in the middle of an α-helix (res. Leu685-Gln702), engages in hydrophobic packing with nearby residues (e.g., Leu441, Leu431, Leu692, Leu714) in the inter-helix space. Prolines lack a free amide group necessary for hydrogen bonding with the carbonyl group of Leu692 in the same manner as Leu696 in the WT. Consequently, the residue swap with proline disrupts the continuity of the secondary structure element in the variant simulations. Additionally, the side chain of Pro696 is not as optimal as Leu696 for hydrophobic packing in the inter-helix space.
c.2525C>AS842YLikely PathogenicLikely Pathogenic 1-16.124Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.191Likely Benign-4.28Deleterious0.944Possibly Damaging0.676Possibly Damaging1.97Pathogenic0.00Affected3.775-3-2-0.576.10
c.2548G>AG850RLikely BenignUncertain 1-5.082Likely Benign0.398AmbiguousLikely Benign0.194Likely Benign-0.07Neutral0.010Benign0.010Benign4.30Benign0.01Affected3.775-3-2-4.199.14
c.2557G>CG853RLikely BenignUncertain 1-4.749Likely Benign0.366AmbiguousLikely Benign0.091Likely Benign-1.27Neutral0.846Possibly Damaging0.624Possibly Damaging4.18Benign0.00Affected-3-2-4.199.14
c.2560C>TR854CLikely BenignUncertain 16-33443112-C-T31.86e-6-5.082Likely Benign0.170Likely BenignLikely Benign0.174Likely Benign-2.48Neutral1.000Probably Damaging0.947Probably Damaging4.05Benign0.01Affected3.883-3-47.0-53.05
c.2582C>TS861LLikely BenignUncertain 16-33443134-C-T21.24e-6-4.966Likely Benign0.219Likely BenignLikely Benign0.144Likely Benign-2.10Neutral0.904Possibly Damaging0.355Benign3.93Benign0.07Tolerated4.323-3-24.626.08
c.2650C>TR884WLikely BenignUncertain 16-33443202-C-T53.10e-6-3.785Likely Benign0.332Likely BenignLikely Benign0.151Likely Benign0.26Neutral0.995Probably Damaging0.812Possibly Damaging2.56Benign0.05Affected4.324-323.630.03
c.266C>TP89LUncertain 2-6.775Likely Benign0.982Likely PathogenicLikely Pathogenic0.119Likely Benign-3.29Deleterious0.889Possibly Damaging0.058Benign3.73Benign0.00Affected4.321-3-35.416.04
c.2690C>TS897LLikely BenignUncertain 1-4.034Likely Benign0.299Likely BenignLikely Benign0.028Likely Benign-1.71Neutral0.901Possibly Damaging0.636Possibly Damaging2.66Benign0.01Affected-3-24.626.08
c.2741A>TD914VLikely BenignUncertain 1-4.260Likely Benign0.723Likely PathogenicLikely Benign0.187Likely Benign-2.24Neutral0.999Probably Damaging0.986Probably Damaging2.64Benign0.01Affected3.775-3-27.7-15.96
c.2812G>AG938RLikely BenignUncertain 1-5.271Likely Benign0.732Likely PathogenicLikely Benign0.141Likely Benign-1.11Neutral0.999Probably Damaging0.985Probably Damaging2.74Benign0.36Tolerated3.775-3-2-4.199.14
c.2818G>CG940RLikely BenignBenign 16-33443370-G-C53.10e-6-6.169Likely Benign0.480AmbiguousLikely Benign0.060Likely Benign0.02Neutral0.922Possibly Damaging0.543Possibly Damaging2.73Benign0.15Tolerated3.775-3-2-4.199.14
c.2822C>TP941LLikely BenignUncertain 2-5.692Likely Benign0.066Likely BenignLikely Benign0.054Likely Benign-0.44Neutral0.144Benign0.039Benign2.76Benign0.01Affected-3-35.416.04
c.2825C>TP942LLikely BenignUncertain 16-33443377-C-T42.48e-6-5.063Likely Benign0.086Likely BenignLikely Benign0.048Likely Benign-2.00Neutral0.411Benign0.239Benign2.37Pathogenic0.00Affected4.324-3-35.416.04
c.2864C>TS955FConflicting 46-33443416-C-T955.89e-5-7.374In-Between0.176Likely BenignLikely Benign0.093Likely Benign-1.73Neutral0.977Probably Damaging0.721Possibly Damaging2.32Pathogenic0.00Affected3.775-3-23.660.10
c.2971G>AG991RLikely BenignConflicting 36-33443523-G-A84.96e-6-3.934Likely Benign0.411AmbiguousLikely Benign0.102Likely Benign-1.20Neutral0.984Probably Damaging0.772Possibly Damaging4.11Benign0.01Affected4.322-3-2-4.199.14
c.3002T>CL1001PLikely BenignUncertain 1-3.071Likely Benign0.209Likely BenignLikely Benign0.113Likely Benign-1.02Neutral0.966Probably Damaging0.690Possibly Damaging2.65Benign0.00Affected4.324-3-3-5.4-16.04
c.3059G>TR1020LUncertain 1-6.031Likely Benign0.907Likely PathogenicAmbiguous0.216Likely Benign-4.03Deleterious0.990Probably Damaging0.921Probably Damaging2.50Benign0.00Affected3.775-3-28.3-43.03
c.314C>TS105LLikely BenignUncertain 26-33432179-C-T42.48e-6-3.710Likely Benign0.233Likely BenignLikely Benign0.095Likely Benign-1.52Neutral0.828Possibly Damaging0.048Benign4.06Benign0.00Affected4.321-3-24.626.08
c.3151G>TG1051CLikely Pathogenic 1-9.050Likely Pathogenic0.122Likely BenignLikely Benign0.497Likely Benign-0.90Neutral0.971Probably Damaging0.750Possibly Damaging-0.74Pathogenic0.10Tolerated3.775-3-32.946.09
c.3175G>AG1059RUncertain 16-33443727-G-A684.23e-5-8.452Likely Pathogenic0.376AmbiguousLikely Benign0.333Likely Benign-0.55Neutral0.001Benign0.001Benign2.53Benign0.00Affected4.322-3-2-4.199.14
c.3181G>TG1061CLikely BenignConflicting 26-33443733-G-T63.73e-6-9.511Likely Pathogenic0.119Likely BenignLikely Benign0.409Likely Benign-1.46Neutral0.938Possibly Damaging0.665Possibly Damaging3.97Benign0.00Affected4.322-3-32.946.09
c.3184G>AG1062RLikely BenignConflicting 26-33443736-G-A74.35e-6-6.933Likely Benign0.353AmbiguousLikely Benign0.403Likely Benign-0.34Neutral0.797Possibly Damaging0.139Benign4.10Benign0.01Affected4.322-3-2-4.199.14
c.3194C>TP1065LLikely Benign 16-33443746-C-T148.71e-6-5.085Likely Benign0.089Likely BenignLikely Benign0.068Likely Benign-2.94Deleterious0.950Possibly Damaging0.419Benign2.01Pathogenic0.00Affected4.322-3-35.416.04
c.3197C>TP1066LLikely BenignLikely Benign 16-33443749-C-T148.71e-6-5.478Likely Benign0.092Likely BenignLikely Benign0.173Likely Benign-3.68Deleterious0.996Probably Damaging0.903Possibly Damaging2.72Benign0.00Affected4.322-3-35.416.04
c.3233T>AV1078DLikely BenignUncertain 1-5.155Likely Benign0.979Likely PathogenicLikely Pathogenic0.158Likely Benign-1.45Neutral0.003Benign0.008Benign3.84Benign0.00Affected3.775-3-2-7.715.96
c.3253C>TR1085WUncertain 16-33443805-C-T21.26e-6-6.339Likely Benign0.821Likely PathogenicAmbiguous0.202Likely Benign-3.15Deleterious1.000Probably Damaging0.996Probably Damaging2.70Benign0.00Affected3.775-323.630.03
c.3290C>TP1097LLikely BenignBenign 1-4.410Likely Benign0.145Likely BenignLikely Benign0.131Likely Benign-2.07Neutral0.611Possibly Damaging0.198Benign2.64Benign0.05Affected3.775-3-35.416.04
c.3307C>TR1103CUncertain 16-33443859-C-T63.92e-6-2.440Likely Benign0.246Likely BenignLikely Benign0.140Likely Benign-3.01Deleterious0.996Probably Damaging0.787Possibly Damaging2.41Pathogenic0.01Affected3.775-3-47.0-53.05
c.3308G>TR1103LLikely BenignUncertain 16-33443860-G-T-2.330Likely Benign0.205Likely BenignLikely Benign0.173Likely Benign-2.35Neutral0.002Benign0.005Benign2.44Pathogenic0.02Affected3.775-3-28.3-43.03
c.3313C>TR1105WUncertain 16-33443865-C-T63.93e-6-6.911Likely Benign0.488AmbiguousLikely Benign0.133Likely Benign-4.34Deleterious0.999Probably Damaging0.696Possibly Damaging2.42Pathogenic0.02Affected3.775-323.630.03
c.3326T>CL1109PLikely BenignConflicting 2-5.313Likely Benign0.120Likely BenignLikely Benign0.151Likely Benign-0.52Neutral0.002Benign0.003Benign2.65Benign0.07Tolerated4.322-3-3-5.4-16.04
c.3355G>AG1119RBenign 16-33443907-G-A644.23e-5-8.489Likely Pathogenic0.473AmbiguousLikely Benign0.303Likely Benign0.10Neutral0.969Probably Damaging0.462Possibly Damaging4.03Benign0.10Tolerated4.322-3-2-4.199.14
c.3370G>AG1124RConflicting 36-33443922-G-A241.60e-5-8.918Likely Pathogenic0.534AmbiguousLikely Benign0.243Likely Benign-0.58Neutral0.002Benign0.002Benign4.81Benign0.01Affected3.775-3-2-4.199.14
c.3376G>TG1126CLikely BenignUncertain 16-33443928-G-T117.35e-6-9.389Likely Pathogenic0.113Likely BenignLikely Benign0.449Likely Benign-1.40Neutral0.005Benign0.005Benign4.74Benign0.02Affected3.775-3-32.946.09
c.3386T>CL1129PLikely BenignUncertain 2-2.991Likely Benign0.154Likely BenignLikely Benign0.432Likely Benign0.27Neutral0.971Probably Damaging0.773Possibly Damaging5.44Benign0.00Affected4.324-3-3-5.4-16.04
c.3395C>AS1132YLikely BenignLikely Benign 1-5.894Likely Benign0.392AmbiguousLikely Benign0.401Likely Benign-1.76Neutral0.500Possibly Damaging0.208Benign5.40Benign0.09Tolerated4.324-3-2-0.576.10
c.3494C>TS1165LLikely BenignConflicting 2-2.984Likely Benign0.793Likely PathogenicAmbiguous0.166Likely Benign-2.01Neutral0.998Probably Damaging0.992Probably Damaging2.60Benign0.33Tolerated3.883-3-24.626.0810.1016/j.ajhg.2020.11.011
c.3557C>TS1186LCoiled-coilUncertain 16-33444592-C-T-4.829Likely Benign0.923Likely PathogenicAmbiguous0.177Likely Benign-2.58Deleterious0.998Probably Damaging0.992Probably Damaging2.65Benign0.04Affected3.824-3-24.626.08
c.3614T>CL1205PLikely PathogenicCoiled-coilUncertain 1-16.878Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.536Likely Pathogenic-5.91Deleterious1.000Probably Damaging0.999Probably Damaging1.45Pathogenic0.00Affected-3-3-5.4-16.04
c.3635C>TS1212FLikely PathogenicCoiled-coilConflicting 2-14.445Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.271Likely Benign-4.52Deleterious0.999Probably Damaging0.998Probably Damaging2.03Pathogenic0.00Affected3.775-3-23.660.10
c.3824G>TR1275LLikely Benign 16-33447872-G-T16.45e-7-6.052Likely Benign0.446AmbiguousLikely Benign0.117Likely Benign-4.04Deleterious0.800Possibly Damaging0.277Benign2.55Benign0.01Affected3.775-3-28.3-43.03
c.3848C>TP1283LLikely BenignBenign 16-33447896-C-T322.06e-5-3.740Likely Benign0.093Likely BenignLikely Benign0.047Likely Benign-1.04Neutral0.005Benign0.003Benign2.76Benign0.06Tolerated3.775-3-35.416.04
c.3860C>TP1287LLikely BenignConflicting 26-33447908-C-T-2.800Likely Benign0.117Likely BenignLikely Benign0.061Likely Benign-1.66Neutral0.021Benign0.017Benign2.76Benign0.02Affected3.775-3-35.416.04
c.3920C>TP1307LLikely BenignBenign 16-33451794-C-T116.82e-6-4.044Likely Benign0.144Likely BenignLikely Benign0.292Likely Benign-1.49Neutral0.779Possibly Damaging0.220Benign2.82Benign0.04Affected3.775-3-35.416.04
c.3932T>CL1311PLikely BenignLikely Benign 16-33451806-T-C16.21e-7-1.831Likely Benign0.079Likely BenignLikely Benign0.123Likely Benign-0.52Neutral0.579Possibly Damaging0.335Benign2.72Benign0.18Tolerated3.775-3-3-5.4-16.04
c.3941C>TP1314LLikely BenignLikely Benign 16-33451815-C-T21.24e-6-4.040Likely Benign0.118Likely BenignLikely Benign0.049Likely Benign-0.20Neutral0.421Benign0.066Benign4.19Benign0.05Affected3.775-3-35.416.04
c.3974C>TP1325LLikely BenignUncertain 16-33451848-C-T-5.256Likely Benign0.085Likely BenignLikely Benign0.146Likely Benign-1.05Neutral0.000Benign0.000Benign4.05Benign0.00Affected4.321-3-35.416.04
c.3977C>TP1326LLikely BenignUncertain 1-5.541Likely Benign0.115Likely BenignLikely Benign0.117Likely Benign-1.06Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.775-3-35.416.04
c.3980C>TP1327LLikely BenignUncertain 16-33451854-C-T21.28e-6-5.264Likely Benign0.242Likely BenignLikely Benign0.142Likely Benign-1.24Neutral0.994Probably Damaging0.908Possibly Damaging4.12Benign0.10Tolerated3.775-3-35.416.04
c.59C>TP20LLikely BenignUncertain 3-3.289Likely Benign0.464AmbiguousLikely Benign0.100Likely Benign-0.44Neutral0.909Possibly Damaging0.713Possibly Damaging4.27Benign0.00Affected4.321-3-35.416.04
c.73C>TR25WLikely BenignUncertain 26-33423482-C-T63.72e-6-5.133Likely Benign0.549AmbiguousLikely Benign0.158Likely Benign-1.60Neutral0.994Probably Damaging0.919Probably Damaging3.92Benign0.00Affected4.321-323.630.03
c.76G>AG26RLikely BenignBenign 16-33423485-G-A31.86e-6-2.946Likely Benign0.678Likely PathogenicLikely Benign0.189Likely Benign-2.22Neutral0.994Probably Damaging0.990Probably Damaging3.87Benign0.00Affected4.321-3-2-4.199.14
c.772C>TR258C
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437677-C-T16.20e-7-10.285Likely Pathogenic0.790Likely PathogenicAmbiguous0.771Likely Pathogenic1.17Ambiguous0.41.76Ambiguous1.47Ambiguous0.87Ambiguous-6.79Deleterious1.000Probably Damaging0.993Probably Damaging5.77Benign0.00Affected3.3915-3-47.0-53.05
c.791T>CL264P
(3D Viewer)
Likely PathogenicC2Uncertain 1-12.285Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.767Likely Pathogenic5.73Destabilizing0.36.57Destabilizing6.15Destabilizing2.65Destabilizing-6.43Deleterious1.000Probably Damaging0.999Probably Damaging0.49Pathogenic0.00Affected-3-3-5.4-16.04
c.851T>CL284PLikely PathogenicC2Likely Pathogenic1-15.588Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.794Likely Pathogenic5.83Destabilizing0.25.81Destabilizing5.82Destabilizing1.89Destabilizing-6.17Deleterious1.000Probably Damaging0.999Probably Damaging1.64Pathogenic0.00Affected-3-3-5.4-16.04
c.961C>TR321C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33437866-C-T95.58e-6-10.025Likely Pathogenic0.387AmbiguousLikely Benign0.495Likely Benign0.57Ambiguous0.10.56Ambiguous0.57Ambiguous0.18Likely Benign-4.59Deleterious1.000Probably Damaging0.998Probably Damaging1.89Pathogenic0.01Affected3.3823-3-47.0-53.05
c.899C>TS300F
(3D Viewer)
Likely PathogenicC2Uncertain 1-10.222Likely Pathogenic0.353AmbiguousLikely Benign0.117Likely Benign-0.29Likely Benign0.40.16Likely Benign-0.07Likely Benign0.04Likely Benign-2.66Deleterious0.975Probably Damaging0.596Possibly Damaging1.52Pathogenic0.01Affected3.4719-3-23.660.10233.6-67.6-0.10.00.40.2XXPotentially PathogenicThe hydroxyl group of the Ser300 side chain, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), hydrogen bonds with the guanidinium group of Arg299 and the backbone amide group and side chain of Ser302. Thus, in the WT simulations, it contributes to the β hairpin stability. In the variant simulations, the phenol ring of Phe300 cannot form any side chain-related hydrogen bonds, and Arg299 is moved away from its central hairpin loop position.β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Due to its location near the membrane surface, the residue swap could also affect the C2 loop dynamics and SynGAP-membrane association. However, this is beyond the scope of the solvent-only simulations to unravel.
c.953C>TP318L
(3D Viewer)
Likely PathogenicC2Uncertain 36-33437858-C-T31.86e-6-10.090Likely Pathogenic0.958Likely PathogenicLikely Pathogenic0.624Likely Pathogenic1.33Ambiguous0.10.26Likely Benign0.80Ambiguous0.43Likely Benign-8.96Deleterious1.000Probably Damaging0.999Probably Damaging1.82Pathogenic0.03Affected3.3823-3-35.416.04228.6-68.9-0.70.7-0.40.1XPotentially BenignThe cyclic five-membered pyrrolidine ring of Pro318, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Asp330-Ala322, res. Thr305-Asn315), packs against the hydrophobic side chain of Ile205 at the end of the anti-parallel β sheet in the PH domain. In the variant simulations, the iso-butyl side chain of Leu318 is unable to do the same, potentially weakening the PH and C2 domain association. Importantly, the residue swap could also affect loop formation during folding, as proline can make tighter turns than leucine. Because the residue swap could affect the C2 domain stability, it could also negatively impact the SynGAP-membrane association.
c.968T>CL323P
(3D Viewer)
Likely PathogenicC2Uncertain 1-12.507Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.762Likely Pathogenic3.39Destabilizing0.68.46Destabilizing5.93Destabilizing2.20Destabilizing-4.80Deleterious0.999Probably Damaging0.977Probably Damaging0.59Pathogenic0.01Affected4.29398-3-3-5.4-16.04201.968.20.00.10.60.3XPotentially PathogenicThe iso-butyl side chain of Leu323, located at the beginning of an anti-parallel β sheet strand (res. Ala322-Asp330), packs against multiple hydrophobic leucine residues (e.g., Leu264, Leu266, Leu284, Leu286). In contrast, in the variant simulations, the less bulky cyclic five-membered pyrrolidine ring of Pro323 cannot fill the hydrophobic space as effectively as the branched hydrocarbon side chain of leucine. Notably, the backbone amide group of Leu323 forms a hydrogen bond with the backbone carbonyl group of Cys285. Pro323 cannot form this bond due to the absence of the backbone amide group, resulting in partial unfolding of the anti-parallel β sheet end in the variant simulations.
c.968T>GL323R
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-14.568Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.692Likely Pathogenic3.75Destabilizing0.44.47Destabilizing4.11Destabilizing2.15Destabilizing-4.70Deleterious0.999Probably Damaging0.969Probably Damaging0.59Pathogenic0.01Affected3.3922-3-2-8.343.03261.8-61.6-0.40.20.80.2XXXPotentially PathogenicThe iso-butyl side chain of Leu323, located at the beginning of an anti-parallel β sheet strand (res. Ala322-Asp330), packs against multiple hydrophobic leucine residues (e.g., Leu264, Leu266, Leu284, Leu286). In contrast, in the variant simulations, the positively charged guanidinium group of the Arg323 side chain is unsuitable for the hydrophobic niche. Consequently, the side chain either rotates away from the center of the C2 domain or, if it remains within the C2 domain core, it reorients nearby residues to form hydrogen bonds. Regardless, the residue swap extensively disrupts the C2 domain structure.
c.980T>CL327P
(3D Viewer)
Likely PathogenicC2Pathogenic 3-16.602Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.658Likely Pathogenic5.38Destabilizing0.14.00Destabilizing4.69Destabilizing2.62Destabilizing-5.97Deleterious1.000Probably Damaging0.999Probably Damaging1.52Pathogenic0.01Affected3.3823-3-3-5.4-16.04221.769.40.10.00.60.1XPotentially PathogenicThe backbone amide group of Leu327, located in the middle of an anti-parallel β sheet strand (res. Ala322-Asp330), forms a hydrogen bond with the carbonyl group of Gly344 on a neighboring β strand (res. Lys336-Pro349) in the WT simulations. In contrast, in the variant simulations, the introduction of Pro327 destabilizes the hydrogen bonding between the two anti-parallel β strands because proline lacks the backbone amide group altogether. Additionally, in the WT simulations, the iso-butyl side chain of Leu327 packs against multiple hydrophobic residues (e.g., Leu274, V400, Val343), whereas the less bulky cyclic five-membered pyrrolidine ring of Pro327 cannot fill the same space as effectively. Thus, although no large-scale unfolding is observed during the variant simulations, the residue swap is likely to cause severe problems for the correct C2 domain folding, which could also affect the SynGAP-membrane association.10.1016/j.ajhg.2020.11.011
c.1147G>TG383W
(3D Viewer)
C2Uncertain 16-33438052-G-T16.22e-7-10.161Likely Pathogenic0.439AmbiguousLikely Benign0.469Likely Benign5.81Destabilizing3.64.44Destabilizing5.13Destabilizing0.08Likely Benign-1.01Neutral0.959Probably Damaging0.704Possibly Damaging4.09Benign0.00Affected4.327-2-7-0.5129.16
c.1157G>AG386E
(3D Viewer)
C2Uncertain 16-33438062-G-A-9.286Likely Pathogenic0.686Likely PathogenicLikely Benign0.447Likely Benign3.69Destabilizing2.90.79Ambiguous2.24Destabilizing0.54Ambiguous-0.83Neutral0.860Possibly Damaging0.354Benign3.93Benign0.01Affected4.323-20-3.172.06
c.1214G>CR405P
(3D Viewer)
Likely PathogenicC2Uncertain 1-14.206Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.572Likely Pathogenic3.11Destabilizing0.35.19Destabilizing4.15Destabilizing1.26Destabilizing-6.32Deleterious1.000Probably Damaging1.000Probably Damaging3.62Benign0.01Affected3.3828-202.9-59.07
c.1136C>GS379W
(3D Viewer)
C2Uncertain 16-33438041-C-G-8.898Likely Pathogenic0.388AmbiguousLikely Benign0.520Likely Pathogenic4.32Destabilizing3.43.56Destabilizing3.94Destabilizing0.16Likely Benign-1.02Neutral0.998Probably Damaging0.844Possibly Damaging3.82Benign0.01Affected4.3211-2-3-0.199.14271.3-75.71.41.00.60.5UncertainSer379 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like tryptophan are rarely tolerated. Although no major negative structural effects are observed in the variant simulations, Trp379 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn
c.13C>GR5GLikely BenignUncertain 1-3.639Likely Benign0.150Likely BenignLikely Benign0.169Likely Benign-0.16Neutral0.013Benign0.003Benign4.12Benign0.00Affected4.321-2-34.1-99.14
c.1154C>GS385W
(3D Viewer)
C2Benign 16-33438059-C-G-9.353Likely Pathogenic0.362AmbiguousLikely Benign0.373Likely Benign0.53Ambiguous0.20.69Ambiguous0.61Ambiguous0.00Likely Benign-0.84Neutral0.986Probably Damaging0.968Probably Damaging4.63Benign0.00Affected4.323-2-3-0.199.14260.4-71.20.51.30.70.4UncertainSer385 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like tryptophan are rarely tolerated. Although no major negative structural effects are observed in the variant simulations, Trp385 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effects on Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.10.1016/j.ajhg.2020.11.011
c.1199T>AV400E
(3D Viewer)
Likely PathogenicC2Uncertain 1-13.686Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.810Likely Pathogenic3.70Destabilizing0.22.46Destabilizing3.08Destabilizing2.29Destabilizing-4.88Deleterious0.920Possibly Damaging0.335Benign5.31Benign0.00Affected3.3827-2-2-7.729.98249.1-38.8-0.10.11.00.0XXXPotentially PathogenicThe iso-propyl side chain of Val400, located in an anti-parallel β sheet strand (res. Ala399-Ile411), hydrophobically packs against hydrophobic residues within the anti-parallel β sheet of the C2 domain (e.g., Ile268, Ala404, Leu325, Leu402). In the variant simulations, the negatively charged carboxylate group of the Glu400 side chain is not suitable for occupying the hydrophobic niche. Consequently, the side chain escapes the center of the C2 domain and interacts with the backbone amide groups of Leu402 in the same β strand and/or Ile269 and Glu270 in a neighboring β strand (res. Arg259-Arg272). This residue swap disrupts the hydrophobic packing and generally has extensive negative effects on the C2 domain structure. At a minimum, the residue swap could affect the C2 domain stability and membrane association.
c.1484A>GE495G
(3D Viewer)
Likely PathogenicGAPUncertain 16-33438516-A-G16.20e-7-9.400Likely Pathogenic0.923Likely PathogenicAmbiguous0.867Likely Pathogenic1.21Ambiguous0.02.06Destabilizing1.64Ambiguous0.78Ambiguous-6.70Deleterious1.000Probably Damaging0.999Probably Damaging-1.46Pathogenic0.02Affected3.3735-203.1-72.06
c.1559C>TS520F
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.541Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.833Likely Pathogenic-1.20Ambiguous0.40.39Likely Benign-0.41Likely Benign0.25Likely Benign-5.57Deleterious0.999Probably Damaging0.996Probably Damaging-1.36Pathogenic0.00Affected3.3735-2-33.660.10
c.1304T>GL435W
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.889Likely Pathogenic0.992Likely PathogenicLikely Pathogenic0.572Likely Pathogenic2.11Destabilizing0.10.69Ambiguous1.40Ambiguous1.66Destabilizing-5.63Deleterious1.000Probably Damaging0.998Probably Damaging3.15Benign0.00Affected3.3729-2-2-4.773.05242.2-25.20.00.00.30.1XPotentially PathogenicThe iso-butyl side chain of Leu435, located in an α helix (res. Met414-Glu436), packs against other hydrophobic residues in an interhelix space (e.g., Val699, Val447, Leu489, Leu439) in the WT simulations. In the variant simulations, the indole ring of Trp435 fits into the same niche despite its considerably bulkier size. Additionally, the side chain forms an H-bond with the backbone carbonyl of Leu696 in an α helix (res. Asp684-Gln702). Although no apparent negative changes are observed during the variant simulation, the size difference between the swapped residues could affect the protein folding process.
c.1712C>TS571L
(3D Viewer)
Likely PathogenicGAPUncertain 16-33440764-C-T16.23e-7-11.651Likely Pathogenic0.660Likely PathogenicLikely Benign0.841Likely Pathogenic-1.53Ambiguous0.1-1.05Ambiguous-1.29Ambiguous0.27Likely Benign-5.61Deleterious1.000Probably Damaging0.996Probably Damaging-1.25Pathogenic0.04Affected3.3735-2-34.626.08
c.1784T>AL595Q
(3D Viewer)
Likely PathogenicGAPUncertain 1-15.101Likely Pathogenic0.984Likely PathogenicLikely Pathogenic0.733Likely Pathogenic0.79Ambiguous0.11.40Ambiguous1.10Ambiguous1.99Destabilizing-5.97Deleterious1.000Probably Damaging1.000Probably Damaging2.75Benign0.00Affected3.3735-2-2-7.314.97
c.1481T>GI494R
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-15.758Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.911Likely Pathogenic6.71Destabilizing0.33.40Destabilizing5.06Destabilizing2.19Destabilizing-6.43Deleterious0.999Probably Damaging0.957Probably Damaging-1.41Pathogenic0.00Affected3.3735-2-3-9.043.03273.9-59.80.00.00.00.1XXXXPotentially PathogenicThe sec-butyl side chain of Ile494, located in an α-helix (res. Leu489-Glu519), packs against hydrophobic residues (e.g., Phe484, Leu465, Trp572, Ala493, Met468) in an inter-helix space (res. Leu489-Glu519 and res. Ala461-Phe476). In the variant simulations, the bulkier and positively charged residue, Arg494, weakens the integrity of the opposing helix. Additionally, the bulkier Arg494 stacks with Phe484, causing the α-helices to move farther apart to accommodate it. This mutation could have substantial negative effects due to the fundamental role of hydrophobic packing, which is disrupted by Arg494 during protein folding.
c.1964T>AL655Q
(3D Viewer)
Likely BenignGAPUncertain 1-5.278Likely Benign0.144Likely BenignLikely Benign0.139Likely Benign-0.01Likely Benign0.00.69Ambiguous0.34Likely Benign-0.15Likely Benign0.61Neutral0.955Possibly Damaging0.602Possibly Damaging3.59Benign0.65Tolerated3.3924-2-2-7.314.97229.9-8.60.00.00.40.0XPotentially BenignThe iso-butyl side chain of Leu655, located on the surface of an α helix (res. Ser641-Glu666), is not involved in any interactions in the WT simulations. In the variant simulations, the carboxamide side chain of Gln655 dynamically interacts with neighboring residues (e.g., Glu651, Glu656, Arg544) on the protein surface, with no negative structural effects.
c.1970G>TW657L
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.411Likely Pathogenic0.960Likely PathogenicLikely Pathogenic0.213Likely Benign0.14Likely Benign0.10.73Ambiguous0.44Likely Benign0.87Ambiguous-10.86Deleterious0.277Benign0.078Benign3.52Benign0.14Tolerated3.3924-2-24.7-73.05
c.2075T>AL692Q
(3D Viewer)
Likely PathogenicGAPPathogenic 1-13.873Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.596Likely Pathogenic3.24Destabilizing0.13.27Destabilizing3.26Destabilizing2.76Destabilizing-5.98Deleterious1.000Probably Damaging0.998Probably Damaging3.06Benign0.00Affected3.4217-2-2-7.314.97
c.1715G>CW572S
(3D Viewer)
Likely PathogenicGAPPathogenic 1-17.461Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.775Likely Pathogenic5.78Destabilizing0.23.37Destabilizing4.58Destabilizing1.79Destabilizing-12.74Deleterious1.000Probably Damaging1.000Probably Damaging-1.24Pathogenic0.01Affected3.3735-2-30.1-99.14235.176.60.00.0-0.40.1XPotentially PathogenicThe introduced residue Ser572, located in an α-helix (res. Arg563-Glu578), is considerably smaller than the tryptophan it replaced. The indole ring of the Trp572 side chain lies in a hydrophobic inter-helix space, where it makes extensive hydrophobic interactions with nearby residues such as Met470, Phe569, Leu588, and Ile589. In the variant simulations, all these favorable packing interactions are completely removed, as the introduced residue Ser572 is too hydrophilic or small to fill the hydrophobic niche occupied by the indole ring. Moreover, the hydroxyl group of Ser572 forms hydrogen bonds with the carbonyl groups of Glu567 and Val568 within the same α-helix, potentially lowering its integrity. Overall, the residue swap is highly likely to cause critical protein folding problems that are underestimated based on the effects seen in the variant simulations.
c.2216A>TE739VLikely BenignUncertain 1-3.136Likely Benign0.274Likely BenignLikely Benign0.085Likely Benign-1.86Neutral0.891Possibly Damaging0.575Possibly Damaging2.47Pathogenic0.00Affected4.322-2-27.7-29.98
c.1763T>AL588H
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-16.947Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.939Likely Pathogenic4.20Destabilizing0.23.69Destabilizing3.95Destabilizing2.26Destabilizing-6.97Deleterious1.000Probably Damaging1.000Probably Damaging-1.42Pathogenic0.00Affected3.3834-2-3-7.023.98214.320.90.00.00.00.2XXXPotentially PathogenicThe isobutyl group of the Leu588 side chain, located in an α helix (res. Glu582-Met603), packs against hydrophobic residues in the inter-helix hydrophobic space (e.g., Ile584, Trp572, Phe484, Met470, Val473, Ile483).In the variant simulations, the imidazole ring of His588 is aromatic but contains polar delta and epsilon nitrogen atoms that are not suited for the hydrophobic niche. The protonated epsilon nitrogen forms a hydrogen bond with the backbone carbonyl group of Ala469, which can disrupt the continuity of the opposing α helix (res. Phe476-Lys460).While the residue swap could affect the tertiary assembly and the underlying protein folding process, it is difficult to determine if the mutation would be tolerated based solely on the variant simulations.
c.1778T>AL593H
(3D Viewer)
Likely PathogenicGAPUncertain 1-16.504Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.812Likely Pathogenic2.52Destabilizing0.22.32Destabilizing2.42Destabilizing2.75Destabilizing-6.77Deleterious1.000Probably Damaging1.000Probably Damaging2.77Benign0.00Affected3.3735-2-3-7.023.98222.020.70.00.00.20.0XXPotentially PathogenicThe iso-propyl side chain of Leu593, located in an α helix (res. Glu582-Met603), packs favourably with multiple hydrophobic residues in the inter-helix space (e.g., Leu598, Ile589, Phe594, Phe561).In the variant simulations, His593 retains a similar packing arrangement via its aromatic imidazole ring. However, the polar nitrogen atoms introduce hydrogen bond donors and acceptors into the previously hydrophobic space. The epsilon protonated nitrogen of His593 forms a stable hydrogen bond with the phenol group of the Tyr505 side chain in an α helix (res. Gln503-Tyr518).While the residue swap could affect the tertiary assembly and the underlying protein folding process, it is difficult to determine if the mutation would be tolerated based solely on the variant simulations.
c.2324G>CR775PLikely BenignBenign 1-5.072Likely Benign0.452AmbiguousLikely Benign0.168Likely Benign-0.79Neutral0.971Probably Damaging0.944Probably Damaging4.13Benign0.07Tolerated3.646-202.9-59.07
c.2444G>TR815LLikely PathogenicSH3-binding motifUncertain 1-8.546Likely Pathogenic0.865Likely PathogenicAmbiguous0.175Likely Benign-3.06Deleterious0.999Probably Damaging0.997Probably Damaging2.63Benign0.03Affected4.324-2-38.3-43.03
c.2458T>AY820NUncertain 1-9.032Likely Pathogenic0.842Likely PathogenicAmbiguous0.143Likely Benign-1.53Neutral0.999Probably Damaging0.977Probably Damaging2.74Benign0.20Tolerated-2-2-2.2-49.07
c.2474C>TS825LLikely PathogenicUncertain 16-33443026-C-T16.20e-7-4.987Likely Benign0.910Likely PathogenicAmbiguous0.249Likely Benign-4.30Deleterious0.999Probably Damaging0.994Probably Damaging1.94Pathogenic0.01Affected3.775-2-34.626.08
c.2627C>TS876LUncertain 2-5.856Likely Benign0.489AmbiguousLikely Benign0.249Likely Benign-3.56Deleterious0.998Probably Damaging0.992Probably Damaging2.57Benign0.05Affected3.775-2-34.626.08
c.269T>AV90ELikely BenignUncertain 1-4.079Likely Benign0.703Likely PathogenicLikely Benign0.108Likely Benign-0.38Neutral0.001Benign0.000Benign4.00Benign0.00Affected4.321-2-2-7.729.98
c.2750C>GP917RLikely BenignUncertain 16-33443302-C-G53.10e-6-4.475Likely Benign0.363AmbiguousLikely Benign0.142Likely Benign-1.70Neutral0.642Possibly Damaging0.316Benign2.68Benign0.00Affected3.775-20-2.959.07
c.2768T>AI923NLikely BenignUncertain 1-0.733Likely Benign0.712Likely PathogenicLikely Benign0.108Likely Benign-1.16Neutral0.991Probably Damaging0.793Possibly Damaging2.70Benign0.13Tolerated3.775-2-3-8.00.94
c.277C>GR93GLikely BenignUncertain 1-2.674Likely Benign0.400AmbiguousLikely Benign0.093Likely Benign-1.69Neutral0.103Benign0.019Benign3.99Benign0.00Affected4.321-2-34.1-99.14
c.2900G>TR967LLikely BenignUncertain 16-33443452-G-T16.20e-7-3.496Likely Benign0.164Likely BenignLikely Benign0.123Likely Benign-0.99Neutral0.959Probably Damaging0.586Possibly Damaging4.15Benign0.75Tolerated4.322-2-38.3-43.03
c.2912C>AP971HLikely BenignUncertain 16-33443464-C-A16.20e-7-5.243Likely Benign0.086Likely BenignLikely Benign0.039Likely Benign-1.11Neutral0.898Possibly Damaging0.477Possibly Damaging3.89Benign0.00Affected4.322-20-1.640.02
c.2987C>GP996RLikely BenignBenign 1-4.457Likely Benign0.141Likely BenignLikely Benign0.040Likely Benign-1.04Neutral0.144Benign0.085Benign4.26Benign0.01Affected4.324-20-2.959.07
c.3056G>TR1019LLikely PathogenicUncertain 16-33443608-G-T21.24e-6-5.194Likely Benign0.752Likely PathogenicLikely Benign0.110Likely Benign-3.57Deleterious0.800Possibly Damaging0.573Possibly Damaging2.40Pathogenic0.01Affected3.775-2-38.3-43.03
c.311G>TR104LLikely BenignBenign 16-33432176-G-T16.20e-7-3.563Likely Benign0.578Likely PathogenicLikely Benign0.170Likely Benign-1.38Neutral0.001Benign0.002Benign4.05Benign0.00Affected4.321-2-38.3-43.03
c.3142G>CG1048RLikely BenignUncertain 1-4.305Likely Benign0.435AmbiguousLikely Benign0.503Likely Pathogenic-0.54Neutral0.919Possibly Damaging0.728Possibly Damaging2.54Benign0.10Tolerated3.775-2-3-4.199.14
c.3154G>AG1052RUncertain 1-9.050Likely Pathogenic0.383AmbiguousLikely Benign0.497Likely Benign-0.41Neutral0.990Probably Damaging0.798Possibly Damaging3.90Benign0.10Tolerated3.775-2-3-4.199.14
c.3251C>AP1084HLikely BenignUncertain 16-33443803-C-A16.31e-7-4.125Likely Benign0.323Likely BenignLikely Benign0.134Likely Benign-3.16Deleterious0.997Probably Damaging0.840Possibly Damaging3.96Benign0.00Affected3.775-20-1.640.02
c.3260C>TS1087FUncertain 1-3.843Likely Benign0.497AmbiguousLikely Benign0.105Likely Benign-2.75Deleterious0.990Probably Damaging0.796Possibly Damaging2.56Benign0.03Affected3.775-2-33.660.10
c.3323G>TS1108IUncertain 16-33443875-G-T-3.666Likely Benign0.292Likely BenignLikely Benign0.145Likely Benign-3.73Deleterious0.971Probably Damaging0.604Possibly Damaging2.44Pathogenic0.10Tolerated3.775-2-15.326.08
c.3379G>AG1127RLikely BenignUncertain 16-33443931-G-A21.34e-6-5.949Likely Benign0.629Likely PathogenicLikely Benign0.341Likely Benign-0.87Neutral0.001Benign0.001Benign4.86Benign0.12Tolerated4.324-2-3-4.199.14
c.3379G>CG1127RLikely BenignConflicting 26-33443931-G-C161.07e-5-5.949Likely Benign0.629Likely PathogenicLikely Benign0.341Likely Benign-0.87Neutral0.001Benign0.001Benign4.86Benign0.12Tolerated4.324-2-3-4.199.14
c.3410A>CH1137PLikely BenignBenign 16-33444445-A-C127.44e-6-2.098Likely Benign0.054Likely BenignLikely Benign0.419Likely Benign-1.93Neutral0.925Possibly Damaging0.703Possibly Damaging5.29Benign0.00Affected4.324-201.6-40.02
c.3413C>AS1138YUncertain 16-33444448-C-A31.86e-6-6.610Likely Benign0.449AmbiguousLikely Benign0.391Likely Benign-2.51Deleterious0.997Probably Damaging0.996Probably Damaging5.41Benign0.05Affected4.324-2-3-0.576.10
c.3511_3512delinsTGA1171CLikely BenignCoiled-coilUncertain 1-5.363Likely Benign0.496AmbiguousLikely Benign-1.16Neutral0.978Probably Damaging0.825Possibly Damaging5.32Benign0.02Affected4.324-200.732.06
c.3653A>TE1218VLikely PathogenicCoiled-coilUncertain 2-5.647Likely Benign0.936Likely PathogenicAmbiguous0.418Likely Benign-5.68Deleterious1.000Probably Damaging0.998Probably Damaging2.21Pathogenic0.00Affected3.775-2-27.7-29.98
c.3806T>AV1269ELikely PathogenicCoiled-coilUncertain 1-11.418Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.403Likely Benign-5.05Deleterious0.999Probably Damaging0.995Probably Damaging2.09Pathogenic0.00Affected3.775-2-2-7.729.98
c.391G>CG131RUncertain 1-6.564Likely Benign0.983Likely PathogenicLikely Pathogenic0.099Likely Benign-3.82Deleterious0.983Probably Damaging0.656Possibly Damaging3.92Benign0.00Affected3.615-2-3-4.199.14
c.484C>GR162GLikely BenignUncertain 1-6.985Likely Benign0.664Likely PathogenicLikely Benign0.190Likely Benign-0.73Neutral0.487Possibly Damaging0.272Benign4.09Benign0.78Tolerated3.744-2-34.1-99.14
c.50C>TS17FLikely BenignUncertain 16-33420314-C-T106.49e-6-3.888Likely Benign0.637Likely PathogenicLikely Benign0.048Likely Benign-0.99Neutral0.486Possibly Damaging0.032Benign3.99Benign0.00Affected4.321-2-33.660.10
c.662A>TE221V
(3D Viewer)
Likely PathogenicPHLikely Pathogenic 1-14.954Likely Pathogenic0.987Likely PathogenicLikely Pathogenic0.875Likely Pathogenic-0.66Ambiguous0.2-0.89Ambiguous-0.78Ambiguous0.49Likely Benign-5.54Deleterious0.596Possibly Damaging0.203Benign5.86Benign0.00Affected3.4113-2-27.7-29.98234.550.60.00.0-0.40.2XUncertainThe introduced residue Val221 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the carboxylate group of Glu221, Val221 cannot form hydrogen bonds with Thr223 or a salt bridge with the amino group of the Lys207 side chain. Despite this, the WT simulations containing Glu221 do not show significant differences compared to the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.860A>CD287A
(3D Viewer)
Likely PathogenicC2Uncertain 1-14.686Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.484Likely Benign0.30Likely Benign0.1-0.04Likely Benign0.13Likely Benign0.40Likely Benign-7.35Deleterious1.000Probably Damaging0.998Probably Damaging1.58Pathogenic0.01Affected3.3823-205.3-44.01
c.791T>AL264Q
(3D Viewer)
Likely PathogenicC2Uncertain 1-15.729Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.678Likely Pathogenic3.43Destabilizing0.12.41Destabilizing2.92Destabilizing2.48Destabilizing-5.52Deleterious1.000Probably Damaging0.999Probably Damaging0.49Pathogenic0.00Affected3.3818-2-2-7.314.97254.7-7.60.00.00.00.3XXXPotentially PathogenicThe iso-butyl branched hydrocarbon side chain of Leu264, located at the end of an anti-parallel β sheet strand (res. Arg259-Arg272), packs against multiple hydrophobic residues such as Leu266, Phe314, Leu317, and Leu323 in the WT simulations. In the variant simulations, the hydrophilic carboxamide group of the Gln264 side chain is not suitable for the hydrophobic niche, causing the hydrophobic residues to make room for the swapped residue. Additionally, the carboxamide group of Gln264 forms hydrogen bonds with the backbone amide groups of Arg405 and Lys256 in the β sheet and the carbonyl group of Val350 in an α helical section of a nearby loop (res. Pro359-Phe358). The residue swap disrupts the packing of the C2 domain, which could adversely affect the C2 domain structure during folding. This disruption could potentially weaken the stability of the SynGAP-membrane association.
c.929A>GE310G
(3D Viewer)
Likely PathogenicC2Pathogenic 1-14.132Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.848Likely Pathogenic2.38Destabilizing0.73.56Destabilizing2.97Destabilizing0.36Likely Benign-6.43Deleterious1.000Probably Damaging0.996Probably Damaging1.12Pathogenic0.00Affected3.3819-203.1-72.06
c.821T>AL274Q
(3D Viewer)
Likely PathogenicC2Uncertain 1-15.518Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.774Likely Pathogenic2.54Destabilizing0.31.74Ambiguous2.14Destabilizing1.97Destabilizing-5.42Deleterious1.000Probably Damaging0.999Probably Damaging0.00Pathogenic0.00Affected3.3819-2-2-7.314.97245.91.80.00.00.10.2XXXPotentially PathogenicThe aliphatic side chain of Leu274, located in a β hairpin loop (res. Glu273-Lys278) connecting two anti-parallel β sheet strands, packs against multiple hydrophobic residues facing the β sheet (e.g., Ala271, Leu327, Tyr280, Val306). The hydrophilic carboxamide group of the Gln274 side chain is not suitable for this hydrophobic niche, causing nearby residues to adjust to make room for the hydrophilic glutamine. Additionally, a new hydrogen bond forms with the backbone carboxyl group of Arg272 in another β strand (res. Glu273-Arg259).As a result, the backbone amide group of Ala399 and the carbonyl group of Arg272, which connect two β strands at the β sheet end, form fewer hydrogen bonds in the variant than in the WT simulations. Although no major secondary structure disruption is observed in the variant simulations, the residue swap could profoundly affect the C2 domain folding, as the hydrophobic packing of Leu274 is crucial for maintaining the loop's contact with the rest of the C2 domain. Lastly, because the Leu274-containing loop faces the membrane surface, the residue swap could also negatively impact the SynGAP-membrane association.
c.917T>AV306D
(3D Viewer)
Likely PathogenicC2Uncertain 1-18.289Likely Pathogenic0.986Likely PathogenicLikely Pathogenic0.530Likely Pathogenic4.40Destabilizing0.34.29Destabilizing4.35Destabilizing2.44Destabilizing-5.44Deleterious1.000Probably Damaging0.999Probably Damaging1.74Pathogenic0.00Affected3.3819-2-3-7.715.96212.3-18.3-0.20.40.00.2XXXPotentially PathogenicThe isopropyl group of Val396, located at the beginning of an anti-parallel β sheet strand (res. Thr305-Asn315), packs against multiple hydrophobic residues (e.g., Leu274, Trp308, Ala271) in the WT simulations. However, in the variant simulations, the negatively charged carboxylate group of the Asp306 side chain is not suitable for this hydrophobic niche. Consequently, the side chain moves out to interact with Ser300 in the β strand (res. Met289-Arg299) and the guanidinium group of Arg299 in the β hairpin loop.In the third simulation, the residue swap disrupts the C2 domain secondary structure and tertiary assembly to a large degree when the amino group of the Lys297 side chain rotates to form a salt bridge with Asp306. This drastic effect could potentially reflect the challenge presented by the residue swap during the C2 domain folding. Because the residue swap affects the C2 domain structure, the SynGAP-membrane association could also be impacted. However, this is beyond the scope of the solvent-only simulations to unravel.
c.1082A>CQ361P
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-13.280Likely Pathogenic0.956Likely PathogenicLikely Pathogenic0.482Likely Benign3.12Destabilizing0.03.45Destabilizing3.29Destabilizing0.38Likely Benign-3.03Deleterious0.996Probably Damaging0.979Probably Damaging1.63Pathogenic0.05Affected3.3725-101.9-31.01
c.1118G>TG373V
(3D Viewer)
Likely BenignC2Uncertain 16-33438023-G-T65.03e-6-6.062Likely Benign0.112Likely BenignLikely Benign0.428Likely Benign5.32Destabilizing3.20.82Ambiguous3.07Destabilizing0.09Likely Benign-0.98Neutral0.007Benign0.001Benign3.90Benign0.00Affected3.5316-1-34.642.08207.6-68.11.91.1-0.60.1UncertainGly373 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Val373 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effect on the Gly-rich Ω loop dynamics can only be studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1142G>TG381V
(3D Viewer)
Likely BenignC2Uncertain 16-33438047-G-T21.25e-6-5.967Likely Benign0.146Likely BenignLikely Benign0.618Likely Pathogenic7.16Destabilizing1.04.10Destabilizing5.63Destabilizing-0.32Likely Benign-0.95Neutral0.386Benign0.157Benign1.32Pathogenic0.10Tolerated4.329-1-34.642.08214.6-68.80.30.7-0.50.3UncertainGly381 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364, res. Ala399-Ile411). Because the Ω loop is assumed to directly interact with the membrane, it moves arbitrarily throughout the WT solvent simulations. The Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play major roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are observed in the variant simulations, Val381 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. However, since the effects on Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1367A>CQ456P
(3D Viewer)
Likely PathogenicGAPUncertain 1-15.250Likely Pathogenic0.993Likely PathogenicLikely Pathogenic0.469Likely Benign3.68Destabilizing0.28.43Destabilizing6.06Destabilizing0.82Ambiguous-5.66Deleterious1.000Probably Damaging0.999Probably Damaging3.34Benign0.07Tolerated3.3734-101.9-31.01
c.1160G>TG387V
(3D Viewer)
Likely BenignC2Uncertain 16-33438065-G-T221.37e-5-6.199Likely Benign0.153Likely BenignLikely Benign0.390Likely Benign5.13Destabilizing1.86.44Destabilizing5.79Destabilizing-0.33Likely Benign-0.54Neutral0.069Benign0.077Benign1.32Pathogenic0.01Affected4.323-1-34.642.08207.7-68.4-0.70.8-0.50.1UncertainGly387 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. This loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Val387 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1172G>TG391V
(3D Viewer)
Likely BenignC2Likely Benign 16-33438077-G-T31.86e-6-6.642Likely Benign0.133Likely BenignLikely Benign0.595Likely Pathogenic4.23Destabilizing1.34.81Destabilizing4.52Destabilizing-0.11Likely Benign-0.98Neutral0.994Probably Damaging0.887Possibly Damaging1.32Pathogenic0.10Tolerated3.698-1-34.642.08228.6-69.00.00.8-0.50.3UncertainGly387 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. This loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Val391 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1463C>TT488M
(3D Viewer)
Likely PathogenicGAPUncertain 16-33438495-C-T21.24e-6-12.459Likely Pathogenic0.973Likely PathogenicLikely Pathogenic0.746Likely Pathogenic0.66Ambiguous0.31.62Ambiguous1.14Ambiguous0.46Likely Benign-5.70Deleterious1.000Probably Damaging0.999Probably Damaging3.21Benign0.00Affected3.3735-1-12.630.09
c.1468G>CA490P
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.905Likely Pathogenic0.941Likely PathogenicAmbiguous0.878Likely Pathogenic-1.27Ambiguous0.11.31Ambiguous0.02Likely Benign1.07Destabilizing-4.81Deleterious1.000Probably Damaging0.998Probably Damaging-1.42Pathogenic0.01Affected3.3735-11-3.426.04
c.1600T>CS534P
(3D Viewer)
Likely BenignGAPUncertain 16-33438843-T-C31.86e-6-5.056Likely Benign0.265Likely BenignLikely Benign0.203Likely Benign-0.40Likely Benign0.20.35Likely Benign-0.03Likely Benign0.47Likely Benign-3.81Deleterious0.993Probably Damaging0.993Probably Damaging3.32Benign0.05Affected3.3735-11-0.810.04
c.1354G>TV452F
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.769Likely Pathogenic0.975Likely PathogenicLikely Pathogenic0.511Likely Pathogenic9.21Destabilizing0.10.37Likely Benign4.79Destabilizing0.61Ambiguous-4.94Deleterious0.999Probably Damaging0.993Probably Damaging3.29Benign0.00Affected3.3734-1-1-1.448.04249.4-35.70.00.00.40.1XPotentially PathogenicThe iso-propyl side chain of Val452, located in the middle of an α helix (res. Val441-Ser457), packs against hydrophobic residues in the inter-helix space at the intersection of three α helices (e.g., Leu500, His453, Leu465). In the variant simulations, the larger side chain of Phe452 cannot pack against the opposing α helix (res. Leu489-Glu519) as efficiently as valine. Due to space restrictions, the phenol ring adjusts to make room by rotating slightly sideways in the inter-helix space. Besides this small and local shift, no large-scale effects on the protein structure are seen based on the simulations. However, the size difference between the swapped residues could affect the protein folding process.
c.1390T>GF464V
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.254Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.592Likely Pathogenic3.61Destabilizing0.12.89Destabilizing3.25Destabilizing1.40Destabilizing-6.96Deleterious0.998Probably Damaging0.996Probably Damaging3.36Benign0.04Affected3.3734-1-11.4-48.04210.140.5-0.10.0-0.90.3XPotentially PathogenicThe phenyl ring of Phe464, located in the middle of an α helix (res. Ala461–Phe476), packs against hydrophobic residues (e.g., Met468, Leu451, Leu455, and Tyr428) in the inter-helix space formed with two other α helices (res. Asn440-Lys460 and res. Pro413-Glu436). The iso-propyl side chain of Val464 is similarly hydrophobic but considerably smaller than the original phenyl ring of Phe464. To compensate for the size difference, neighboring residues need to fill in the gap in the variant simulations.The phenolic side chain of Tyr428, located at the middle bend of an α helix (res. Glu436-Pro413), assumes a new position in the inter-helix space or rotates inward next to the third α helix (res. Asn440-Lys460) when the stable H-bond between Tyr428 and Asp467 seen in the WT simulations breaks. The residue swap also leads to the loss of the methionine-aromatic interaction between the Met468 and Phe464 side chains, which could weaken the integrity of the parent α helix (res. Ala461-Phe476). Although the simulations likely underestimate the full adverse effect of the introduced mutation during folding, the two opposing α helices (res. Ala461–Phe476 and res. Glu436-Pro413) move substantially closer to each other in the variant simulations.

Found 757 rows. Show 200 rows per page. Page 1/4 |