SynGap Missense Server

Table of SynGAP1 Isoform α2 (UniProt Q96PV0-1) Missense Variants.

c.dna Variant SGM Consensus Domain ClinVar gnomAD ESM1b AlphaMissense REVEL FoldX Rosetta Foldetta PremPS PROVEAN PolyPhen-2 HumDiv PolyPhen-2 HumVar FATHMM SIFT PAM Physical SASA Normalized B-factor backbone Normalized B-factor sidechain SynGAP Structural Annotation DOI
Clinical Status Review Subm. ID Allele count Allele freq. LLR score Prediction Pathogenicity Class Optimized Score Prediction Average ΔΔG Prediction StdDev ΔΔG Prediction ΔΔG Prediction ΔΔG Prediction Score Prediction pph2_prob Prediction pph2_prob Prediction Nervous System Score Prediction Prediction Status Conservation Sequences PAM250 PAM120 Hydropathy Δ MW Δ Average Δ Δ StdDev Δ StdDev Secondary Tertiary bonds Inside out GAP-Ras interface At membrane No effect MD Alert Verdict Description
c.1768A>GS590G
(3D Viewer)
Likely PathogenicGAPConflicting 26-33440820-A-G148.67e-6-14.277Likely Pathogenic0.574Likely PathogenicLikely Benign0.379Likely Benign0.67Ambiguous0.11.28Ambiguous0.98Ambiguous0.71Ambiguous-3.92Deleterious1.000Probably Damaging0.922Probably Damaging3.42Benign0.06Tolerated3.3735100.4-30.03186.749.40.00.00.10.0XPotentially PathogenicIn the WT simulations, the hydroxyl group of Ser590, located on an α helix (res. Glu582-Met603), forms hydrogen bonds with the backbone carbonyl of Ala634 and/or the carboxamide group of the Asn635 side chain at the end of the opposing α helix (res. Thr619-Ala634).The residue swap could weaken the integrity of the α helix, as glycine is known as an “α helix breaker.” However, no discernible difference was observed between the WT and variant simulations in this regard. Importantly, Gly590 cannot form hydrogen bonds with the opposing helix in the same way that serine can, which could weaken the tertiary structure assembly between the two helices.
c.1771G>AA591T
(3D Viewer)
Likely PathogenicGAPConflicting 36-33440823-G-A181.12e-5-9.572Likely Pathogenic0.704Likely PathogenicLikely Benign0.270Likely Benign1.61Ambiguous0.21.00Ambiguous1.31Ambiguous1.19Destabilizing-3.40Deleterious0.955Possibly Damaging0.209Benign3.48Benign0.01Affected3.373510-2.530.03202.9-43.40.20.00.70.1XPotentially BenignThe methyl group of the Ala591 side chain, located in the middle of an α helix (res. Glu582-Met603), packs against hydrophobic residues (e.g., Ile483, Phe484) of an opposing partially helical loop (res. Phe476-Asn487).In the variant simulations, the hydroxyl group of Thr591 can form hydrogen bonds with the backbone carbonyl of Ile843 in the opposing loop or the backbone carbonyl group of Arg587. These interactions could either reinforce the tertiary assembly or weaken the α helix unity. Additionally, the Thr591 side chain can hydrogen bond with the guanidinium group of the Arg587 side chain, potentially strengthening the α helix unity.Overall, the residue swap does not seem to cause any major negative effects on the protein structure.
c.1787G>AR596H
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33440839-G-A159.29e-6-11.128Likely Pathogenic0.950Likely PathogenicAmbiguous0.717Likely Pathogenic3.00Destabilizing0.90.43Likely Benign1.72Ambiguous1.35Destabilizing-4.97Deleterious1.000Probably Damaging0.999Probably Damaging2.43Pathogenic0.00Affected3.3735201.3-19.05223.580.5-0.10.0-0.10.3XXPotentially PathogenicThe guanidinium group of Arg596, located in an α helix (res. Glu582-Met603), forms a salt bridge with the carboxylate group of Glu495 from another α helix (res. Leu489-Glu519). In the WT simulations, the side chain of Arg596 hydrogen bonds with the backbone carbonyl groups of Asn487, Glu486, Arg485, and Phe484. Additionally, Arg596 can hydrogen bond with the carboxamide group of the Asn487 side chain on an opposing loop that links two α helices (res. Ala461-Arg475, res. Leu489-Glu519).In the variant simulations, the imidazole ring of His596 can form hydrogen bonds with the same residues as arginine; however, these interactions are not as coordinated or strong in comparison. Thus, the residue swap could affect the tertiary structure assembly more profoundly than observed in the simulations. Notably, Arg596 plays a key role in positioning the aforementioned loop, which is crucial for the placement of the “arginine finger” or the Arg485 side chain during RasGTPase activation.
c.1802C>TA601V
(3D Viewer)
Likely PathogenicGAPUncertain 1-10.447Likely Pathogenic0.853Likely PathogenicAmbiguous0.535Likely Pathogenic1.64Ambiguous0.10.35Likely Benign1.00Ambiguous0.81Ambiguous-3.98Deleterious1.000Probably Damaging0.989Probably Damaging2.74Benign0.03Affected3.3735002.428.05228.5-45.50.00.00.40.5XPotentially BenignThe methyl side chain of Ala601, located on an α helix (res. Glu582-Met603), packs hydrophobically against other hydrophobic residues in the inter-helix space (e.g., Phe597, Leu598, Leu506, Phe608).In the variant simulations, Val601, which has similar size and physicochemical properties to alanine, resides in the inter-helix hydrophobic space in a similar manner to Ala601 in the WT, causing no apparent negative effect on the protein structure. However, the effect of the residue swap on the SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.2305C>TL769FLikely BenignUncertain 1-5.044Likely Benign0.146Likely BenignLikely Benign0.060Likely Benign-0.89Neutral0.925Possibly Damaging0.510Possibly Damaging3.94Benign0.02Affected20-1.034.02
c.2324G>CR775PLikely BenignBenign 1-5.072Likely Benign0.452AmbiguousLikely Benign0.168Likely Benign-0.79Neutral0.971Probably Damaging0.944Probably Damaging4.13Benign0.07Tolerated3.646-202.9-59.07
c.2339C>GS780CLikely BenignUncertain 46-33442891-C-G169.94e-6-7.603In-Between0.278Likely BenignLikely Benign0.078Likely Benign-1.41Neutral0.065Benign0.043Benign2.59Benign0.10Tolerated3.646-103.316.06
c.2350G>AA784TLikely BenignBenign 1-3.579Likely Benign0.089Likely BenignLikely Benign0.046Likely Benign1.23Neutral0.001Benign0.006Benign2.92Benign1.00Tolerated3.64610-2.530.03
c.2354G>AR785HSH3-binding motifUncertain 26-33442906-G-A42.50e-6-4.782Likely Benign0.388AmbiguousLikely Benign0.129Likely Benign-2.61Deleterious0.999Probably Damaging0.947Probably Damaging2.25Pathogenic0.01Affected3.646201.3-19.05
c.2369C>AT790NSH3-binding motifConflicting 36-33442921-C-A694.28e-5-5.243Likely Benign0.276Likely BenignLikely Benign0.103Likely Benign-2.54Deleterious0.999Probably Damaging0.997Probably Damaging2.27Pathogenic0.02Affected3.64600-2.813.00
c.2444G>AR815HSH3-binding motifLikely Benign 26-33442996-G-A241.49e-5-7.474In-Between0.553AmbiguousLikely Benign0.157Likely Benign-1.81Neutral1.000Probably Damaging0.998Probably Damaging2.61Benign0.02Affected4.324201.3-19.0510.1016/j.ajhg.2020.11.011
c.2014A>GT672A
(3D Viewer)
Likely BenignGAPBenign 16-33441273-A-G31.86e-6-6.524Likely Benign0.109Likely BenignLikely Benign0.046Likely Benign0.51Ambiguous0.31.15Ambiguous0.83Ambiguous0.65Ambiguous-3.20Deleterious0.006Benign0.002Benign3.44Benign0.12Tolerated3.4025102.5-30.03188.542.5-0.10.30.20.0XPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. In the variant simulations, Ala672 can only form a hydrogen bond with Lys566 via its backbone carbonyl group. Consequently, it cannot maintain the Lys566-Glu666 salt bridge through hydrogen bonding, leading to a significant disruption of the intricate and stable hydrogen-bond network between the loop and the helices.
c.2506A>GS836GLikely BenignUncertain 16-33443058-A-G42.48e-6-4.749Likely Benign0.112Likely BenignLikely Benign0.066Likely Benign-1.65Neutral0.006Benign0.019Benign2.54Benign0.39Tolerated3.775100.4-30.03
c.2514C>AN838KLikely PathogenicUncertain 2-8.470Likely Pathogenic0.862Likely PathogenicAmbiguous0.097Likely Benign-2.78Deleterious0.997Probably Damaging0.995Probably Damaging2.69Benign0.16Tolerated3.77510-0.414.07
c.2522T>CV841AUncertain 16-33443074-T-C31.86e-6-8.152Likely Pathogenic0.901Likely PathogenicAmbiguous0.183Likely Benign-2.13Neutral0.992Probably Damaging0.989Probably Damaging2.57Benign0.02Affected3.77500-2.4-28.05
c.2561G>AR854HLikely BenignUncertain 16-33443113-G-A42.48e-6-3.686Likely Benign0.094Likely BenignLikely Benign0.183Likely Benign-1.38Neutral0.997Probably Damaging0.899Possibly Damaging4.07Benign0.04Affected3.883201.3-19.05
c.2591C>TA864VLikely BenignUncertain 26-33443143-C-T63.72e-6-4.749Likely Benign0.126Likely BenignLikely Benign0.038Likely Benign-1.35Neutral0.767Possibly Damaging0.119Benign2.45Pathogenic0.30Tolerated3.824002.428.05
c.2632A>GT878ALikely BenignUncertain 1-2.154Likely Benign0.081Likely BenignLikely Benign0.088Likely Benign-0.67Neutral0.003Benign0.006Benign2.73Benign0.18Tolerated3.775102.5-30.03
c.263T>CV88ALikely BenignUncertain 1-5.860Likely Benign0.993Likely PathogenicLikely Pathogenic0.050Likely Benign-1.22Neutral0.053Benign0.008Benign3.75Benign0.00Affected4.32100-2.4-28.05
c.2657C>TA886VLikely BenignUncertain 16-33443209-C-T181.12e-5-4.478Likely Benign0.078Likely BenignLikely Benign0.061Likely Benign-0.20Neutral0.888Possibly Damaging0.314Benign2.17Pathogenic0.00Affected4.324002.428.05
c.2669G>AR890HLikely BenignBenign 16-33443221-G-A191.18e-5-3.600Likely Benign0.198Likely BenignLikely Benign0.056Likely Benign-1.29Neutral0.254Benign0.134Benign3.97Benign0.15Tolerated4.324201.3-19.05
c.2702C>TA901VLikely BenignUncertain 26-33443254-C-T21.24e-6-5.043Likely Benign0.219Likely BenignLikely Benign0.029Likely Benign-1.83Neutral0.106Benign0.009Benign2.64Benign0.17Tolerated3.775002.428.05
c.2704G>AA902TLikely BenignLikely Benign 16-33443256-G-A362.23e-5-4.966Likely Benign0.116Likely BenignLikely Benign0.075Likely Benign-1.11Neutral0.951Possibly Damaging0.617Possibly Damaging2.61Benign0.01Affected3.77510-2.530.03
c.2714G>AR905HLikely BenignUncertain 16-33443266-G-A84.96e-6-4.182Likely Benign0.457AmbiguousLikely Benign0.192Likely Benign-1.11Neutral1.000Probably Damaging0.991Probably Damaging2.59Benign0.09Tolerated3.775201.3-19.05
c.2724G>CQ908HLikely BenignConflicting 46-33443276-G-C16.20e-7-4.658Likely Benign0.311Likely BenignLikely Benign0.112Likely Benign-0.74Neutral0.996Probably Damaging0.995Probably Damaging2.58Benign0.05Affected3.775300.39.01
c.2729G>CG910ALikely BenignUncertain 16-33443281-G-C16.20e-7-3.587Likely Benign0.361AmbiguousLikely Benign0.209Likely Benign-1.43Neutral0.999Probably Damaging0.999Probably Damaging2.78Benign0.10Tolerated3.775102.214.03
c.2735C>AT912NLikely BenignUncertain 1-4.260Likely Benign0.190Likely BenignLikely Benign0.116Likely Benign-1.15Neutral0.999Probably Damaging0.977Probably Damaging3.96Benign0.00Affected3.77500-2.813.00
c.2743G>AG915SLikely BenignBenign 16-33443295-G-A95.58e-6-3.557Likely Benign0.083Likely BenignLikely Benign0.050Likely Benign-0.88Neutral0.801Possibly Damaging0.201Benign2.73Benign0.31Tolerated3.77510-0.430.03
c.2750C>GP917RLikely BenignUncertain 16-33443302-C-G53.10e-6-4.475Likely Benign0.363AmbiguousLikely Benign0.142Likely Benign-1.70Neutral0.642Possibly Damaging0.316Benign2.68Benign0.00Affected3.775-20-2.959.07
c.2753C>TA918VLikely BenignUncertain 36-33443305-C-T21.24e-6-3.684Likely Benign0.112Likely BenignLikely Benign0.119Likely Benign-1.61Neutral0.980Probably Damaging0.782Possibly Damaging2.61Benign0.03Affected4.324002.428.05
c.2818G>AG940SLikely BenignUncertain 16-33443370-G-A16.20e-7-5.451Likely Benign0.084Likely BenignLikely Benign0.135Likely Benign0.45Neutral0.409Benign0.253Benign2.77Benign0.44Tolerated3.77510-0.430.03
c.2830G>AG944SLikely BenignBenign 16-33443382-G-A138.05e-6-5.303Likely Benign0.082Likely BenignLikely Benign0.223Likely Benign-0.75Neutral0.007Benign0.004Benign3.77Benign0.00Affected4.32410-0.430.03
c.2835T>AH945QLikely BenignConflicting 26-33443387-T-A31.86e-6-5.248Likely Benign0.091Likely BenignLikely Benign0.343Likely Benign-0.36Neutral0.995Probably Damaging0.939Probably Damaging5.03Benign0.06Tolerated4.32430-0.3-9.01
c.2840G>CG947ALikely BenignLikely Benign 16-33443392-G-C281.73e-5-6.511Likely Benign0.080Likely BenignLikely Benign0.156Likely Benign-0.41Neutral0.224Benign0.131Benign4.97Benign0.10Tolerated4.324102.214.03
c.2845G>AG949SLikely BenignBenign/Likely benign 46-33443397-G-A1227.56e-5-5.693Likely Benign0.072Likely BenignLikely Benign0.321Likely Benign0.30Neutral0.611Possibly Damaging0.102Benign2.23Pathogenic0.00Affected4.32410-0.430.0310.1016/j.ajhg.2020.11.011
c.2852A>GH951RLikely BenignLikely Pathogenic 1-4.964Likely Benign0.125Likely BenignLikely Benign0.185Likely Benign-1.08Neutral0.048Benign0.029Benign5.46Benign0.24Tolerated3.77520-1.319.05
c.2854G>AG952SLikely BenignConflicting 26-33443406-G-A21.24e-6-6.190Likely Benign0.077Likely BenignLikely Benign0.167Likely Benign0.19Neutral0.000Benign0.002Benign3.31Benign0.07Tolerated3.77510-0.430.03
c.286G>AG96SLikely BenignUncertain 16-33425894-G-A53.10e-6-3.049Likely Benign0.065Likely BenignLikely Benign0.071Likely Benign-0.76Neutral0.364Benign0.008Benign4.25Benign0.00Affected4.32110-0.430.03
c.2888A>GH963RLikely BenignUncertain 16-33443440-A-G84.96e-6-8.952Likely Pathogenic0.169Likely BenignLikely Benign0.081Likely Benign-1.28Neutral0.001Benign0.003Benign4.15Benign0.24Tolerated3.77520-1.319.05
c.2912C>AP971HLikely BenignUncertain 16-33443464-C-A16.20e-7-5.243Likely Benign0.086Likely BenignLikely Benign0.039Likely Benign-1.11Neutral0.898Possibly Damaging0.477Possibly Damaging3.89Benign0.00Affected4.322-20-1.640.02
c.2924C>AT975NLikely BenignUncertain 16-33443476-C-A16.20e-7-4.671Likely Benign0.089Likely BenignLikely Benign0.100Likely Benign-0.58Neutral0.586Possibly Damaging0.302Benign4.13Benign0.07Tolerated4.32200-2.813.00
c.2928T>GF976LLikely BenignUncertain 1-2.432Likely Benign0.825Likely PathogenicAmbiguous0.212Likely Benign-0.87Neutral0.264Benign0.102Benign4.20Benign0.53Tolerated4.322201.0-34.02
c.2935T>CF979LLikely BenignUncertain 1-2.341Likely Benign0.870Likely PathogenicAmbiguous0.228Likely Benign-1.00Neutral0.625Possibly Damaging0.430Benign4.22Benign0.73Tolerated4.322201.0-34.02
c.2962C>TL988FLikely BenignUncertain 16-33443514-C-T16.20e-7-4.368Likely Benign0.356AmbiguousLikely Benign0.135Likely Benign-1.70Neutral0.977Probably Damaging0.900Possibly Damaging2.69Benign0.00Affected4.32220-1.034.02
c.2987C>GP996RLikely BenignBenign 1-4.457Likely Benign0.141Likely BenignLikely Benign0.040Likely Benign-1.04Neutral0.144Benign0.085Benign4.26Benign0.01Affected4.324-20-2.959.07
c.2989G>AA997TLikely BenignUncertain 1-4.102Likely Benign0.071Likely BenignLikely Benign0.085Likely Benign-0.62Neutral0.224Benign0.120Benign4.17Benign0.00Affected4.32410-2.530.03
c.303C>AH101QLikely BenignUncertain 16-33432168-C-A16.20e-7-2.827Likely Benign0.124Likely BenignLikely Benign0.147Likely Benign-0.37Neutral0.824Possibly Damaging0.880Possibly Damaging4.24Benign0.00Affected4.32130-0.3-9.01
c.3053C>TT1018IUncertain 16-33443605-C-T42.48e-6-3.264Likely Benign0.524AmbiguousLikely Benign0.076Likely Benign-2.55Deleterious0.586Possibly Damaging0.304Benign2.24Pathogenic0.01Affected3.775-105.212.05
c.3056G>AR1019HLikely BenignConflicting 26-33443608-G-A674.15e-5-4.610Likely Benign0.258Likely BenignLikely Benign0.122Likely Benign-1.95Neutral0.995Probably Damaging0.845Possibly Damaging2.39Pathogenic0.01Affected3.775201.3-19.05
c.3116T>CI1039TLikely BenignUncertain 16-33443668-T-C127.43e-6-2.465Likely Benign0.645Likely PathogenicLikely Benign0.193Likely Benign0.45Neutral0.004Benign0.008Benign2.75Benign0.10Tolerated3.775-10-5.2-12.05
c.3134C>GA1045GLikely BenignBenign/Likely benign 76-33443686-C-G14078.72e-4-3.246Likely Benign0.075Likely BenignLikely Benign0.024Likely Benign-1.21Neutral0.224Benign0.066Benign2.64Benign0.33Tolerated3.77510-2.2-14.0310.1016/j.ajhg.2020.11.011
c.3160G>AG1054SLikely BenignBenign 16-33443712-G-A321.99e-5-5.294Likely Benign0.075Likely BenignLikely Benign0.160Likely Benign0.21Neutral0.121Benign0.013Benign4.04Benign0.63Tolerated3.77510-0.430.03
c.3172G>AG1058SLikely BenignConflicting 36-33443724-G-A1147.08e-5-5.178Likely Benign0.081Likely BenignLikely Benign0.108Likely Benign0.26Neutral0.001Benign0.001Benign5.38Benign0.04Affected3.77510-0.430.03
c.3176G>CG1059ALikely BenignUncertain 16-33443728-G-C42.49e-6-6.754Likely Benign0.081Likely BenignLikely Benign0.329Likely Benign-0.17Neutral0.001Benign0.002Benign2.56Benign0.00Affected4.322102.214.03
c.3178G>AG1060SLikely BenignUncertain 16-33443730-G-A-4.759Likely Benign0.082Likely BenignLikely Benign0.376Likely Benign-0.08Neutral0.271Benign0.054Benign2.69Benign0.49Tolerated4.32210-0.430.03
c.3181G>AG1061SLikely BenignUncertain 1-4.891Likely Benign0.079Likely BenignLikely Benign0.283Likely Benign-0.68Neutral0.004Benign0.004Benign4.00Benign0.00Affected10-0.430.03
c.3192G>CQ1064HLikely BenignUncertain 1-4.576Likely Benign0.162Likely BenignLikely Benign0.063Likely Benign-0.66Neutral0.938Possibly Damaging0.596Possibly Damaging4.15Benign0.05Affected300.39.01
c.3238G>AA1080TLikely BenignConflicting 26-33443790-G-A171.06e-5-3.928Likely Benign0.133Likely BenignLikely Benign0.144Likely Benign-0.19Neutral0.253Benign0.042Benign4.10Benign0.60Tolerated3.77510-2.530.03
c.3251C>AP1084HLikely BenignUncertain 16-33443803-C-A16.31e-7-4.125Likely Benign0.323Likely BenignLikely Benign0.134Likely Benign-3.16Deleterious0.997Probably Damaging0.840Possibly Damaging3.96Benign0.00Affected3.775-20-1.640.02
c.3287A>CE1096ALikely BenignUncertain 1-4.504Likely Benign0.510AmbiguousLikely Benign0.164Likely Benign-1.37Neutral0.626Possibly Damaging0.184Benign2.77Benign0.16Tolerated3.775-105.3-58.04
c.3304G>AA1102TLikely BenignUncertain 16-33443856-G-A117.17e-6-3.540Likely Benign0.070Likely BenignLikely Benign0.044Likely Benign-0.30Neutral0.001Benign0.001Benign2.32Pathogenic0.95Tolerated3.77510-2.530.03
c.3305C>TA1102VLikely BenignBenign 16-33443857-C-T-2.440Likely Benign0.077Likely BenignLikely Benign0.081Likely Benign-1.27Neutral0.017Benign0.028Benign2.29Pathogenic0.12Tolerated3.775002.428.05
c.3308G>AR1103HLikely BenignBenign/Likely benign 36-33443860-G-A312.03e-5-3.622Likely Benign0.156Likely BenignLikely Benign0.116Likely Benign-1.97Neutral0.996Probably Damaging0.733Possibly Damaging2.49Pathogenic0.01Affected3.775201.3-19.05
c.3328A>GS1110GLikely BenignLikely Benign 1-4.674Likely Benign0.079Likely BenignLikely Benign0.035Likely Benign-2.26Neutral0.036Benign0.026Benign2.19Pathogenic0.08Tolerated4.322100.4-30.03
c.3354C>AS1118RLikely BenignUncertain 1-2.670Likely Benign0.553AmbiguousLikely Benign0.166Likely Benign-0.74Neutral0.034Benign0.023Benign5.17Benign0.05Affected4.322-10-3.769.11
c.335G>CG112ALikely BenignUncertain 16-33432200-G-C159.30e-6-2.456Likely Benign0.119Likely BenignLikely Benign0.114Likely Benign-2.34Neutral0.231Benign0.054Benign4.07Benign0.00Affected3.615102.214.03
c.3364G>AG1122SLikely BenignBenign/Likely benign 26-33443916-G-A271.79e-5-4.880Likely Benign0.072Likely BenignLikely Benign0.189Likely Benign-0.08Neutral0.022Benign0.006Benign4.89Benign0.92Tolerated3.77510-0.430.03
c.3374G>CG1125ALikely BenignUncertain 16-33443926-G-C16.68e-7-6.569Likely Benign0.083Likely BenignLikely Benign0.232Likely Benign-0.60Neutral0.999Probably Damaging0.995Probably Damaging4.60Benign0.11Tolerated3.775102.214.03
c.3380G>CG1127ALikely BenignConflicting 46-33443932-G-C42.68e-6-5.949Likely Benign0.080Likely BenignLikely Benign0.164Likely Benign-0.43Neutral0.001Benign0.002Benign4.83Benign1.00Tolerated4.324102.214.03
c.3405G>CK1135NLikely BenignUncertain 1-5.715Likely Benign0.960Likely PathogenicLikely Pathogenic0.166Likely Benign-0.97Neutral0.411Benign0.321Benign5.43Benign0.07Tolerated4.322100.4-14.07
c.3410A>CH1137PLikely BenignBenign 16-33444445-A-C127.44e-6-2.098Likely Benign0.054Likely BenignLikely Benign0.419Likely Benign-1.93Neutral0.925Possibly Damaging0.703Possibly Damaging5.29Benign0.00Affected4.324-201.6-40.02
c.3449C>TA1150VLikely BenignUncertain 16-33444484-C-T31.86e-6-3.648Likely Benign0.192Likely BenignLikely Benign0.066Likely Benign-2.22Neutral0.114Benign0.055Benign2.32Pathogenic0.04Affected3.775002.428.05
c.3508A>GS1170GLikely BenignCoiled-coilUncertain 1-4.288Likely Benign0.221Likely BenignLikely Benign0.349Likely Benign-0.81Neutral0.241Benign0.229Benign5.31Benign0.54Tolerated4.324100.4-30.03
c.3511G>AA1171TLikely BenignCoiled-coilUncertain 1-3.658Likely Benign0.149Likely BenignLikely Benign0.201Likely Benign-0.48Neutral0.245Benign0.138Benign5.45Benign0.07Tolerated4.32410-2.530.03
c.3511_3512delinsTGA1171CLikely BenignCoiled-coilUncertain 1-5.363Likely Benign0.496AmbiguousLikely Benign-1.16Neutral0.978Probably Damaging0.825Possibly Damaging5.32Benign0.02Affected4.324-200.732.06
c.3607C>TH1203YLikely BenignCoiled-coilUncertain 16-33446599-C-T21.24e-6-6.834Likely Benign0.149Likely BenignLikely Benign0.233Likely Benign-1.52Neutral0.006Benign0.011Benign5.55Benign0.10Tolerated3.775201.926.03
c.3638A>CN1213TLikely BenignCoiled-coilConflicting 26-33446630-A-C462.85e-5-5.428Likely Benign0.266Likely BenignLikely Benign0.097Likely Benign-1.08Neutral0.959Probably Damaging0.721Possibly Damaging2.74Benign1.00Tolerated3.775002.8-13.00
c.371C>TA124VLikely BenignConflicting 26-33432236-C-T95.58e-6-4.259Likely Benign0.138Likely BenignLikely Benign0.073Likely Benign-1.52Neutral0.173Benign0.009Benign4.07Benign0.03Affected3.615002.428.05
c.382C>AP128TLikely BenignUncertain 16-33432247-C-A16.20e-7-4.217Likely Benign0.267Likely BenignLikely Benign0.075Likely Benign-0.96Neutral0.952Possibly Damaging0.500Possibly Damaging4.19Benign0.35Tolerated3.744-100.93.99
c.3835G>AA1279TLikely BenignUncertain 26-33447883-G-A21.29e-6-4.871Likely Benign0.071Likely BenignLikely Benign0.178Likely Benign-0.30Neutral0.001Benign0.000Benign2.71Benign0.09Tolerated3.77510-2.530.03
c.3859C>AP1287TLikely BenignUncertain 16-33447907-C-A-3.940Likely Benign0.077Likely BenignLikely Benign0.044Likely Benign-0.22Neutral0.126Benign0.041Benign2.78Benign0.04Affected3.775-100.93.99
c.3862A>GK1288EUncertain 16-33447910-A-G53.22e-6-2.751Likely Benign0.407AmbiguousLikely Benign0.185Likely Benign-3.27Deleterious0.979Probably Damaging0.973Probably Damaging2.13Pathogenic0.00Affected3.775100.40.94
c.3906G>CL1302FUncertain 1-5.674Likely Benign0.148Likely BenignLikely Benign0.211Likely Benign-2.70Deleterious0.960Probably Damaging0.657Possibly Damaging1.53Pathogenic0.00Affected20-1.034.02
c.3907G>AG1303SLikely BenignUncertain 1-2.271Likely Benign0.125Likely BenignLikely Benign0.155Likely Benign-0.19Neutral0.649Possibly Damaging0.433Benign2.84Benign0.18Tolerated10-0.430.03
c.3913A>GT1305ALikely BenignConflicting 46-33451787-A-G301.86e-5-2.692Likely Benign0.055Likely BenignLikely Benign0.069Likely Benign1.74Neutral0.000Benign0.001Benign3.24Benign1.00Tolerated3.775102.5-30.03
c.3923G>AR1308HUncertain 16-33451797-G-A31.86e-6-3.586Likely Benign0.201Likely BenignLikely Benign0.319Likely Benign-3.12Deleterious0.998Probably Damaging0.991Probably Damaging2.33Pathogenic0.00Affected3.775201.3-19.05
c.3949G>AG1317SLikely BenignConflicting 36-33451823-G-A16.26e-7-3.522Likely Benign0.145Likely BenignLikely Benign0.092Likely Benign-2.45Neutral0.127Benign0.045Benign4.08Benign0.00Affected3.77510-0.430.03
c.3956C>GA1319GLikely BenignUncertain 26-33451830-C-G-3.927Likely Benign0.084Likely BenignLikely Benign0.128Likely Benign-0.74Neutral0.819Possibly Damaging0.581Possibly Damaging4.07Benign0.06Tolerated3.77510-2.2-14.03
c.3977C>AP1326QLikely BenignUncertain 16-33451851-C-A16.40e-7-5.422Likely Benign0.128Likely BenignLikely Benign0.138Likely Benign-0.86Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.775-10-1.931.01
c.4003G>AG1335SLikely PathogenicConflicting 26-33451877-G-A32.37e-6-4.495Likely Benign0.986Likely PathogenicLikely Pathogenic0.362Likely Benign-3.79Deleterious1.000Probably Damaging0.997Probably Damaging2.04Pathogenic0.00Affected3.77510-0.430.03
c.4021G>AA1341TLikely BenignConflicting 36-33451895-G-A453.44e-5-3.224Likely Benign0.081Likely BenignLikely Benign0.099Likely Benign-0.58Neutral0.000Benign0.000Benign4.09Benign0.03Affected3.77510-2.530.03
c.43G>AA15TLikely BenignUncertain 16-33420307-G-A42.60e-6-3.720Likely Benign0.125Likely BenignLikely Benign0.086Likely Benign-0.08Neutral0.602Possibly Damaging0.017Benign4.16Benign0.00Affected4.32110-2.530.03
c.44C>TA15VLikely BenignUncertain 16-33420308-C-T16.49e-7-3.560Likely Benign0.161Likely BenignLikely Benign0.105Likely Benign0.20Neutral0.602Possibly Damaging0.015Benign4.19Benign0.00Affected4.321002.428.05
c.458C>AT153NLikely BenignConflicting 3-0.739Likely Benign0.226Likely BenignLikely Benign0.161Likely Benign0.88Neutral0.888Possibly Damaging0.537Possibly Damaging4.23Benign0.81Tolerated3.61500-2.813.00
c.470G>AR157HUncertain 16-33432767-G-A16.20e-7-10.235Likely Pathogenic0.604Likely PathogenicLikely Benign0.254Likely Benign-2.23Neutral0.999Probably Damaging0.987Probably Damaging3.80Benign0.00Affected3.744201.3-19.05
c.485G>AR162HUncertain 16-33432782-G-A21.24e-6-9.730Likely Pathogenic0.480AmbiguousLikely Benign0.167Likely Benign-1.13Neutral0.957Probably Damaging0.513Possibly Damaging4.03Benign0.12Tolerated3.744201.3-19.05
c.558G>CL186FLikely PathogenicUncertain 1-11.861Likely Pathogenic0.993Likely PathogenicLikely Pathogenic0.132Likely Benign-3.03Deleterious0.009Benign0.012Benign3.50Benign0.00Affected20-1.034.02
c.597C>AN199K
(3D Viewer)
PHUncertain 1-8.198Likely Pathogenic0.686Likely PathogenicLikely Benign0.024Likely Benign-0.19Likely Benign0.10.03Likely Benign-0.08Likely Benign0.33Likely Benign-1.48Neutral0.276Benign0.083Benign4.27Benign0.13Tolerated3.47910-0.414.07207.821.5-0.11.50.10.0XUncertainAsn199, located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by a positively charged lysine. On the protein surface, both the carboxamide group of Asn199 and the amino group of Lys199 side chains can form hydrogen bonds with the backbone carbonyl groups of residues (e.g., Ala249) at the end of an α helix (res. Ala236-Lys251). However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.600G>CL200F
(3D Viewer)
PHUncertain 16-33435242-G-C21.24e-6-7.606In-Between0.592Likely PathogenicLikely Benign0.094Likely Benign1.00Ambiguous0.51.45Ambiguous1.23Ambiguous0.43Likely Benign-1.97Neutral0.997Probably Damaging0.916Probably Damaging4.02Benign0.17Tolerated3.46920-1.034.02250.4-15.10.60.20.50.0XUncertainLeu200, a hydrophobic residue located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by another hydrophobic residue, phenylalanine. Both the phenyl group of Phe200 and the branched iso-butyl hydrocarbon sidechain of Leu200 occupy an inward hydrophobic niche (e.g., Leu246, Val222, Phe231) during the simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.667A>GT223A
(3D Viewer)
PHUncertain 16-33435518-A-G31.86e-6-7.076In-Between0.316Likely BenignLikely Benign0.574Likely Pathogenic0.30Likely Benign0.10.77Ambiguous0.54Ambiguous0.74Ambiguous-3.36Deleterious0.231Benign0.058Benign5.74Benign0.09Tolerated3.4113102.5-30.03186.444.00.00.00.00.0XXUncertainThe introduced residue Ala223 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr223 side chain in the WT protein, the methyl side chain of Ala223 cannot form hydrogen bonds with nearby residues Thr228 and Lys207. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and partially unfolds in the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.670A>GT224A
(3D Viewer)
PHUncertain 36-33435521-A-G21.24e-6-7.379In-Between0.651Likely PathogenicLikely Benign0.464Likely Benign0.33Likely Benign0.11.05Ambiguous0.69Ambiguous0.91Ambiguous-2.96Deleterious0.243Benign0.079Benign5.57Benign0.57Tolerated3.4113102.5-30.03169.041.4-0.51.1-0.40.0XXUncertainThe introduced residue Ala224 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr224 side chain in the WT model, the methyl side chain of Ala224 cannot form hydrogen bonds with nearby residues Ser204, Ser226, and Gly227. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and unfolds during the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.860A>CD287A
(3D Viewer)
Likely PathogenicC2Uncertain 1-14.686Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.484Likely Benign0.30Likely Benign0.1-0.04Likely Benign0.13Likely Benign0.40Likely Benign-7.35Deleterious1.000Probably Damaging0.998Probably Damaging1.58Pathogenic0.01Affected3.3823-205.3-44.01
c.694G>AA232T
(3D Viewer)
PHBenign 16-33435545-G-A16.20e-7-7.655In-Between0.874Likely PathogenicAmbiguous0.469Likely Benign0.47Likely Benign0.1-0.04Likely Benign0.22Likely Benign0.61Ambiguous-1.42Neutral0.608Possibly Damaging0.240Benign5.80Benign0.09Tolerated3.401410-2.530.03210.8-42.00.50.10.40.5XUncertainThe hydroxyl group of Thr232, located at the end of an anti-parallel β sheet strand (res. Thr228-Ala232), forms hydrogen bonds with nearby residues Glu217, Cys233, and Cys219 in the variant simulations. These hydrogen-bonding interactions at the β sheet surface contribute to the stability of the secondary structure element and prevent it from unfolding. The new hydrogen bond interactions may be more favorable for structural stability than the steric interactions of the methyl side chain of Ala with the side chains of Gln216 and Cys219 in the WT. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.707C>TA236V
(3D Viewer)
PHBenign/Likely benign 26-33435558-C-T63.72e-6-8.752Likely Pathogenic0.267Likely BenignLikely Benign0.777Likely Pathogenic0.61Ambiguous0.21.08Ambiguous0.85Ambiguous0.64Ambiguous-3.55Deleterious0.981Probably Damaging0.446Benign5.79Benign0.03Affected3.4014002.428.05213.8-44.70.00.0-0.20.2XPotentially BenignThe methyl side chain of Ala236, located on an α helix (residues Ala236-Val250) facing an anti-parallel β sheet strand (residues Ile205-Val209), interacts hydrophobically with nearby residues such as Arg239 and Phe218. In the variant simulations, the isopropyl branched hydrocarbon side chain of Val236 maintains similar hydrophobic interactions as alanine in the WT, with an overall arrangement remarkably similar to Ala236. The residue swap does not affect the protein structure based on the simulations.
c.878G>AR293HLikely PathogenicC2Uncertain 1-13.009Likely Pathogenic0.973Likely PathogenicLikely Pathogenic0.438Likely Benign4.45Destabilizing2.32.12Destabilizing3.29Destabilizing0.32Likely Benign-4.60Deleterious1.000Probably Damaging0.998Probably Damaging1.45Pathogenic0.04Affected201.3-19.05
c.745G>AA249T
(3D Viewer)
Likely BenignPHUncertain 1-3.564Likely Benign0.805Likely PathogenicAmbiguous0.487Likely Benign1.50Ambiguous0.61.39Ambiguous1.45Ambiguous0.30Likely Benign-0.96Neutral0.990Probably Damaging0.815Possibly Damaging5.65Benign0.40Tolerated3.391510-2.530.03214.5-43.30.00.00.50.2XPotentially BenignThe methyl group of Ala249, located on the surface of an α helix (res. Ala236-Val250) facing an anti-parallel β sheet strand (res. Ile205-Val209), packs against nearby hydrophobic residues such as Leu200, Leu246, and Val250. In the variant simulations, the hydroxyl group of Thr249, which is not suitable for hydrophobic packing, forms a stable hydrogen bond with the backbone carbonyl of Asn245 in the same helix. Although this interaction could theoretically weaken the structural integrity of the α helix, this destabilizing effect is not observed in the variant simulations.
c.762G>CK254N
(3D Viewer)
Likely PathogenicPHUncertain 1-13.306Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.757Likely Pathogenic0.73Ambiguous0.21.87Ambiguous1.30Ambiguous1.19Destabilizing-4.23Deleterious0.384Benign0.070Benign5.93Benign0.01Affected3.3915100.4-14.07215.3-21.0-1.01.70.20.3XPotentially PathogenicThe amino group of Lys254, located in an α-β loop connecting the PH and C2 domains (res. Lys251-Arg258), forms salt bridges with the carboxylate groups of Glu244 and Asp684. Since the neutral carboxamide group of the Asn254 side chain cannot form salt bridges with acidic residues, the residue swap potentially weakens the tertiary structure assembly and/or influences the loop positioning. Regardless, in both the variant and WT simulations, all hydrogen bonds formed by the residue’s side chain were broken, and the residue rotated outwards. The partially α helical conformation of the loop, which extends to a nearby α helix (res. Met414-Asn426), is dynamic, making it unclear if the mutation affects it.
c.773G>AR258H
(3D Viewer)
C2Benign/Likely benign 36-33437678-G-A106.20e-6-10.533Likely Pathogenic0.525AmbiguousLikely Benign0.830Likely Pathogenic1.60Ambiguous0.61.00Ambiguous1.30Ambiguous1.47Destabilizing-4.06Deleterious1.000Probably Damaging0.991Probably Damaging5.77Benign0.01Affected3.3915201.3-19.05212.581.80.10.0-0.50.2XPotentially PathogenicThe guanidinium group of Arg258, located at the end of an α-β loop connecting the PH domain to the C2 domain (res. Lys251-Arg258), forms hydrogen bonds with the carboxamide groups of Asn727 and Asn729 side chains, as well as with the backbone carbonyl groups of Ala724, Leu725, and Asn727 in the WT simulations. Although the imidazole group of His258 can act as a hydrogen bond donor/acceptor, the swapped residue is unable to maintain an equally well-coordinated hydrogen bond network for linking the C2 and GAP domains in the variant simulations.
c.929A>GE310G
(3D Viewer)
Likely PathogenicC2Pathogenic 1-14.132Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.848Likely Pathogenic2.38Destabilizing0.73.56Destabilizing2.97Destabilizing0.36Likely Benign-6.43Deleterious1.000Probably Damaging0.996Probably Damaging1.12Pathogenic0.00Affected3.3819-203.1-72.06
c.896G>AR299H
(3D Viewer)
C2Conflicting 26-33437801-G-A106.20e-6-7.731In-Between0.388AmbiguousLikely Benign0.238Likely Benign3.97Destabilizing1.00.94Ambiguous2.46Destabilizing1.41Destabilizing-3.35Deleterious1.000Probably Damaging0.998Probably Damaging1.69Pathogenic0.02Affected3.3919201.3-19.05211.272.5-0.10.2-0.20.3XPotentially PathogenicThe guanidinium group of Arg299, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), forms hydrogen bonds that stabilize the tight turn. In the WT simulations, the Arg299 side chain hydrogen bonds with the loop backbone carbonyl groups (e.g., Ser302, Thr305, Leu274, Gly303), the hydroxyl group of Ser300, and even forms a salt bridge with the carboxylate group of Asp304.In the variant simulations, the imidazole ring of His299 (epsilon protonated state) hydrogen bonds with the carbonyl group of Asp304 and the hydroxyl group of Ser300. However, it does not form as many or as strong interactions as arginine, which could affect the initial formation of the secondary hairpin loop during folding. β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant.Additionally, His299 prefers to hydrophobically interact with other hydrophobic residues inside the C2 domain core (e.g., Val306, Leu274), which destabilizes the C2 domain. Indeed, the β strand partially unfolds during the second simulation. Moreover, the positively charged Arg299 side chain faces the polar head group region of the inner leaflet membrane and could directly anchor the C2 domain to the membrane. In short, the residue swap could negatively affect both protein folding and the stability of the SynGAP-membrane association.
c.901G>AA301T
(3D Viewer)
Likely BenignC2Uncertain 56-33437806-G-A21.24e-6-3.448Likely Benign0.070Likely BenignLikely Benign0.150Likely Benign0.36Likely Benign0.2-0.33Likely Benign0.02Likely Benign0.03Likely Benign-0.25Neutral0.997Probably Damaging0.989Probably Damaging4.15Benign0.22Tolerated4.321410-2.530.03219.8-42.8-0.10.0-0.50.2UncertainThe methyl group of Ala301, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Met289-Pro298, res. Thr305-Asn315), points outward from the β hairpin loop, and its backbone atoms do not participate in the loop formation in the WT simulations. In the variant simulations, the hydroxyl group of the Thr301 side chain also mostly points outward; however, the guanidinium group of Arg299 is moved away from its central hairpin loop position.β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Due to its location near the membrane surface, the residue swap could also affect the C2 loop dynamics and SynGAP-membrane association. However, this is beyond the scope of the solvent-only simulations to unravel.
c.913A>GT305A
(3D Viewer)
Likely BenignC2Conflicting 26-33437818-A-G138.05e-6-4.307Likely Benign0.078Likely BenignLikely Benign0.144Likely Benign1.30Ambiguous0.61.55Ambiguous1.43Ambiguous0.77Ambiguous-2.10Neutral0.939Possibly Damaging0.645Possibly Damaging1.76Pathogenic0.12Tolerated3.4020102.5-30.03177.943.5-0.20.10.40.0UncertainThe hydroxyl group of Thr305, located at the beginning of an anti-parallel β strand (res. Thr305-Asn315), hydrogen bonds with the carboxylate groups of Glu270 and Asp304 in the anti-parallel β strand and the adjacent β hairpin loop, respectively. In the variant simulations, the methyl group of the Ala305 side chain cannot hydrogen bond with either of the acidic residues, which could weaken the integrity of the tertiary structure and the β hairpin loop. Indeed, the guanidinium group of Arg299 does not acquire its central hairpin loop position due to the residue swap.β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Due to its location near the membrane surface, the residue swap could also affect the C2 loop dynamics and SynGAP-membrane association. However, this is beyond the scope of the solvent-only simulations to unravel.
c.962G>AR321H
(3D Viewer)
C2Uncertain 16-33437867-G-A84.96e-6-8.751Likely Pathogenic0.136Likely BenignLikely Benign0.323Likely Benign0.48Likely Benign0.1-0.36Likely Benign0.06Likely Benign0.59Ambiguous-1.43Neutral1.000Probably Damaging0.998Probably Damaging1.92Pathogenic0.25Tolerated3.3823201.3-19.05218.586.91.10.00.30.0XPotentially BenignThe guanidinium group of Arg321, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Thr305-Asn315, res. Ala322-Asp330), faces outward without forming any stable interactions in the WT simulations. Similarly, in the variant simulations, the imidazole ring of His321 also points outward without making any stable intra-protein interactions. Thus, the residue swap does not seem to cause adverse effects on the protein structure based on the simulations. However, β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant.
c.986G>AR329H
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437891-G-A21.24e-6-10.154Likely Pathogenic0.769Likely PathogenicLikely Benign0.155Likely Benign2.53Destabilizing0.70.71Ambiguous1.62Ambiguous0.82Ambiguous-3.17Deleterious0.995Probably Damaging0.778Possibly Damaging4.04Benign0.05Affected3.4115201.3-19.05220.481.40.10.10.20.3UncertainThe guanidinium group of Arg329, located at the end of an anti-parallel β sheet strand (res. Ala322-Asp330), faces the negatively charged lipid bilayer surface. While the residue swap does not cause any apparent negative effects on the protein structure in the variant simulations, it could adversely affect the SynGAP-membrane association in reality. The positively charged Arg329 side chain forms hydrogen bonds with other loop residues (e.g., Ser371, Asp338) that are expected to dynamically interact with the membrane head group region. However, this phenomenon is beyond the scope of the solvent-only simulations to unravel. Notably, histidine can also be double protonated and positively charged, but this alternative protonation state was not considered in the variant simulations.
c.1042G>AV348M
(3D Viewer)
C2Uncertain 1-7.076In-Between0.546AmbiguousLikely Benign0.191Likely Benign-1.19Ambiguous0.10.72Ambiguous-0.24Likely Benign0.76Ambiguous-1.62Neutral0.966Probably Damaging0.564Possibly Damaging1.58Pathogenic0.03Affected3.372521-2.332.06253.8-47.4-0.30.10.20.1XPotentially BenignThe iso-propyl side chain of Val348, located in an anti-parallel β sheet strand (res. Gly341-Pro349), packs against multiple hydrophobic C2 domain residues (e.g., Leu353, Leu323, Leu402). In the variant simulations, the thioether side chain of Met348 can form similar interactions as valine due to its comparable hydrophobic profile. In fact, the thioether group of methionine can even stack favorably with the phenol ring of Tyr363 in the anti-parallel β sheet strand (res. Ala399-Ile411). Overall, the residue swap does not appear to cause negative effects on the protein structure based on the simulations.
c.1202G>AR401Q
(3D Viewer)
Likely PathogenicC2Uncertain 16-33438107-G-A-11.213Likely Pathogenic0.969Likely PathogenicLikely Pathogenic0.780Likely Pathogenic0.96Ambiguous0.11.50Ambiguous1.23Ambiguous1.20Destabilizing-3.69Deleterious0.999Probably Damaging0.978Probably Damaging5.47Benign0.04Affected3.3827111.0-28.06
c.1240A>GM414VGAPUncertain 1-8.003Likely Pathogenic0.541AmbiguousLikely Benign0.261Likely Benign1.81Ambiguous0.41.73Ambiguous1.77Ambiguous0.95Ambiguous-2.95Deleterious0.999Probably Damaging0.987Probably Damaging3.43Benign0.24Tolerated212.3-32.06
c.1345A>GS449G
(3D Viewer)
Likely BenignGAPUncertain 16-33438250-A-G31.86e-6-5.936Likely Benign0.071Likely BenignLikely Benign0.116Likely Benign0.47Likely Benign0.00.55Ambiguous0.51Ambiguous0.85Ambiguous-2.32Neutral0.948Possibly Damaging0.124Benign3.35Benign0.13Tolerated3.3732010.4-30.03
c.1370G>AS457NLikely PathogenicGAPUncertain 1-10.221Likely Pathogenic0.949Likely PathogenicAmbiguous0.241Likely Benign0.19Likely Benign0.0-0.22Likely Benign-0.02Likely Benign0.67Ambiguous-2.76Deleterious0.940Possibly Damaging0.843Possibly Damaging3.28Benign0.06Tolerated11-2.727.03
c.140G>AR47QLikely BenignLikely Benign 16-33423549-G-A42.48e-6-4.989Likely Benign0.347AmbiguousLikely Benign0.096Likely Benign-0.57Neutral0.829Possibly Damaging0.614Possibly Damaging4.12Benign0.00Affected4.321111.0-28.0610.1016/j.ajhg.2020.11.011
c.1436G>AR479Q
(3D Viewer)
Likely BenignGAPUncertain 16-33438468-G-A74.34e-6-7.109In-Between0.259Likely BenignLikely Benign0.191Likely Benign0.54Ambiguous0.10.57Ambiguous0.56Ambiguous0.49Likely Benign-1.16Neutral1.000Probably Damaging0.991Probably Damaging3.42Benign0.31Tolerated3.3932111.0-28.06
c.1468G>CA490P
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.905Likely Pathogenic0.941Likely PathogenicAmbiguous0.878Likely Pathogenic-1.27Ambiguous0.11.31Ambiguous0.02Likely Benign1.07Destabilizing-4.81Deleterious1.000Probably Damaging0.998Probably Damaging-1.42Pathogenic0.01Affected3.3735-11-3.426.04
c.1198G>CV400L
(3D Viewer)
Likely BenignC2Benign 16-33438103-G-C221.36e-5-1.000Likely Benign0.137Likely BenignLikely Benign0.325Likely Benign-0.71Ambiguous0.20.39Likely Benign-0.16Likely Benign-0.29Likely Benign-0.60Neutral0.001Benign0.001Benign5.33Benign0.64Tolerated3.382721-0.414.03251.0-30.10.00.00.70.1XPotentially BenignThe iso-propyl side chain of Val400, located in an anti-parallel β sheet strand (res. Ala399-Ile411), hydrophobically packs against hydrophobic residues within the anti-parallel β sheet of the C2 domain (e.g., Ile268, Ala404, Leu325, Leu402). Val400 is swapped for another hydrophobic residue, leucine, whose branched hydrocarbon side chain is of a comparable size and thus packs favorably within the C2 domain. In short, the residue swap has no apparent negative effect on the structure based on the variant simulations.10.1016/j.ajhg.2020.11.011
c.1540A>TI514F
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.383Likely Pathogenic0.962Likely PathogenicLikely Pathogenic0.601Likely Pathogenic2.35Destabilizing0.33.74Destabilizing3.05Destabilizing0.93Ambiguous-3.98Deleterious0.997Probably Damaging0.993Probably Damaging2.89Benign0.00Affected3.373501-1.734.02
c.1600T>CS534P
(3D Viewer)
Likely BenignGAPUncertain 16-33438843-T-C31.86e-6-5.056Likely Benign0.265Likely BenignLikely Benign0.203Likely Benign-0.40Likely Benign0.20.35Likely Benign-0.03Likely Benign0.47Likely Benign-3.81Deleterious0.993Probably Damaging0.993Probably Damaging3.32Benign0.05Affected3.3735-11-0.810.04
c.1286G>AR429Q
(3D Viewer)
Likely BenignGAPUncertain 26-33438191-G-A106.20e-6-8.227Likely Pathogenic0.143Likely BenignLikely Benign0.156Likely Benign0.45Likely Benign0.10.36Likely Benign0.41Likely Benign0.98Ambiguous-1.25Neutral1.000Probably Damaging0.979Probably Damaging3.47Benign0.58Tolerated3.3825111.0-28.06235.859.50.00.0-0.30.4XPotentially PathogenicThe guanidinium group of the Arg429 side chain, located in an α helix (res. Met414-Glu436), either forms a salt bridge with the carboxylate group of an acidic residue (Asp474, Asp467) or an H-bond with the hydroxyl group of Ser471 in an opposing α helix (res. Ala461-Phe476). In the variant simulations, Gln429 cannot form ionic interactions with the acidic residues; however, the carboxamide group can form multiple H-bonds. The H-bonding coordination of the Asn429 side chain varied between the replica simulations. In one simulation, three H-bonds were formed simultaneously with the Asp467 side chain, the backbone carbonyl group of Asn426, and the amide group of Met430 at the end of the same α helix. The residue swap could affect the tertiary structure assembly during folding due to weaker bond formation, but no large-scale negative effects were seen during the simulations.
c.1306G>AE436K
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.869Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.829Likely Pathogenic0.56Ambiguous0.12.86Destabilizing1.71Ambiguous0.82Ambiguous-3.77Deleterious0.994Probably Damaging0.951Probably Damaging4.71Benign0.02Affected3.372901-0.4-0.94186.839.80.00.0-0.20.0XXXPotentially PathogenicThe carboxylate group of Glu436, located on the α helix (res. Met414-Glu436), forms a salt bridge with the amino group of the Lys444 side chain on an opposing α helix (res. Val441-Ser457). The backbone carbonyl of Glu436 also H-bonds with the Lys444 side chain, which helps keep the ends of the two α helices tightly connected. In contrast, in the variant simulations, the salt bridge formation with Lys444 is not possible. Instead, the repelled Lys436 side chain rotates outward, causing a change in the α helix backbone H-bonding: the amide group of Lys444 H-bonds with the carbonyl of Ala433 instead of the carbonyl of Cys432.
c.1606T>GL536V
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.014Likely Pathogenic0.269Likely BenignLikely Benign0.586Likely Pathogenic1.25Ambiguous0.31.22Ambiguous1.24Ambiguous1.20Destabilizing-2.81Deleterious0.998Probably Damaging0.992Probably Damaging-1.34Pathogenic0.09Tolerated3.3734210.4-14.03204.726.40.20.0-0.20.2XPotentially BenignLeu536 is located on an α-helix (res. Ala533-Val560) at the membrane interface. The iso-butyl group of Leu536 interacts with nearby hydrophobic residues in the preceding loop (e.g., Val526, Pro528, Cys531). In the variant simulations, the iso-propyl side chain of Val536 forms similar hydrophobic interactions as Leu536 in the WT, causing no negative structural effects.
c.1631G>AR544Q
(3D Viewer)
Likely PathogenicGAPUncertain 16-33438874-G-A16.20e-7-10.281Likely Pathogenic0.596Likely PathogenicLikely Benign0.542Likely Pathogenic0.19Likely Benign0.20.87Ambiguous0.53Ambiguous1.40Destabilizing-2.41Neutral1.000Probably Damaging0.997Probably Damaging-1.40Pathogenic0.09Tolerated3.3735111.0-28.06
c.1393C>GL465V
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.893Likely Pathogenic0.838Likely PathogenicAmbiguous0.276Likely Benign2.46Destabilizing0.12.66Destabilizing2.56Destabilizing1.21Destabilizing-2.98Deleterious0.996Probably Damaging0.992Probably Damaging2.44Pathogenic0.10Tolerated3.3734210.4-14.03204.330.90.00.0-0.40.6XPotentially BenignThe iso-butyl side chain of Leu465, located in the middle of an α helix (res. Ala461–Phe476), packs with hydrophobic residues (e.g., Phe464, Met468, Tyr497, Ile494) in an inter-helix space formed with two other α helices (res. Ala461–Phe476 and res. Thr488-Gly502). In the variant simulations, the iso-propyl side chain of Val465 is equally sized and similarly hydrophobic as the original side chain of Leu465. Hence, the mutation does not exert any negative effects on the protein structure based on the variant simulations.
c.163C>AQ55KLikely BenignUncertain 26-33423572-C-A241.49e-5-5.840Likely Benign0.612Likely PathogenicLikely Benign0.085Likely Benign-1.21Neutral0.140Benign0.184Benign3.91Benign0.00Affected4.32111-0.40.04
c.1678G>AV560M
(3D Viewer)
GAPUncertain 26-33440730-G-A159.50e-6-9.598Likely Pathogenic0.517AmbiguousLikely Benign0.520Likely Pathogenic-0.33Likely Benign0.10.88Ambiguous0.28Likely Benign0.72Ambiguous-2.42Neutral0.999Probably Damaging0.863Possibly Damaging-1.25Pathogenic0.14Tolerated3.373521-2.332.06234.9-52.60.00.0-0.10.1XPotentially BenignVal560 is located on the surface at the end of an α-helix (res. Ala533-Val560). The iso-propyl group of Val560 favorably packs against Asp508 of the opposing α-helix (res. Gln503-Glu519). However, in the variant simulations, the bulkier thioether side chain of Met560 does not form equally favorable inter-helix interactions. Regardless, no negative structural effects are observed during the simulations.
c.1424G>AR475Q
(3D Viewer)
Likely PathogenicGAPUncertain 26-33438456-G-A53.10e-6-12.087Likely Pathogenic0.721Likely PathogenicLikely Benign0.632Likely Pathogenic0.71Ambiguous0.10.12Likely Benign0.42Likely Benign0.82Ambiguous-3.65Deleterious1.000Probably Damaging0.991Probably Damaging-1.32Pathogenic0.01Affected3.3928111.0-28.06253.652.70.00.0-0.80.0XXXPotentially PathogenicIn the WT simulations, the guanidinium group of Arg475, located near the end of an α-helix (res. Ala461-Phe476), stacks with the phenyl ring of Phe476 and forms a salt bridge with Glu472. Additionally, Arg475 occasionally forms another salt bridge with the carboxylate group of Glu486 on the α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. Therefore, Arg475 potentially plays a key role in positioning the loop by interacting with Glu486, which is necessary for the positioning of the “arginine finger” (Arg485) and, ultimately, for RasGTPase activation. In the variant simulations, Asn475 forms a hydrogen bond with Arg479 on the proceeding α-α loop. The absence of Phe476/Arg475 stacking and the Arg475-Glu472 salt bridge weakens the integrity of the terminal end of the α-helix during the variant simulations. Lastly, the potential effect of the residue swap on the SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations.
c.1736G>AR579Q
(3D Viewer)
Likely PathogenicGAPUncertain 16-33440788-G-A181.12e-5-9.193Likely Pathogenic0.690Likely PathogenicLikely Benign0.673Likely Pathogenic0.65Ambiguous0.10.70Ambiguous0.68Ambiguous1.13Destabilizing-3.31Deleterious1.000Probably Damaging0.995Probably Damaging-1.34Pathogenic0.06Tolerated3.3734111.0-28.06
c.1456G>AE486K
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.545Likely Pathogenic0.988Likely PathogenicLikely Pathogenic0.435Likely Benign0.06Likely Benign0.10.37Likely Benign0.22Likely Benign0.41Likely Benign-3.58Deleterious1.000Probably Damaging0.988Probably Damaging3.40Benign0.12Tolerated3.373501-0.4-0.94206.852.1-0.30.10.20.0XXUncertainGlu486 is located in an α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. It is adjacent to the arginine finger (Arg485) and is expected to closely interact with Ras. The residue swap could affect complex formation with the GTPase and its activation. In the WT simulations, the carboxylate group of Glu486 forms salt bridges with Arg485 and Arg475 on the preceding α-helix (res. Ala461-Phe476). In the variant simulations, Lys486 does not form any specific interactions. Although the amino group of the Lys486 side chain cannot form these salt bridges, no negative effects on the protein structure are observed. Nevertheless, the potential role of Glu486 in SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations, and no definite conclusions can be drawn.
c.1792C>GL598V
(3D Viewer)
Likely PathogenicGAPUncertain 1-10.002Likely Pathogenic0.578Likely PathogenicLikely Benign0.221Likely Benign1.89Ambiguous0.11.58Ambiguous1.74Ambiguous1.01Destabilizing-2.92Deleterious0.944Possibly Damaging0.786Possibly Damaging3.21Benign0.02Affected3.3735210.4-14.03218.429.60.00.00.80.0XPotentially BenignThe iso-butyl side chain of Leu598, located on an α helix (res. Glu582-Met603), packs hydrophobically with other hydrophobic residues in the inter-helix space (e.g., Ile602, Phe594, Ile510).In the variant simulations, Val598, which has similar size and physicochemical properties to leucine, resides in the inter-helix hydrophobic space in a similar manner to Leu598 in the WT. This causes no negative effects on the protein structure.
c.1855A>TT619S
(3D Viewer)
Likely PathogenicGAPUncertain 1-8.608Likely Pathogenic0.677Likely PathogenicLikely Benign0.602Likely Pathogenic1.09Ambiguous0.21.35Ambiguous1.22Ambiguous0.85Ambiguous-3.42Deleterious0.999Probably Damaging0.998Probably Damaging-1.30Pathogenic0.05Affected3.373511-0.1-14.03
c.1873C>GL625VLikely PathogenicGAPUncertain 1-11.319Likely Pathogenic0.833Likely PathogenicAmbiguous0.480Likely Benign1.80Ambiguous0.71.69Ambiguous1.75Ambiguous1.42Destabilizing-2.96Deleterious0.998Probably Damaging0.992Probably Damaging3.07Benign0.01Affected210.4-14.03
c.1918A>TT640S
(3D Viewer)
Likely BenignGAPBenign 16-33441177-A-T16.20e-7-2.371Likely Benign0.062Likely BenignLikely Benign0.088Likely Benign-0.78Ambiguous0.10.43Likely Benign-0.18Likely Benign-0.30Likely Benign0.92Neutral0.000Benign0.001Benign3.60Benign0.33Tolerated3.373011-0.1-14.03
c.1957C>GL653VLikely BenignGAPUncertain 1-7.050In-Between0.301Likely BenignLikely Benign0.146Likely Benign3.28Destabilizing0.32.18Destabilizing2.73Destabilizing1.32Destabilizing-2.25Neutral0.227Benign0.039Benign3.28Benign0.08Tolerated210.4-14.03
c.1604G>CS535T
(3D Viewer)
Likely BenignGAPBenign 16-33438847-G-C148.67e-6-3.886Likely Benign0.069Likely BenignLikely Benign0.177Likely Benign0.45Likely Benign0.1-0.27Likely Benign0.09Likely Benign0.17Likely Benign-0.81Neutral0.000Benign0.001Benign-1.25Pathogenic0.25Tolerated3.3735110.114.03201.3-17.3-0.10.7-0.20.1XPotentially BenignSer535 is located near the terminal end of an α-helix (res. Ala533-Val560) close to the membrane interface. In the WT simulations, the hydroxyl side chain of Ser535 forms hydrogen bonds with nearby residues (e.g., His539, Glu538) without any specific interactions. These hydrogen bonds disrupt the structure of the terminal end of the α-helix (Ala533-Ser535), causing it to weaken or unfold during the WT simulations. In the variant simulations, Thr535, a hydrophilic residue with a hydroxyl group of almost the same size as Ser, interacts more frequently with the preceding loop residues (e.g., Thr532, Cys531) due to its longer side chain. Regardless, the residue swap is tolerated in the simulations with no negative effects. However, due to its location near the SynGAP-membrane interface, the effect of the residue swap cannot be fully addressed using the SynGAP solvent-only simulations.10.1016/j.ajhg.2020.11.011
c.1625A>GN542S
(3D Viewer)
Likely PathogenicGAPLikely Benign 1-9.675Likely Pathogenic0.767Likely PathogenicLikely Benign0.752Likely Pathogenic0.98Ambiguous0.10.99Ambiguous0.99Ambiguous0.91Ambiguous-4.40Deleterious1.000Probably Damaging0.989Probably Damaging-1.36Pathogenic0.13Tolerated3.3735112.7-27.03212.532.10.00.0-0.60.3XPotentially PathogenicAsn542 is located in an α-helix (res. Ala533-Val560) next to an α-α loop between two α-helices (res. Gly502-Tyr518 and Ala533-Val560). In the WT simulations, the carboxamide group of the Asn542 side chain forms a hydrogen bond with the backbone carbonyl group of Asn523 and packs favourably against Glu522 from the loop. In contrast, in the variant simulations, the hydroxyl group of the Ser542 side chain is unable to maintain either the hydrogen bond with Asn523 or the packing against the Glu522 side chain. Instead, the hydroxyl group of Ser542 occasionally forms a hydrogen bond with the backbone carbonyl group of Glu538.Altogether, the residue swap results in a looser helix-loop association, which is especially evident in the third replica simulation, where Asn523 moves away from its initial placement next to the α-helix. In short, based on the simulations, the residue swap weakens the GAP domain tertiary structure assembly, which in turn could negatively affect protein folding.
c.2050G>AD684N
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.155Likely Pathogenic0.985Likely PathogenicLikely Pathogenic0.382Likely Benign1.47Ambiguous0.81.76Ambiguous1.62Ambiguous0.37Likely Benign-4.99Deleterious0.999Probably Damaging0.746Possibly Damaging3.39Benign0.01Affected210.0-0.98
c.2050G>CD684H
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.194Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.613Likely Pathogenic3.36Destabilizing1.02.95Destabilizing3.16Destabilizing0.55Ambiguous-6.98Deleterious1.000Probably Damaging0.972Probably Damaging3.36Benign0.00Affected3.4217-110.322.05
c.1667A>GN556S
(3D Viewer)
GAPUncertain 16-33438910-A-G31.86e-6-6.576Likely Benign0.197Likely BenignLikely Benign0.449Likely Benign0.52Ambiguous0.10.14Likely Benign0.33Likely Benign0.16Likely Benign-3.60Deleterious1.000Probably Damaging0.989Probably Damaging-1.22Pathogenic0.14Tolerated3.3735112.7-27.03198.831.00.00.0-0.50.2XPotentially BenignAsn556 is located on the outer surface of an α-helix (res. Ala533-Val560). The carboxamide group of Asn556 forms hydrogen bonds with nearby residues such as Lys553 and Cys552. It also forms a hydrogen bond with the backbone carbonyl group of Cys552, which weakens the α-helix integrity. In the variant simulations, the hydroxyl group of Ser556 forms a more stable hydrogen bond with the backbone carbonyl oxygen of the same helix residue, Cys552, compared to Asn556 in the WT. Serine has a slightly lower propensity to reside in an α-helix than asparagine, which may exacerbate the negative effect on the α-helix integrity. However, the residue swap does not cause negative structural effects during the simulations.
c.2060G>AR687Q
(3D Viewer)
Likely PathogenicGAPLikely Benign 1-10.002Likely Pathogenic0.575Likely PathogenicLikely Benign0.401Likely Benign0.92Ambiguous0.1-0.37Likely Benign0.28Likely Benign1.55Destabilizing-3.37Deleterious1.000Probably Damaging0.844Possibly Damaging3.91Benign0.03Affected3.4217111.0-28.06
c.2095G>AV699M
(3D Viewer)
GAPUncertain 26-33441354-G-A84.96e-6-8.869Likely Pathogenic0.484AmbiguousLikely Benign0.276Likely Benign-0.58Ambiguous0.10.29Likely Benign-0.15Likely Benign0.96Ambiguous-2.18Neutral0.994Probably Damaging0.806Possibly Damaging3.37Benign0.03Affected3.471021-2.332.06257.8-47.20.00.00.90.1XPotentially BenignThe isopropyl side chain of Val699, located on an α-helix (res. Leu685-Gln702), packs against hydrophobic residues (e.g., Leu703, Leu696, Leu435, Leu439) in the inter-helix space. In the variant simulations, the thioether side chain of Met699 has similar physicochemical properties to Val699 in the WT, and thus, it is able to maintain similar interactions. Consequently, the mutation causes no apparent changes in the structure.
c.2101C>TP701S
(3D Viewer)
Likely BenignGAPUncertain 16-33441360-C-T31.86e-6-4.375Likely Benign0.221Likely BenignLikely Benign0.132Likely Benign1.33Ambiguous0.00.12Likely Benign0.73Ambiguous-0.36Likely Benign0.78Neutral0.044Benign0.025Benign3.48Benign1.00Tolerated3.4710-110.8-10.0410.1016/j.ajhg.2020.11.011
c.2111G>CS704T
(3D Viewer)
Likely BenignGAPUncertain 1-4.930Likely Benign0.265Likely BenignLikely Benign0.071Likely Benign0.80Ambiguous0.00.15Likely Benign0.48Likely Benign0.29Likely Benign-1.72Neutral0.525Possibly Damaging0.107Benign3.45Benign0.07Tolerated3.4710110.114.03201.7-18.00.00.0-0.20.7XPotentially BenignSer704 is located at the end and outer surface of an α-helix (res. Thr704-Gly712), which is connected via a tight turn or loop to another α-helix (res. Asp684-Gln702). The hydroxyl side chain of Ser704 occasionally forms a hydrogen bond with the amide group of Ala707. Similarly, in the variant simulations, the hydroxyl side chain of Thr704 forms hydrogen bonds with the amide groups of Ala707 and Leu708. Thus, the residue swap does not cause any apparent structural change.
c.2113A>CK705Q
(3D Viewer)
Likely BenignGAPUncertain 16-33441372-A-C16.20e-7-5.787Likely Benign0.436AmbiguousLikely Benign0.142Likely Benign-0.10Likely Benign0.00.33Likely Benign0.12Likely Benign-0.02Likely Benign-0.24Neutral0.997Probably Damaging0.969Probably Damaging3.42Benign0.78Tolerated3.4710110.4-0.04
c.1718G>AR573Q
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-9.900Likely Pathogenic0.923Likely PathogenicAmbiguous0.733Likely Pathogenic2.28Destabilizing0.81.94Ambiguous2.11Destabilizing1.08Destabilizing-3.16Deleterious1.000Probably Damaging0.995Probably Damaging-1.31Pathogenic0.12Tolerated3.3735111.0-28.06230.149.90.00.0-0.60.0XXPotentially PathogenicThe guanidinium group of Arg573, located in an α-helix (res. Arg563-Glu578), forms a salt bridge with the carboxylate groups of Glu582 and/or Asp586 from a nearby α-helix (res. Glu582-Met603) in the WT simulations. Additionally, the Arg573 side chain stacks planarly with the aromatic phenol ring of Tyr665 and hydrogen bonds with the hydroxyl group of Ser668 from another α-helix (res. Ser641-Ser668). In the variant simulations, although the carboxamide group of the Gln573 side chain can hydrogen bond with the carboxylate group of Glu582 or the hydroxyl group of Ser668, these interactions are not as coordinated, stable, or strong as those of the positively charged Arg573. Consequently, the integrity of the opposing α-helix end (res. Glu582-Met603) is weakened. Overall, the residue swap has the potential to substantially affect the tertiary structure assembly during the protein folding process.
c.2186A>GN729S
(3D Viewer)
Likely BenignGAPUncertain 1-1.578Likely Benign0.066Likely BenignLikely Benign0.063Likely Benign0.14Likely Benign0.11.34Ambiguous0.74Ambiguous-0.36Likely Benign-0.42Neutral0.221Benign0.027Benign3.38Benign0.93Tolerated3.597112.7-27.03
c.2219G>AR740QLikely BenignUncertain 16-33441684-G-A42.48e-6-5.195Likely Benign0.078Likely BenignLikely Benign0.102Likely Benign-0.67Neutral0.999Probably Damaging0.881Possibly Damaging2.60Benign0.08Tolerated4.322111.0-28.06
c.221G>AS74NLikely BenignUncertain 16-33425829-G-A53.10e-6-5.156Likely Benign0.112Likely BenignLikely Benign0.031Likely Benign-0.89Neutral0.043Benign0.007Benign4.09Benign0.00Affected4.32111-2.727.03
c.2225G>AR742QLikely BenignUncertain 26-33441690-G-A241.49e-5-4.090Likely Benign0.068Likely BenignLikely Benign0.054Likely Benign-0.19Neutral0.032Benign0.007Benign2.73Benign0.07Tolerated4.322111.0-28.06
c.2239G>CV747LLikely BenignUncertain 16-33441704-G-C21.24e-6-2.790Likely Benign0.096Likely BenignLikely Benign0.047Likely Benign-0.52Neutral0.065Benign0.033Benign2.67Benign0.00Affected4.32221-0.414.03
c.223G>AE75KLikely BenignBenign/Likely benign 2-4.020Likely Benign0.358AmbiguousLikely Benign0.134Likely Benign-1.12Neutral0.748Possibly Damaging0.017Benign4.07Benign0.00Affected01-0.4-0.94
c.1742G>AR581Q
(3D Viewer)
Likely PathogenicGAPBenign 16-33440794-G-A84.96e-6-7.584In-Between0.673Likely PathogenicLikely Benign0.481Likely Benign1.31Ambiguous0.1-0.42Likely Benign0.45Likely Benign0.88Ambiguous-2.77Deleterious1.000Probably Damaging0.995Probably Damaging-1.21Pathogenic0.11Tolerated3.3734111.0-28.06239.653.5-0.20.2-0.40.1XPotentially PathogenicArg581 is located on a short α-α loop between two α helices (res. Arg563-Glu578 and res. Glu582-Ser604). In the WT simulations, the guanidinium group of Arg581 forms salt bridges with the carboxylate groups of Asp583 within the same helix, as well as with Glu478 and/or Glu480 on a slightly α-helical loop (res. Glu478-Thr488) preceding another α helix (res. Ala461-Phe476).In the variant simulations, the neutral carboxamide group of the Gln581 side chain cannot form any of these salt bridges. Instead, it packs hydrophobically against Met477 and Ile587 or forms hydrogen bonds sporadically with nearby residues (e.g., Asp583, Arg587). Thus, although no drastic changes are observed in the variant simulations, the residue swap could weaken the tertiary structure assembly.
c.1752C>GI584M
(3D Viewer)
Likely PathogenicGAPUncertain 26-33440804-C-G16.20e-7-10.119Likely Pathogenic0.419AmbiguousLikely Benign0.478Likely Benign0.11Likely Benign0.10.46Likely Benign0.29Likely Benign1.16Destabilizing-2.62Deleterious0.983Probably Damaging0.925Probably Damaging-1.25Pathogenic0.12Tolerated3.373421-2.618.03247.5-20.3-0.10.3-0.10.1XPotentially BenignA hydrophobic residue, Ile584, located in an α helix (res. Glu582-Met603), is swapped for another hydrophobic residue, Met584. The sec-butyl hydrocarbon side chain of Ile584 packs hydrophobically with residues in an inter-helix hydrophobic space (e.g., Leu588, Met477, Val473, and Ile483).In the variant simulations, the thioether hydrophobic side chain of Met584 maintains similar interactions as Ile584 in the WT, as it is roughly the same size and fits well within the hydrophobic space. Thus, the residue swap does not appear to cause any negative effects on the protein structure.
c.1767C>GI589M
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.225Likely Pathogenic0.926Likely PathogenicAmbiguous0.830Likely Pathogenic0.74Ambiguous0.21.54Ambiguous1.14Ambiguous1.33Destabilizing-2.99Deleterious1.000Probably Damaging1.000Probably Damaging-1.94Pathogenic0.00Affected3.373521-2.618.03267.6-24.50.00.0-0.10.1XPotentially BenignA hydrophobic residue, Ile589, located in an α helix (res. Glu582-Met603), is swapped for another hydrophobic residue, methionine. The sec-butyl hydrocarbon side chain of Ile589 packs favourably with multiple residues in the inter-helix hydrophobic space (e.g., Phe569, Ile667, and Leu664).Although the S-methyl thioether group of the Met589 side chain in the variant is longer than the branched side chain of isoleucine, it stacks favourably with the aromatic phenol ring. Additionally, the polar sulphur atom forms a weak hydrogen bond with the guanidinium group of Arg573, which in turn forms a salt bridge with the carboxylate group of Asp586.Overall, the hydrophobic packing in the inter-helix space does not appear to be disrupted in the variant simulations.
c.2246G>AR749QLikely BenignLikely Benign 16-33441711-G-A42.48e-6-3.069Likely Benign0.212Likely BenignLikely Benign0.152Likely Benign-1.00Neutral0.999Probably Damaging0.994Probably Damaging2.64Benign0.03Affected4.322111.0-28.06
c.2282G>AR761QLikely BenignUncertain 16-33441747-G-A116.81e-6-4.187Likely Benign0.202Likely BenignLikely Benign0.191Likely Benign-0.63Neutral0.996Probably Damaging0.878Possibly Damaging2.75Benign0.40Tolerated3.995111.0-28.06
c.2291A>GN764SLikely BenignBenign 1-3.149Likely Benign0.159Likely BenignLikely Benign0.058Likely Benign-0.84Neutral0.992Probably Damaging0.846Possibly Damaging2.65Benign0.61Tolerated3.646112.7-27.03
c.2294G>AS765NLikely BenignUncertain 1-5.098Likely Benign0.378AmbiguousLikely Benign0.094Likely Benign-0.94Neutral0.985Probably Damaging0.950Probably Damaging4.11Benign0.06Tolerated3.64611-2.727.03
c.2324G>AR775QLikely BenignConflicting 36-33442482-G-A111.41e-5-4.476Likely Benign0.229Likely BenignLikely Benign0.085Likely Benign-0.63Neutral0.969Probably Damaging0.863Possibly Damaging4.17Benign0.16Tolerated3.646111.0-28.0610.1016/j.ajhg.2020.11.011
c.1819C>GL607V
(3D Viewer)
Likely PathogenicGAPUncertain 26-33440871-C-G21.24e-6-11.190Likely Pathogenic0.637Likely PathogenicLikely Benign0.715Likely Pathogenic1.04Ambiguous0.21.36Ambiguous1.20Ambiguous0.90Ambiguous-2.99Deleterious0.985Probably Damaging0.992Probably Damaging-1.50Pathogenic0.01Affected3.3735210.4-14.03216.328.10.10.00.90.2XPotentially BenignLeu607 is located in a short helical region (res. Ser606-Phe608) within an α-α loop connecting two α helices (res. Glu582-Met603 and res. Glu617-Asn635). In the WT simulations, the iso-butyl side chain of Leu607 does not interact with any other residues, but it could potentially interact directly with Ras due to its location at the GAP domain.In the variant simulations, Val607, which has similar size and physicochemical properties to leucine, does not cause any negative effects on the protein structure. However, due to its location at the GAP-Ras interface, the residue swap could affect the complex formation with the GTPase, but this cannot be investigated using solvent-only simulations.
c.2359C>TP787SSH3-binding motifUncertain 16-33442911-C-T31.86e-6-4.203Likely Benign0.564AmbiguousLikely Benign0.221Likely Benign-3.81Deleterious1.000Probably Damaging0.999Probably Damaging2.48Pathogenic0.02Affected3.646-110.8-10.04
c.2362T>AS788TLikely BenignSH3-binding motifUncertain 26-33442914-T-A42.49e-6-4.288Likely Benign0.288Likely BenignLikely Benign0.092Likely Benign-2.25Neutral0.979Probably Damaging0.982Probably Damaging1.55Pathogenic0.02Affected3.646110.114.03
c.2369C>GT790SLikely BenignSH3-binding motifUncertain 1-3.914Likely Benign0.123Likely BenignLikely Benign0.134Likely Benign-1.83Neutral0.997Probably Damaging0.989Probably Damaging2.39Pathogenic0.33Tolerated3.64611-0.1-14.03
c.1862G>AR621Q
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33440914-G-A191.18e-5-14.682Likely Pathogenic0.910Likely PathogenicAmbiguous0.621Likely Pathogenic0.81Ambiguous0.11.13Ambiguous0.97Ambiguous1.35Destabilizing-3.98Deleterious1.000Probably Damaging0.997Probably Damaging2.82Benign0.01Affected3.3735111.0-28.06243.754.30.00.0-0.40.2XXPotentially PathogenicThe guanidinium group of Arg621, located in an α helix (res. Glu617-Asn635), forms a salt bridge with Glu525 in a nearby loop and stacks with Leu635. In the variant simulations, the carboxamide side chain of Gln621, which can act as both a hydrogen bond acceptor and donor, also stacks with Leu635 but can only sporadically hydrogen bond with Glu525.Accordingly, the residue swap could affect the tertiary structure integrity by disrupting the salt bridge formation. Additionally, due to its location at the GAP-Ras interface, the residue swap could impact the complex formation with the GTPase, but this cannot be investigated using solvent-only simulations.
c.1904A>GN635S
(3D Viewer)
GAPConflicting 46-33440956-A-G106.20e-6-9.002Likely Pathogenic0.101Likely BenignLikely Benign0.104Likely Benign0.80Ambiguous0.10.67Ambiguous0.74Ambiguous0.95Ambiguous-4.45Deleterious0.261Benign0.044Benign3.06Benign0.05Affected3.3734112.7-27.03196.030.90.10.0-0.30.2XUncertainIn the WT simulations, the carboxamide side chain of Asn635, located on the outer surface of an α helix (res. Glu617-Asn635), forms hydrogen bonds with Gln631 on the same α helix and with the hydroxyl side chain of Ser590 on an opposing α helix (res. Glu582-Met603).In the variant simulations, the side chain of Ser635 is shorter than asparagine and thus prefers to hydrogen bond with the carbonyl group of Gln631 on the same helix and, to a lesser extent, with Ser590 compared to Asn635 in the WT. Ser635 forms hydrogen bonds with the backbone atoms of the same helix, which may destabilize the helix, although this is not clearly evident in the simulations. The weakening of the hydrogen bond between Ser635 and Ser590 in the variant may also weaken the tertiary structure assembly between the helices.Additionally, Asn635 is at the GTPase interface. However, the implication of the residue swap on the complex formation with the GTPase cannot be investigated using solvent-only simulations.
c.2401G>AG801SLikely BenignSH3-binding motifUncertain 1-3.665Likely Benign0.087Likely BenignLikely Benign0.039Likely Benign-0.41Neutral0.009Benign0.019Benign2.76Benign0.48Tolerated4.32201-0.430.03
c.1947G>CM649I
(3D Viewer)
Likely PathogenicGAPUncertain 1-9.361Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.449Likely Benign2.42Destabilizing0.21.96Ambiguous2.19Destabilizing1.01Destabilizing-3.99Deleterious0.672Possibly Damaging0.093Benign3.40Benign0.02Affected3.3827212.6-18.03243.721.50.00.10.00.1XPotentially BenignThe thioether side chain of Met649, located on an α helix (res. Ser641-Glu666), bridges Phe652, Phe648, and Phe639 in an inter-helix hydrophobic cavity in the WT simulations. In the variant simulations, the sec-butyl side chain of Ile649 maintains hydrophobic interactions with nearby residues, with no significant effects on the protein structure.However, methionine is known as a bridging motif for aromatic residues, and these Met-aromatic interactions are lost in the variant. Indeed, in the second variant simulation,the bridging of Phe652, Phe648 and Phe639 is completely lost. In reality, the effect could be more severe on the structure during the protein folding.
c.2485G>AE829KLikely PathogenicPathogenic 1-7.527In-Between0.807Likely PathogenicAmbiguous0.194Likely Benign-2.65Deleterious0.994Probably Damaging0.900Possibly Damaging2.27Pathogenic0.00Affected3.77501-0.4-0.94
c.2567A>GN856SLikely BenignUncertain 16-33443119-A-G21.24e-6-2.104Likely Benign0.064Likely BenignLikely Benign0.040Likely Benign-1.54Neutral0.901Possibly Damaging0.535Possibly Damaging4.16Benign0.30Tolerated3.883112.7-27.03
c.2573G>AS858NLikely BenignUncertain 16-33443125-G-A21.24e-6-4.311Likely Benign0.121Likely BenignLikely Benign0.107Likely Benign-0.67Neutral0.448Benign0.846Possibly Damaging4.13Benign0.02Affected3.77511-2.727.03
c.2105A>GQ702R
(3D Viewer)
GAPUncertain 1-7.894In-Between0.348AmbiguousLikely Benign0.294Likely Benign-0.31Likely Benign0.10.63Ambiguous0.16Likely Benign0.13Likely Benign-3.14Deleterious0.909Possibly Damaging0.889Possibly Damaging3.43Benign0.02Affected3.471011-1.028.06270.3-52.90.00.00.00.1XPotentially PathogenicThe carboxamide side chain of Gln702 is located at the end and outer surface of an α-helix (res. Leu685-Gln702), where it does not directly form hydrogen bonds with any residues in the WT simulations. In the variant simulations, the positively charged guanidinium group of Arg702 forms a salt bridge with the negatively charged carboxylate group of Glu698 on the same helix and/or hydrogen bonds with the backbone carbonyl group of Ala438 on an opposite α-helix (res. Tyr428-Glu436). Consequently, the residue swap could strengthen the tertiary structure assembly, which could have either positive or negative effects on its function.
c.2111G>AS704N
(3D Viewer)
Likely BenignGAPBenign/Likely benign 36-33441370-G-A271.67e-5-5.917Likely Benign0.421AmbiguousLikely Benign0.058Likely Benign0.48Likely Benign0.1-0.12Likely Benign0.18Likely Benign0.54Ambiguous-0.49Neutral0.771Possibly Damaging0.275Benign3.39Benign0.08Tolerated3.471011-2.727.03233.2-29.1-0.10.0-0.10.1XPotentially BenignSer704 is located at the end and outer surface of an α-helix (res. Thr704-Gly712), which is connected via a tight turn or loop to another α-helix (res. Asp684-Gln702). The hydroxyl side chain of Ser704 occasionally forms a hydrogen bond with the amide group of Ala707. However, in the variant simulations, the carboxamide side chain of Asn704 achieves more lasting and numerous hydrogen-bonding interactions with the residues at the helix end, such as Glu706, Ala707, and Leu708. Consequently, the residue swap could strengthen the α-helix secondary structure integrity at the helix end, which could have either positive or negative effects on its function.
c.2116G>AE706K
(3D Viewer)
GAPUncertain 1-10.519Likely Pathogenic0.833Likely PathogenicAmbiguous0.080Likely Benign1.17Ambiguous0.10.51Ambiguous0.84Ambiguous0.08Likely Benign-1.51Neutral0.345Benign0.028Benign4.15Benign0.52Tolerated3.471001-0.4-0.94187.149.20.00.00.40.1XUncertainThe carboxylate side chain of Glu706, located at the end and outer surface of an α-helix (res. Thr704-Gly712), forms a salt bridge with Lys710 and a hydrogen bond with its own backbone amino group at the helix end in the WT simulations. Although Lys706 is unable to make these transient interactions in the variant simulations, there is no apparent negative effect on the protein structure due to the residue swap. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.2147G>AR716Q
(3D Viewer)
GAPConflicting 26-33441612-G-A42.48e-6-8.338Likely Pathogenic0.308Likely BenignLikely Benign0.210Likely Benign-0.01Likely Benign0.00.47Likely Benign0.23Likely Benign0.58Ambiguous-3.14Deleterious1.000Probably Damaging0.990Probably Damaging3.35Benign0.02Affected3.509111.0-28.06250.048.90.00.0-0.50.0XUncertainThe guanidinium group of Arg716, located on the outer surface of an α-helix (res. Leu714-Arg726), forms a salt bridge with the carboxylate group of Asp720. In the variant simulations, the carboxamide group of Gln716 also forms a hydrogen bond with the carboxylate group of Asp720, although this bond is weaker than the Arg716 salt bridge in the WT. Overall, no adverse effects on the protein structure are observed in the simulations. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.2596G>TV866LLikely BenignUncertain 16-33443148-G-T16.20e-7-3.352Likely Benign0.148Likely BenignLikely Benign0.046Likely Benign-0.97Neutral0.217Benign0.229Benign2.71Benign0.21Tolerated3.82421-0.414.03
c.2608C>GL870VLikely BenignUncertain 1-4.123Likely Benign0.300Likely BenignLikely Benign0.111Likely Benign-1.19Neutral0.997Probably Damaging0.992Probably Damaging2.64Benign0.12Tolerated3.883210.4-14.03
c.2623G>AA875TLikely BenignUncertain 16-33443175-G-A16.20e-7-3.793Likely Benign0.179Likely BenignLikely Benign0.110Likely Benign-1.56Neutral0.972Probably Damaging0.864Possibly Damaging2.72Benign0.26Tolerated3.77501-2.530.03
c.2651G>AR884QLikely BenignUncertain 26-33443203-G-A53.10e-6-3.785Likely Benign0.128Likely BenignLikely Benign0.055Likely Benign-0.42Neutral0.012Benign0.004Benign2.62Benign0.36Tolerated4.324111.0-28.06
c.2684G>AS895NLikely BenignUncertain 1-6.399Likely Benign0.604Likely PathogenicLikely Benign0.118Likely Benign-0.85Neutral0.991Probably Damaging0.988Probably Damaging2.64Benign0.30Tolerated4.32411-2.727.03
c.2710A>GM904VLikely BenignLikely Benign 26-33443262-A-G774.78e-5-2.907Likely Benign0.112Likely BenignLikely Benign0.058Likely Benign-0.33Neutral0.039Benign0.023Benign2.80Benign0.10Tolerated3.775212.3-32.06
c.2752G>AA918TLikely BenignUncertain 16-33443304-G-A16.20e-7-4.139Likely Benign0.083Likely BenignLikely Benign0.065Likely Benign-1.09Neutral0.980Probably Damaging0.721Possibly Damaging2.64Benign0.03Affected4.32401-2.530.03
c.2765G>AR922QLikely BenignBenign 16-33443317-G-A74.34e-6-3.295Likely Benign0.189Likely BenignLikely Benign0.085Likely Benign-0.27Neutral0.992Probably Damaging0.736Possibly Damaging2.57Benign0.20Tolerated3.775111.0-28.06
c.2809G>CD937HLikely BenignUncertain 1-0.733Likely Benign0.677Likely PathogenicLikely Benign0.150Likely Benign-1.74Neutral1.000Probably Damaging0.975Probably Damaging2.68Benign0.13Tolerated3.775-110.322.05
c.2900G>AR967QLikely BenignBenign/Likely benign 26-33443452-G-A311.92e-5-3.057Likely Benign0.080Likely BenignLikely Benign0.104Likely Benign-0.01Neutral0.994Probably Damaging0.626Possibly Damaging4.21Benign0.36Tolerated4.322111.0-28.06
c.2914C>GP972ALikely BenignUncertain 16-33443466-C-G16.20e-7-0.167Likely Benign0.045Likely BenignLikely Benign0.046Likely Benign-0.89Neutral0.016Benign0.011Benign4.29Benign0.07Tolerated4.322-113.4-26.04
c.2914C>TP972SLikely BenignUncertain 16-33443466-C-T42.48e-6-4.008Likely Benign0.058Likely BenignLikely Benign0.074Likely Benign-0.38Neutral0.001Benign0.002Benign4.28Benign0.05Affected4.322-110.8-10.04
c.2924C>GT975SLikely BenignUncertain 1-2.743Likely Benign0.068Likely BenignLikely Benign0.109Likely Benign-0.57Neutral0.059Benign0.061Benign4.16Benign0.20Tolerated11-0.1-14.03
c.2948G>AS983NLikely Benign 16-33443500-G-A63.72e-6-5.604Likely Benign0.909Likely PathogenicAmbiguous0.136Likely Benign-1.78Neutral0.991Probably Damaging0.988Probably Damaging2.04Pathogenic0.00Affected4.32111-2.727.03
c.2954G>AS985NLikely BenignUncertain 1-6.979Likely Benign0.845Likely PathogenicAmbiguous0.088Likely Benign-1.68Neutral0.991Probably Damaging0.988Probably Damaging2.65Benign0.00Affected4.32111-2.727.03
c.29G>AR10QLikely BenignUncertain 26-33420293-G-A201.30e-5-4.438Likely Benign0.185Likely BenignLikely Benign0.084Likely Benign0.03Neutral0.121Benign0.004Benign4.17Benign0.00Affected4.321111.0-28.06
c.3020G>AS1007NLikely BenignBenign 1-5.113Likely Benign0.803Likely PathogenicAmbiguous0.075Likely Benign-1.54Neutral0.997Probably Damaging0.992Probably Damaging2.65Benign0.01Affected3.77511-2.727.03
c.3022G>AD1008NLikely BenignLikely Benign 16-33443574-G-A31.86e-6-4.045Likely Benign0.714Likely PathogenicLikely Benign0.128Likely Benign-2.15Neutral0.999Probably Damaging0.997Probably Damaging2.75Benign0.01Affected3.775210.0-0.98
c.3023A>GD1008GUncertain 16-33443575-A-G16.20e-7-3.213Likely Benign0.742Likely PathogenicLikely Benign0.203Likely Benign-2.84Deleterious0.999Probably Damaging0.997Probably Damaging2.65Benign0.01Affected3.775-113.1-58.04
c.304T>GL102VLikely BenignUncertain 16-33432169-T-G16.20e-7-4.316Likely Benign0.068Likely BenignLikely Benign0.102Likely Benign0.32Neutral0.880Possibly Damaging0.899Possibly Damaging4.21Benign0.00Affected4.321210.4-14.03

Found 757 rows. Show 200 rows per page. Page 3/4 |