SynGap Missense Server

Table of SynGAP1 Isoform α2 (UniProt Q96PV0-1) Missense Variants.

c.dna Variant SGM Consensus Domain ClinVar gnomAD ESM1b AlphaMissense REVEL FoldX Rosetta Foldetta PremPS PROVEAN PolyPhen-2 HumDiv PolyPhen-2 HumVar FATHMM SIFT PAM Physical SASA Normalized B-factor backbone Normalized B-factor sidechain SynGAP Structural Annotation DOI
Clinical Status Review Subm. ID Allele count Allele freq. LLR score Prediction Pathogenicity Class Optimized Score Prediction Average ΔΔG Prediction StdDev ΔΔG Prediction ΔΔG Prediction ΔΔG Prediction Score Prediction pph2_prob Prediction pph2_prob Prediction Nervous System Score Prediction Prediction Status Conservation Sequences PAM250 PAM120 Hydropathy Δ MW Δ Average Δ Δ StdDev Δ StdDev Secondary Tertiary bonds Inside out GAP-Ras interface At membrane No effect MD Alert Verdict Description
c.3520G>AE1174KLikely BenignCoiled-coilUncertain 16-33444555-G-A21.24e-6-4.345Likely Benign0.898Likely PathogenicAmbiguous0.442Likely Benign-1.59Neutral0.962Probably Damaging0.367Benign5.52Benign0.03Affected4.32201-0.4-0.94
c.3529G>AE1177KLikely BenignCoiled-coilUncertain 1-3.413Likely Benign0.944Likely PathogenicAmbiguous0.560Likely Pathogenic-1.75Neutral0.905Possibly Damaging0.637Possibly Damaging5.44Benign0.11Tolerated4.32201-0.4-0.94
c.3557C>TS1186LCoiled-coilUncertain 16-33444592-C-T-4.829Likely Benign0.923Likely PathogenicAmbiguous0.177Likely Benign-2.58Deleterious0.998Probably Damaging0.992Probably Damaging2.65Benign0.04Affected3.824-3-24.626.08
c.3567G>CE1189DLikely BenignCoiled-coilLikely Benign 16-33444602-G-C31.86e-6-3.582Likely Benign0.461AmbiguousLikely Benign0.359Likely Benign-1.42Neutral0.992Probably Damaging0.989Probably Damaging5.30Benign0.25Tolerated3.824320.0-14.03
c.3572G>AR1191QLikely BenignCoiled-coilUncertain 26-33444607-G-A95.58e-6-1.069Likely Benign0.943Likely PathogenicAmbiguous0.343Likely Benign-1.41Neutral0.998Probably Damaging0.992Probably Damaging2.68Benign0.08Tolerated3.824111.0-28.06
c.3574C>GL1192VLikely BenignCoiled-coilUncertain 1-4.132Likely Benign0.471AmbiguousLikely Benign0.041Likely Benign-0.89Neutral0.779Possibly Damaging0.527Possibly Damaging2.69Benign0.16Tolerated210.4-14.03
c.3595G>AE1199KCoiled-coilUncertain 16-33446587-G-A16.20e-7-10.853Likely Pathogenic0.954Likely PathogenicAmbiguous0.171Likely Benign-2.26Neutral1.000Probably Damaging0.995Probably Damaging2.52Benign0.00Affected3.77501-0.4-0.94
c.3607C>GH1203DLikely BenignCoiled-coilUncertain 1-6.729Likely Benign0.525AmbiguousLikely Benign0.403Likely Benign-1.89Neutral0.473Possibly Damaging0.265Benign5.51Benign0.24Tolerated3.7751-1-0.3-22.05
c.3607C>TH1203YLikely BenignCoiled-coilUncertain 16-33446599-C-T21.24e-6-6.834Likely Benign0.149Likely BenignLikely Benign0.233Likely Benign-1.52Neutral0.006Benign0.011Benign5.55Benign0.10Tolerated3.775201.926.03
c.3614T>CL1205PLikely PathogenicCoiled-coilUncertain 1-16.878Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.536Likely Pathogenic-5.91Deleterious1.000Probably Damaging0.999Probably Damaging1.45Pathogenic0.00Affected-3-3-5.4-16.04
c.3631A>GM1211VLikely BenignCoiled-coilBenign 16-33446623-A-G31.86e-6-2.101Likely Benign0.258Likely BenignLikely Benign0.412Likely Benign-0.29Neutral0.932Possibly Damaging0.949Probably Damaging5.43Benign0.72Tolerated3.775122.3-32.06
c.3632T>AM1211KLikely PathogenicCoiled-coilLikely Benign 1-9.013Likely Pathogenic0.662Likely PathogenicLikely Benign0.595Likely Pathogenic-2.95Deleterious0.987Probably Damaging0.979Probably Damaging5.59Benign0.01Affected3.7750-1-5.8-3.02
c.3633G>AM1211ILikely BenignCoiled-coilUncertain 16-33446625-G-A31.86e-6-1.537Likely Benign0.764Likely PathogenicLikely Benign0.298Likely Benign-0.42Neutral0.969Probably Damaging0.968Probably Damaging5.40Benign1.00Tolerated3.775122.6-18.03
c.3635C>TS1212FLikely PathogenicCoiled-coilConflicting 2-14.445Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.271Likely Benign-4.52Deleterious0.999Probably Damaging0.998Probably Damaging2.03Pathogenic0.00Affected3.775-3-23.660.10
c.3638A>CN1213TLikely BenignCoiled-coilConflicting 26-33446630-A-C462.85e-5-5.428Likely Benign0.266Likely BenignLikely Benign0.097Likely Benign-1.08Neutral0.959Probably Damaging0.721Possibly Damaging2.74Benign1.00Tolerated3.775002.8-13.00
c.3638A>GN1213SLikely BenignCoiled-coilBenign 16-33446630-A-G138.05e-6-4.086Likely Benign0.081Likely BenignLikely Benign0.094Likely Benign-0.56Neutral0.906Possibly Damaging0.551Possibly Damaging2.82Benign0.68Tolerated3.775112.7-27.0310.1016/j.ajhg.2020.11.011
c.3640C>TR1214WLikely PathogenicCoiled-coilUncertain 16-33446632-C-T21.24e-6-8.799Likely Pathogenic0.710Likely PathogenicLikely Benign0.143Likely Benign-4.95Deleterious1.000Probably Damaging0.983Probably Damaging2.45Pathogenic0.00Affected3.7752-33.630.03
c.3653A>TE1218VLikely PathogenicCoiled-coilUncertain 2-5.647Likely Benign0.936Likely PathogenicAmbiguous0.418Likely Benign-5.68Deleterious1.000Probably Damaging0.998Probably Damaging2.21Pathogenic0.00Affected3.775-2-27.7-29.98
c.3655T>CY1219HLikely PathogenicCoiled-coilUncertain 1-9.511Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.363Likely Benign-3.62Deleterious1.000Probably Damaging0.999Probably Damaging2.15Pathogenic0.00Affected3.77502-1.9-26.03
c.3661C>TR1221WLikely PathogenicCoiled-coilConflicting 36-33446653-C-T16.20e-7-10.938Likely Pathogenic0.651Likely PathogenicLikely Benign0.174Likely Benign-4.57Deleterious1.000Probably Damaging0.987Probably Damaging2.50Benign0.01Affected3.7752-33.630.03
c.3662G>AR1221QLikely BenignCoiled-coilConflicting 26-33446654-G-A42.48e-6-5.491Likely Benign0.115Likely BenignLikely Benign0.078Likely Benign-1.46Neutral0.836Possibly Damaging0.153Benign2.56Benign0.12Tolerated3.775111.0-28.06
c.3686A>CQ1229PLikely PathogenicCoiled-coilUncertain 1-10.397Likely Pathogenic0.980Likely PathogenicLikely Pathogenic0.422Likely Benign-3.69Deleterious0.998Probably Damaging0.995Probably Damaging1.75Pathogenic0.12Tolerated3.7750-11.9-31.01
c.36C>GS12RLikely BenignUncertain 16-33420300-C-G42.59e-6-4.033Likely Benign0.500AmbiguousLikely Benign0.097Likely Benign-0.30Neutral0.000Benign0.000Benign4.09Benign0.00Affected4.3210-1-3.769.11
c.3705G>AM1235ILikely BenignCoiled-coilUncertain 1-4.312Likely Benign0.310Likely BenignLikely Benign0.027Likely Benign-1.44Neutral0.139Benign0.056Benign2.69Benign0.04Affected3.775122.6-18.03
c.371C>TA124VLikely BenignConflicting 26-33432236-C-T95.58e-6-4.259Likely Benign0.138Likely BenignLikely Benign0.073Likely Benign-1.52Neutral0.173Benign0.009Benign4.07Benign0.03Affected3.615002.428.05
c.3721C>AL1241MCoiled-coilUncertain 1-5.881Likely Benign0.782Likely PathogenicLikely Benign0.167Likely Benign-1.43Neutral1.000Probably Damaging0.999Probably Damaging1.65Pathogenic0.00Affected42-1.918.03
c.3731G>AS1244NLikely PathogenicCoiled-coilUncertain 1-9.008Likely Pathogenic0.751Likely PathogenicLikely Benign0.154Likely Benign-1.87Neutral0.997Probably Damaging0.992Probably Damaging2.10Pathogenic0.15Tolerated3.77511-2.727.03
c.373C>TP125SLikely BenignUncertain 1-3.769Likely Benign0.238Likely BenignLikely Benign0.121Likely Benign-3.57Deleterious0.580Possibly Damaging0.140Benign2.86Benign0.02Affected3.6151-10.8-10.04
c.3773A>GQ1258RLikely PathogenicCoiled-coilUncertain 1-10.971Likely Pathogenic0.931Likely PathogenicAmbiguous0.316Likely Benign-3.19Deleterious0.994Probably Damaging0.988Probably Damaging2.00Pathogenic0.00Affected11-1.028.06
c.3788T>CI1263TLikely PathogenicCoiled-coilUncertain 16-33446780-T-C21.24e-6-6.564Likely Benign0.962Likely PathogenicLikely Pathogenic0.529Likely Pathogenic-4.15Deleterious0.946Possibly Damaging0.673Possibly Damaging1.81Pathogenic0.00Affected3.7750-1-5.2-12.05
c.3794G>CR1265TLikely PathogenicCoiled-coilLikely Pathogenic 1-10.129Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.529Likely Pathogenic-4.97Deleterious0.997Probably Damaging0.994Probably Damaging2.29Pathogenic0.00Affected3.775-1-13.8-55.08
c.379C>TR127WUncertain 1-4.776Likely Benign0.806Likely PathogenicAmbiguous0.118Likely Benign-2.98Deleterious0.989Probably Damaging0.420Benign3.88Benign0.00Affected2-33.630.03
c.37A>GI13VLikely BenignUncertain 1-2.497Likely Benign0.105Likely BenignLikely Benign0.110Likely Benign0.01Neutral0.000Benign0.000Benign4.25Benign0.00Affected43-0.3-14.03
c.3806T>AV1269ELikely PathogenicCoiled-coilUncertain 1-11.418Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.403Likely Benign-5.05Deleterious0.999Probably Damaging0.995Probably Damaging2.09Pathogenic0.00Affected3.775-2-2-7.729.98
c.380G>AR127QLikely BenignUncertain 16-33432245-G-A63.72e-6-1.711Likely Benign0.320Likely BenignLikely Benign0.037Likely Benign-1.04Neutral0.006Benign0.001Benign4.04Benign0.02Affected3.744111.0-28.06
c.3820C>TR1274CUncertain 16-33447868-C-T-6.467Likely Benign0.439AmbiguousLikely Benign0.170Likely Benign-5.22Deleterious1.000Probably Damaging0.996Probably Damaging2.46Pathogenic0.00Affected3.775-4-37.0-53.05
c.3821G>AR1274HLikely Benign 16-33447869-G-A42.58e-6-5.259Likely Benign0.256Likely BenignLikely Benign0.149Likely Benign-3.20Deleterious1.000Probably Damaging0.995Probably Damaging2.49Pathogenic0.01Affected3.775021.3-19.05
c.3824G>AR1275QLikely BenignUncertain 16-33447872-G-A21.29e-6-4.928Likely Benign0.121Likely BenignLikely Benign0.103Likely Benign-1.72Neutral0.898Possibly Damaging0.147Benign2.59Benign0.03Affected3.775111.0-28.06
c.3824G>TR1275LLikely Benign 16-33447872-G-T16.45e-7-6.052Likely Benign0.446AmbiguousLikely Benign0.117Likely Benign-4.04Deleterious0.800Possibly Damaging0.277Benign2.55Benign0.01Affected3.775-3-28.3-43.03
c.382C>AP128TLikely BenignUncertain 16-33432247-C-A16.20e-7-4.217Likely Benign0.267Likely BenignLikely Benign0.075Likely Benign-0.96Neutral0.952Possibly Damaging0.500Possibly Damaging4.19Benign0.35Tolerated3.744-100.93.99
c.3835G>AA1279TLikely BenignUncertain 26-33447883-G-A21.29e-6-4.871Likely Benign0.071Likely BenignLikely Benign0.178Likely Benign-0.30Neutral0.001Benign0.000Benign2.71Benign0.09Tolerated3.77510-2.530.03
c.3846G>CE1282DLikely BenignUncertain 16-33447894-G-C16.44e-7-3.879Likely Benign0.074Likely BenignLikely Benign0.104Likely Benign-1.26Neutral0.112Benign0.036Benign2.70Benign0.39Tolerated3.775320.0-14.03
c.3848C>TP1283LLikely BenignBenign 16-33447896-C-T322.06e-5-3.740Likely Benign0.093Likely BenignLikely Benign0.047Likely Benign-1.04Neutral0.005Benign0.003Benign2.76Benign0.06Tolerated3.775-3-35.416.04
c.3858A>TE1286DLikely BenignConflicting 46-33447906-A-T1439.22e-5-4.010Likely Benign0.081Likely BenignLikely Benign0.036Likely Benign1.02Neutral0.001Benign0.004Benign2.96Benign1.00Tolerated3.775320.0-14.0310.1016/j.ajhg.2020.11.011
c.3859C>AP1287TLikely BenignUncertain 16-33447907-C-A-3.940Likely Benign0.077Likely BenignLikely Benign0.044Likely Benign-0.22Neutral0.126Benign0.041Benign2.78Benign0.04Affected3.775-100.93.99
c.3860C>TP1287LLikely BenignConflicting 26-33447908-C-T-2.800Likely Benign0.117Likely BenignLikely Benign0.061Likely Benign-1.66Neutral0.021Benign0.017Benign2.76Benign0.02Affected3.775-3-35.416.04
c.3862A>GK1288EUncertain 16-33447910-A-G53.22e-6-2.751Likely Benign0.407AmbiguousLikely Benign0.185Likely Benign-3.27Deleterious0.979Probably Damaging0.973Probably Damaging2.13Pathogenic0.00Affected3.775100.40.94
c.3902C>AP1301HLikely BenignConflicting 26-33451776-C-A53.10e-6-5.756Likely Benign0.104Likely BenignLikely Benign0.232Likely Benign-1.13Neutral0.642Possibly Damaging0.378Benign2.79Benign0.04Affected3.7750-2-1.640.02
c.3902C>GP1301RLikely BenignUncertain 16-33451776-C-G159.30e-6-4.753Likely Benign0.162Likely BenignLikely Benign0.076Likely Benign-1.13Neutral0.077Benign0.059Benign2.81Benign0.10Tolerated3.7750-2-2.959.07
c.3906G>CL1302FUncertain 1-5.674Likely Benign0.148Likely BenignLikely Benign0.211Likely Benign-2.70Deleterious0.960Probably Damaging0.657Possibly Damaging1.53Pathogenic0.00Affected20-1.034.02
c.3907G>AG1303SLikely BenignUncertain 1-2.271Likely Benign0.125Likely BenignLikely Benign0.155Likely Benign-0.19Neutral0.649Possibly Damaging0.433Benign2.84Benign0.18Tolerated10-0.430.03
c.3913A>GT1305ALikely BenignConflicting 46-33451787-A-G301.86e-5-2.692Likely Benign0.055Likely BenignLikely Benign0.069Likely Benign1.74Neutral0.000Benign0.001Benign3.24Benign1.00Tolerated3.775102.5-30.03
c.391G>CG131RUncertain 1-6.564Likely Benign0.983Likely PathogenicLikely Pathogenic0.099Likely Benign-3.82Deleterious0.983Probably Damaging0.656Possibly Damaging3.92Benign0.00Affected3.615-2-3-4.199.14
c.3920C>AP1307QLikely BenignUncertain 16-33451794-C-A-4.227Likely Benign0.114Likely BenignLikely Benign0.192Likely Benign-0.88Neutral0.988Probably Damaging0.765Possibly Damaging2.82Benign0.03Affected3.7750-1-1.931.01
c.3920C>TP1307LLikely BenignBenign 16-33451794-C-T116.82e-6-4.044Likely Benign0.144Likely BenignLikely Benign0.292Likely Benign-1.49Neutral0.779Possibly Damaging0.220Benign2.82Benign0.04Affected3.775-3-35.416.04
c.3922C>TR1308CConflicting 26-33451796-C-T42.48e-6-4.994Likely Benign0.421AmbiguousLikely Benign0.352Likely Benign-4.89Deleterious0.999Probably Damaging0.993Probably Damaging2.31Pathogenic0.00Affected3.775-4-37.0-53.05
c.3923G>AR1308HUncertain 16-33451797-G-A31.86e-6-3.586Likely Benign0.201Likely BenignLikely Benign0.319Likely Benign-3.12Deleterious0.998Probably Damaging0.991Probably Damaging2.33Pathogenic0.00Affected3.775201.3-19.05
c.3929C>TT1310MLikely BenignBenign 16-33451803-C-T171.05e-5-4.822Likely Benign0.117Likely BenignLikely Benign0.069Likely Benign2.19Neutral0.021Benign0.005Benign2.98Benign0.93Tolerated3.775-1-12.630.09
c.3932T>CL1311PLikely BenignLikely Benign 16-33451806-T-C16.21e-7-1.831Likely Benign0.079Likely BenignLikely Benign0.123Likely Benign-0.52Neutral0.579Possibly Damaging0.335Benign2.72Benign0.18Tolerated3.775-3-3-5.4-16.04
c.3941C>TP1314LLikely BenignLikely Benign 16-33451815-C-T21.24e-6-4.040Likely Benign0.118Likely BenignLikely Benign0.049Likely Benign-0.20Neutral0.421Benign0.066Benign4.19Benign0.05Affected3.775-3-35.416.04
c.3943T>CW1315RLikely BenignUncertain 10.205Likely Benign0.660Likely PathogenicLikely Benign0.114Likely Benign1.31Neutral0.000Benign0.001Benign4.37Benign0.91Tolerated3.7752-3-3.6-30.03
c.3949G>AG1317SLikely BenignConflicting 36-33451823-G-A16.26e-7-3.522Likely Benign0.145Likely BenignLikely Benign0.092Likely Benign-2.45Neutral0.127Benign0.045Benign4.08Benign0.00Affected3.77510-0.430.03
c.3956C>GA1319GLikely BenignUncertain 26-33451830-C-G-3.927Likely Benign0.084Likely BenignLikely Benign0.128Likely Benign-0.74Neutral0.819Possibly Damaging0.581Possibly Damaging4.07Benign0.06Tolerated3.77510-2.2-14.03
c.3958C>TP1320SLikely BenignUncertain 16-33451832-C-T21.28e-6-4.928Likely Benign0.073Likely BenignLikely Benign0.097Likely Benign-0.69Neutral0.980Probably Damaging0.968Probably Damaging4.25Benign0.00Affected3.7751-10.8-10.04
c.3961C>TP1321SLikely BenignUncertain 26-33451835-C-T106.46e-6-4.897Likely Benign0.077Likely BenignLikely Benign0.049Likely Benign0.68Neutral0.028Benign0.004Benign4.27Benign0.71Tolerated3.7751-10.8-10.0410.1016/j.ajhg.2020.11.011
c.3962C>AP1321QLikely BenignBenign 16-33451836-C-A16.58e-7-5.594Likely Benign0.079Likely BenignLikely Benign0.055Likely Benign-0.74Neutral0.659Possibly Damaging0.034Benign4.24Benign0.09Tolerated3.7750-1-1.931.01
c.3964G>CA1322PLikely BenignBenign 16-33451838-G-C-1.153Likely Benign0.063Likely BenignLikely Benign0.090Likely Benign0.03Neutral0.000Benign0.000Benign4.15Benign0.23Tolerated3.7751-1-3.426.04
c.3970C>TP1324SLikely BenignLikely Benign 16-33451844-C-T53.26e-6-5.451Likely Benign0.068Likely BenignLikely Benign0.049Likely Benign0.35Neutral0.225Benign0.092Benign4.33Benign0.00Affected4.3211-10.8-10.04
c.3974C>TP1325LLikely BenignUncertain 16-33451848-C-T-5.256Likely Benign0.085Likely BenignLikely Benign0.146Likely Benign-1.05Neutral0.000Benign0.000Benign4.05Benign0.00Affected4.321-3-35.416.04
c.3977C>AP1326QLikely BenignUncertain 16-33451851-C-A16.40e-7-5.422Likely Benign0.128Likely BenignLikely Benign0.138Likely Benign-0.86Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.775-10-1.931.01
c.3977C>GP1326RLikely BenignUncertain 1-5.097Likely Benign0.240Likely BenignLikely Benign0.133Likely Benign-0.82Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.7750-2-2.959.07
c.3977C>TP1326LLikely BenignUncertain 1-5.541Likely Benign0.115Likely BenignLikely Benign0.117Likely Benign-1.06Neutral0.999Probably Damaging0.994Probably Damaging3.62Benign0.00Affected3.775-3-35.416.04
c.3979C>TP1327SLikely BenignUncertain 16-33451853-C-T-4.744Likely Benign0.131Likely BenignLikely Benign0.092Likely Benign0.28Neutral0.980Probably Damaging0.857Possibly Damaging4.25Benign0.71Tolerated3.7751-10.8-10.04
c.3980C>TP1327LLikely BenignUncertain 16-33451854-C-T21.28e-6-5.264Likely Benign0.242Likely BenignLikely Benign0.142Likely Benign-1.24Neutral0.994Probably Damaging0.908Possibly Damaging4.12Benign0.10Tolerated3.775-3-35.416.04
c.3983G>AR1328QLikely BenignUncertain 36-33451857-G-A351.49e-4-2.921Likely Benign0.273Likely BenignLikely Benign0.043Likely Benign-1.02Neutral0.799Possibly Damaging0.098Benign4.12Benign0.03Affected3.775111.0-28.06
c.3983G>CR1328PLikely BenignBenign 16-33451857-G-C-1.220Likely Benign0.466AmbiguousLikely Benign0.060Likely Benign-2.01Neutral0.927Possibly Damaging0.452Possibly Damaging4.06Benign0.01Affected3.7750-22.9-59.07
c.3995C>TT1332MLikely Benign 16-33451869-C-T201.86e-5-4.107Likely Benign0.948Likely PathogenicAmbiguous0.252Likely Benign-3.63Deleterious1.000Probably Damaging0.991Probably Damaging2.95Benign0.00Affected3.775-1-12.630.09
c.3G>AM1ILikely BenignConflicting 3-5.397Likely Benign0.227Likely Benign-0.17Neutral0.001Benign0.000Benign4.25Benign0.00Affected4.321212.6-18.03
c.4000A>GN1334DUncertain 16-33451874-A-G-4.584Likely Benign0.674Likely PathogenicLikely Benign0.126Likely Benign-3.06Deleterious0.886Possibly Damaging0.522Possibly Damaging3.55Benign0.00Affected3.775120.00.98
c.4003G>AG1335SLikely PathogenicConflicting 26-33451877-G-A32.37e-6-4.495Likely Benign0.986Likely PathogenicLikely Pathogenic0.362Likely Benign-3.79Deleterious1.000Probably Damaging0.997Probably Damaging2.04Pathogenic0.00Affected3.77510-0.430.03
c.4006G>AE1336KLikely BenignBenign 26-33451880-G-A64.20e-6-4.697Likely Benign0.977Likely PathogenicLikely Pathogenic0.272Likely Benign-2.44Neutral0.748Possibly Damaging0.079Benign3.23Benign0.00Affected3.77501-0.4-0.94
c.4008G>CE1336DLikely BenignLikely Benign 1-3.344Likely Benign0.596Likely PathogenicLikely Benign0.062Likely Benign-1.92Neutral0.001Benign0.003Benign3.30Benign0.00Affected3.775230.0-14.03
c.4013G>AR1338QLikely BenignConflicting 36-33451887-G-A128.40e-6-3.494Likely Benign0.317Likely BenignLikely Benign0.076Likely Benign-1.87Neutral0.896Possibly Damaging0.194Benign3.81Benign0.02Affected3.775111.0-28.06
c.401G>AS134NLikely BenignUncertain 1-5.534Likely Benign0.813Likely PathogenicAmbiguous0.075Likely Benign-1.62Neutral0.001Benign0.002Benign3.90Benign0.00Affected3.61511-2.727.03
c.4021G>AA1341TLikely BenignConflicting 36-33451895-G-A453.44e-5-3.224Likely Benign0.081Likely BenignLikely Benign0.099Likely Benign-0.58Neutral0.000Benign0.000Benign4.09Benign0.03Affected3.77510-2.530.03
c.4021G>TA1341SLikely BenignUncertain 16-33451895-G-T-2.867Likely Benign0.078Likely BenignLikely Benign0.099Likely Benign0.80Neutral0.000Benign0.001Benign4.40Benign1.00Tolerated3.77511-2.616.00
c.404G>AR135QUncertain 16-33432701-G-A53.84e-6-8.011Likely Pathogenic0.853Likely PathogenicAmbiguous0.087Likely Benign-1.94Neutral0.327Benign0.100Benign3.76Benign0.02Affected3.615111.0-28.06
c.406C>TR136WLikely PathogenicUncertain 2-10.453Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.237Likely Benign-4.71Deleterious0.965Probably Damaging0.416Benign3.45Benign0.00Affected3.6152-33.630.03
c.407G>AR136QBenign 16-33432704-G-A139.17e-6-11.146Likely Pathogenic0.950Likely PathogenicAmbiguous0.190Likely Benign-2.26Neutral0.957Probably Damaging0.342Benign3.52Benign0.01Affected3.615111.0-28.06
c.407G>CR136PLikely PathogenicUncertain 1-11.952Likely Pathogenic0.981Likely PathogenicLikely Pathogenic0.277Likely Benign-3.72Deleterious0.910Possibly Damaging0.578Possibly Damaging3.47Benign0.00Affected3.6150-22.9-59.07
c.416G>AS139NLikely BenignUncertain 16-33432713-G-A32.22e-6-4.584Likely Benign0.688Likely PathogenicLikely Benign0.109Likely Benign-0.75Neutral0.149Benign0.047Benign4.14Benign0.24Tolerated3.61511-2.727.03
c.431C>TT144MLikely PathogenicUncertain 26-33432728-C-T21.30e-6-11.228Likely Pathogenic0.922Likely PathogenicAmbiguous0.118Likely Benign-3.16Deleterious0.913Possibly Damaging0.333Benign3.73Benign0.00Affected3.615-1-12.630.09
c.43G>AA15TLikely BenignUncertain 16-33420307-G-A42.60e-6-3.720Likely Benign0.125Likely BenignLikely Benign0.086Likely Benign-0.08Neutral0.602Possibly Damaging0.017Benign4.16Benign0.00Affected4.32110-2.530.03
c.43G>CA15PLikely BenignUncertain 1-3.436Likely Benign0.097Likely BenignLikely Benign0.146Likely Benign-0.23Neutral0.880Possibly Damaging0.123Benign4.09Benign0.00Affected1-1-3.426.04
c.44C>TA15VLikely BenignUncertain 16-33420308-C-T16.49e-7-3.560Likely Benign0.161Likely BenignLikely Benign0.105Likely Benign0.20Neutral0.602Possibly Damaging0.015Benign4.19Benign0.00Affected4.321002.428.05
c.451G>CD151HLikely PathogenicUncertain 16-33432748-G-C21.26e-6-11.747Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.335Likely Benign-3.90Deleterious0.999Probably Damaging0.995Probably Damaging3.86Benign0.00Affected3.615-110.322.05
c.453C>AD151ELikely BenignUncertain 1-5.662Likely Benign0.886Likely PathogenicAmbiguous0.142Likely Benign-2.02Neutral0.984Probably Damaging0.967Probably Damaging3.99Benign0.11Tolerated3.615320.014.03
c.455G>AR152QUncertain 16-33432752-G-A53.14e-6-10.336Likely Pathogenic0.989Likely PathogenicLikely Pathogenic0.181Likely Benign-2.34Neutral0.997Probably Damaging0.968Probably Damaging3.89Benign0.00Affected3.615111.0-28.06
c.458C>AT153NLikely BenignConflicting 3-0.739Likely Benign0.226Likely BenignLikely Benign0.161Likely Benign0.88Neutral0.888Possibly Damaging0.537Possibly Damaging4.23Benign0.81Tolerated3.61500-2.813.00
c.467T>GF156CLikely PathogenicUncertain 1-13.658Likely Pathogenic0.988Likely PathogenicLikely Pathogenic0.297Likely Benign-3.54Deleterious0.999Probably Damaging0.990Probably Damaging3.92Benign0.00Affected-4-2-0.3-44.04
c.470G>AR157HUncertain 16-33432767-G-A16.20e-7-10.235Likely Pathogenic0.604Likely PathogenicLikely Benign0.254Likely Benign-2.23Neutral0.999Probably Damaging0.987Probably Damaging3.80Benign0.00Affected3.744201.3-19.05
c.484C>GR162GLikely BenignUncertain 1-6.985Likely Benign0.664Likely PathogenicLikely Benign0.190Likely Benign-0.73Neutral0.487Possibly Damaging0.272Benign4.09Benign0.78Tolerated3.744-2-34.1-99.14
c.484C>TR162CPathogenic 2-8.157Likely Pathogenic0.787Likely PathogenicAmbiguous0.150Likely Benign-2.05Neutral0.988Probably Damaging0.513Possibly Damaging4.00Benign0.11Tolerated3.744-4-37.0-53.05
c.485G>AR162HUncertain 16-33432782-G-A21.24e-6-9.730Likely Pathogenic0.480AmbiguousLikely Benign0.167Likely Benign-1.13Neutral0.957Probably Damaging0.513Possibly Damaging4.03Benign0.12Tolerated3.744201.3-19.05
c.48G>AM16ILikely BenignUncertain 16-33420312-G-A16.49e-7-2.198Likely Benign0.722Likely PathogenicLikely Benign0.057Likely Benign-0.15Neutral0.000Benign0.000Benign4.28Benign0.00Affected4.321212.6-18.03
c.491G>AR164QUncertain 16-33432788-G-A21.24e-6-11.208Likely Pathogenic0.600Likely PathogenicLikely Benign0.184Likely Benign-1.86Neutral0.957Probably Damaging0.342Benign3.82Benign0.00Affected3.744111.0-28.06
c.502C>TH168YLikely BenignBenign 1-8.914Likely Pathogenic0.264Likely BenignLikely Benign0.065Likely Benign-1.53Neutral0.192Benign0.062Benign4.18Benign0.01Affected4.323021.926.03
c.505G>AD169NUncertain 1-10.713Likely Pathogenic0.761Likely PathogenicLikely Benign0.110Likely Benign-2.04Neutral0.079Benign0.052Benign4.07Benign0.01Affected3.744210.0-0.98
c.508C>TR170WLikely PathogenicUncertain 2-11.660Likely Pathogenic0.978Likely PathogenicLikely Pathogenic0.241Likely Benign-4.28Deleterious0.999Probably Damaging0.849Possibly Damaging3.84Benign0.00Affected3.7442-33.630.03
c.509G>AR170QPathogenic/Likely path. 6-9.021Likely Pathogenic0.798Likely PathogenicAmbiguous0.221Likely Benign-2.31Neutral0.947Possibly Damaging0.342Benign3.91Benign0.00Affected3.744111.0-28.0610.1016/j.ajhg.2020.11.011
c.50C>TS17FLikely BenignUncertain 16-33420314-C-T106.49e-6-3.888Likely Benign0.637Likely PathogenicLikely Benign0.048Likely Benign-0.99Neutral0.486Possibly Damaging0.032Benign3.99Benign0.00Affected4.321-2-33.660.10
c.514C>TR172WLikely PathogenicUncertain 26-33435156-C-T95.58e-6-10.258Likely Pathogenic0.878Likely PathogenicAmbiguous0.228Likely Benign-3.61Deleterious0.997Probably Damaging0.803Possibly Damaging3.95Benign0.00Affected3.6152-33.630.03
c.515G>AR172QUncertain 16-33435157-G-A31.86e-6-7.245In-Between0.465AmbiguousLikely Benign0.135Likely Benign-1.72Neutral0.804Possibly Damaging0.091Benign4.04Benign0.04Affected3.615111.0-28.06
c.526A>CS176RLikely BenignUncertain 1-6.492Likely Benign0.987Likely PathogenicLikely Pathogenic0.247Likely Benign0.94Neutral0.718Possibly Damaging0.168Benign4.16Benign0.87Tolerated0-1-3.769.11
c.526A>GS176GUncertain 16-33435168-A-G16.20e-7-7.541In-Between0.360AmbiguousLikely Benign0.066Likely Benign-1.08Neutral0.131Benign0.039Benign4.08Benign0.22Tolerated3.546010.4-30.03
c.53A>GY18CLikely BenignUncertain 16-33420317-A-G442.88e-5-2.658Likely Benign0.251Likely BenignLikely Benign0.102Likely Benign-0.56Neutral0.872Possibly Damaging0.206Benign4.04Benign0.00Affected4.3210-23.8-60.04
c.558G>CL186FLikely PathogenicUncertain 1-11.861Likely Pathogenic0.993Likely PathogenicLikely Pathogenic0.132Likely Benign-3.03Deleterious0.009Benign0.012Benign3.50Benign0.00Affected20-1.034.02
c.583G>CA195PLikely PathogenicLikely Pathogenic 1-9.715Likely Pathogenic0.978Likely PathogenicLikely Pathogenic0.152Likely Benign-3.03Deleterious0.997Probably Damaging0.916Probably Damaging4.00Benign0.04Affected3.5461-1-3.426.04
c.59C>GP20RLikely BenignUncertain 1-3.548Likely Benign0.434AmbiguousLikely Benign0.146Likely Benign-0.15Neutral0.972Probably Damaging0.804Possibly Damaging4.33Benign0.00Affected4.3210-2-2.959.07
c.59C>TP20LLikely BenignUncertain 3-3.289Likely Benign0.464AmbiguousLikely Benign0.100Likely Benign-0.44Neutral0.909Possibly Damaging0.713Possibly Damaging4.27Benign0.00Affected4.321-3-35.416.04
c.5G>AS2NLikely BenignUncertain 26-33420269-G-A31.96e-6-4.104Likely Benign0.207Likely BenignLikely Benign0.092Likely Benign-0.36Neutral0.000Benign0.000Benign4.06Benign0.00Affected4.32111-2.727.03
c.662A>GE221G
(3D Viewer)
Likely PathogenicPHUncertain 1-12.221Likely Pathogenic0.992Likely PathogenicLikely Pathogenic0.863Likely Pathogenic1.40Ambiguous0.11.74Ambiguous1.57Ambiguous0.71Ambiguous-5.56Deleterious0.596Possibly Damaging0.201Benign5.79Benign0.00Affected0-23.1-72.06
c.68A>GD23GLikely BenignUncertain 1-2.622Likely Benign0.684Likely PathogenicLikely Benign0.100Likely Benign-2.45Neutral0.805Possibly Damaging0.539Possibly Damaging3.50Benign0.00Affected1-13.1-58.04
c.70G>AV24ILikely BenignUncertain 16-33423479-G-A95.58e-6-3.701Likely Benign0.137Likely BenignLikely Benign0.069Likely Benign-0.25Neutral0.043Benign0.031Benign3.96Benign0.00Affected4.321340.314.03
c.718G>AD240NLikely PathogenicPHUncertain 1-12.942Likely Pathogenic0.755Likely PathogenicLikely Benign0.701Likely Pathogenic0.22Likely Benign0.90.47Likely Benign0.35Likely Benign0.37Likely Benign-4.37Deleterious0.993Probably Damaging0.984Probably Damaging5.88Benign0.01Affected210.0-0.98
c.719A>GD240GLikely PathogenicPHUncertain 1-12.825Likely Pathogenic0.951Likely PathogenicAmbiguous0.912Likely Pathogenic1.85Ambiguous0.12.72Destabilizing2.29Destabilizing0.24Likely Benign-6.19Deleterious0.993Probably Damaging0.984Probably Damaging5.79Benign0.01Affected1-13.1-58.04
c.73C>TR25WLikely BenignUncertain 26-33423482-C-T63.72e-6-5.133Likely Benign0.549AmbiguousLikely Benign0.158Likely Benign-1.60Neutral0.994Probably Damaging0.919Probably Damaging3.92Benign0.00Affected4.321-323.630.03
c.74G>AR25QLikely BenignUncertain 16-33423483-G-A159.29e-6-4.126Likely Benign0.212Likely BenignLikely Benign0.038Likely Benign-0.70Neutral0.829Possibly Damaging0.614Possibly Damaging4.01Benign0.00Affected4.321111.0-28.06
c.767A>GN256S
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-10.640Likely Pathogenic0.950Likely PathogenicAmbiguous0.707Likely Pathogenic0.31Likely Benign0.20.36Likely Benign0.34Likely Benign0.48Likely Benign-4.33Deleterious0.997Probably Damaging0.970Probably Damaging5.87Benign0.02Affected3.3915112.7-27.03
c.76G>AG26RLikely BenignBenign 16-33423485-G-A31.86e-6-2.946Likely Benign0.678Likely PathogenicLikely Benign0.189Likely Benign-2.22Neutral0.994Probably Damaging0.990Probably Damaging3.87Benign0.00Affected4.321-3-2-4.199.14
c.772C>TR258C
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437677-C-T16.20e-7-10.285Likely Pathogenic0.790Likely PathogenicAmbiguous0.771Likely Pathogenic1.17Ambiguous0.41.76Ambiguous1.47Ambiguous0.87Ambiguous-6.79Deleterious1.000Probably Damaging0.993Probably Damaging5.77Benign0.00Affected3.3915-3-47.0-53.05
c.791T>CL264P
(3D Viewer)
Likely PathogenicC2Uncertain 1-12.285Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.767Likely Pathogenic5.73Destabilizing0.36.57Destabilizing6.15Destabilizing2.65Destabilizing-6.43Deleterious1.000Probably Damaging0.999Probably Damaging0.49Pathogenic0.00Affected-3-3-5.4-16.04
c.82T>CS28PLikely BenignUncertain 1-3.309Likely Benign0.051Likely BenignLikely Benign0.047Likely Benign1.37Neutral0.000Benign0.000Benign4.53Benign0.00Affected4.3211-1-0.810.04
c.851T>CL284PLikely PathogenicC2Likely Pathogenic1-15.588Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.794Likely Pathogenic5.83Destabilizing0.25.81Destabilizing5.82Destabilizing1.89Destabilizing-6.17Deleterious1.000Probably Damaging0.999Probably Damaging1.64Pathogenic0.00Affected-3-3-5.4-16.04
c.860A>CD287A
(3D Viewer)
Likely PathogenicC2Uncertain 1-14.686Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.484Likely Benign0.30Likely Benign0.1-0.04Likely Benign0.13Likely Benign0.40Likely Benign-7.35Deleterious1.000Probably Damaging0.998Probably Damaging1.58Pathogenic0.01Affected3.3823-205.3-44.01
c.862G>AD288N
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437767-G-A21.24e-6-10.535Likely Pathogenic0.521AmbiguousLikely Benign0.321Likely Benign-0.39Likely Benign0.10.01Likely Benign-0.19Likely Benign-0.03Likely Benign-3.73Deleterious0.999Probably Damaging0.997Probably Damaging1.78Pathogenic0.05Affected3.3823120.0-0.98
c.866T>CM289TLikely BenignC2Uncertain1-4.668Likely Benign0.238Likely BenignLikely Benign0.222Likely Benign0.73Ambiguous0.10.17Likely Benign0.45Likely Benign-0.01Likely Benign-0.47Neutral0.801Possibly Damaging0.315Benign1.83Pathogenic0.57Tolerated-1-1-2.6-30.09
c.86T>CM29TLikely BenignUncertain 1-2.167Likely Benign0.122Likely BenignLikely Benign0.199Likely Benign-0.37Neutral0.018Benign0.184Benign4.33Benign0.00Affected4.321-1-1-2.6-30.09
c.878G>AR293HLikely PathogenicC2Uncertain 1-13.009Likely Pathogenic0.973Likely PathogenicLikely Pathogenic0.438Likely Benign4.45Destabilizing2.32.12Destabilizing3.29Destabilizing0.32Likely Benign-4.60Deleterious1.000Probably Damaging0.998Probably Damaging1.45Pathogenic0.04Affected201.3-19.05
c.88C>TH30YLikely BenignUncertain 1-3.047Likely Benign0.115Likely BenignLikely Benign0.082Likely Benign-1.84Neutral0.273Benign0.478Possibly Damaging3.99Benign0.00Affected4.321021.926.03
c.892C>TP298S
(3D Viewer)
Likely BenignC2Benign 16-33437797-C-T53.10e-6-6.342Likely Benign0.144Likely BenignLikely Benign0.189Likely Benign1.38Ambiguous0.21.41Ambiguous1.40Ambiguous0.58Ambiguous-1.20Neutral0.991Probably Damaging0.898Possibly Damaging2.03Pathogenic0.85Tolerated3.3920-110.8-10.04
c.910G>AD304N
(3D Viewer)
C2Uncertain 1-6.194Likely Benign0.391AmbiguousLikely Benign0.345Likely Benign0.30Likely Benign0.1-0.08Likely Benign0.11Likely Benign0.21Likely Benign-4.18Deleterious0.999Probably Damaging0.997Probably Damaging1.81Pathogenic0.03Affected3.3823120.0-0.98
c.929A>GE310G
(3D Viewer)
Likely PathogenicC2Pathogenic 1-14.132Likely Pathogenic0.995Likely PathogenicLikely Pathogenic0.848Likely Pathogenic2.38Destabilizing0.73.56Destabilizing2.97Destabilizing0.36Likely Benign-6.43Deleterious1.000Probably Damaging0.996Probably Damaging1.12Pathogenic0.00Affected3.3819-203.1-72.06
c.92G>AR31QLikely BenignUncertain 16-33423501-G-A74.34e-6-4.434Likely Benign0.136Likely BenignLikely Benign0.051Likely Benign-0.92Neutral0.829Possibly Damaging0.614Possibly Damaging4.01Benign0.00Affected4.321111.0-28.06
c.937G>AE313K
(3D Viewer)
Likely PathogenicC2Likely Benign 1-12.902Likely Pathogenic0.959Likely PathogenicLikely Pathogenic0.575Likely Pathogenic0.64Ambiguous0.61.40Ambiguous1.02Ambiguous0.75Ambiguous-3.31Deleterious1.000Probably Damaging0.995Probably Damaging1.90Pathogenic0.02Affected01-0.4-0.94
c.958G>AV320I
(3D Viewer)
Likely BenignC2Uncertain 1-5.220Likely Benign0.111Likely BenignLikely Benign0.027Likely Benign-0.27Likely Benign0.20.66Ambiguous0.20Likely Benign0.01Likely Benign-0.21Neutral0.198Benign0.114Benign1.77Pathogenic0.45Tolerated3.3823340.314.03
c.961C>TR321C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33437866-C-T95.58e-6-10.025Likely Pathogenic0.387AmbiguousLikely Benign0.495Likely Benign0.57Ambiguous0.10.56Ambiguous0.57Ambiguous0.18Likely Benign-4.59Deleterious1.000Probably Damaging0.998Probably Damaging1.89Pathogenic0.01Affected3.3823-3-47.0-53.05
c.971G>AR324Q
(3D Viewer)
Likely BenignC2Uncertain 36-33437876-G-A31.86e-6-5.001Likely Benign0.173Likely BenignLikely Benign0.307Likely Benign0.56Ambiguous0.10.63Ambiguous0.60Ambiguous1.02Destabilizing-1.17Neutral0.999Probably Damaging0.994Probably Damaging1.92Pathogenic0.41Tolerated3.3922111.0-28.06
c.1004G>AR335H
(3D Viewer)
Likely PathogenicC2Uncertain 16-33437909-G-A21.24e-6-12.521Likely Pathogenic0.831Likely PathogenicAmbiguous0.132Likely Benign0.58Ambiguous0.10.22Likely Benign0.40Likely Benign0.72Ambiguous-3.02Deleterious1.000Probably Damaging0.998Probably Damaging1.70Pathogenic0.03Affected3.3822201.3-19.05242.482.1-2.40.6-0.10.1UncertainThe guanidinium group of Arg335, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Ala322-Asp330, res. Gly341-Pro349), faces the post-synaptic inner membrane surface. In the WT simulations, the Arg335 side chain dynamically forms salt bridges with the carboxylate groups of Asp322, Asp338, and Asp616. In contrast, the imidazole ring of His335, which is not double protonated and thus not positively charged in the variant simulations, continues to move dynamically without forming any lasting or strong interactions. Importantly, the positively charged arginine residues of the C2 domain are ideal membrane anchors for ensuring SynGAP-membrane association. However, this phenomenon cannot be addressed using solvent-only simulations.
c.762G>CK254N
(3D Viewer)
Likely PathogenicPHUncertain 1-13.306Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.757Likely Pathogenic0.73Ambiguous0.21.87Ambiguous1.30Ambiguous1.19Destabilizing-4.23Deleterious0.384Benign0.070Benign5.93Benign0.01Affected3.3915100.4-14.07215.3-21.0-1.01.70.20.3XPotentially PathogenicThe amino group of Lys254, located in an α-β loop connecting the PH and C2 domains (res. Lys251-Arg258), forms salt bridges with the carboxylate groups of Glu244 and Asp684. Since the neutral carboxamide group of the Asn254 side chain cannot form salt bridges with acidic residues, the residue swap potentially weakens the tertiary structure assembly and/or influences the loop positioning. Regardless, in both the variant and WT simulations, all hydrogen bonds formed by the residue’s side chain were broken, and the residue rotated outwards. The partially α helical conformation of the loop, which extends to a nearby α helix (res. Met414-Asn426), is dynamic, making it unclear if the mutation affects it.
c.1505G>AG502D
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.796Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.915Likely Pathogenic3.79Destabilizing0.95.69Destabilizing4.74Destabilizing1.38Destabilizing-6.80Deleterious0.999Probably Damaging0.977Probably Damaging-1.66Pathogenic0.00Affected3.37351-1-3.158.04224.2-80.0-0.80.70.60.3XXXPotentially PathogenicGly502 is located in a hinge in the middle of an α-helix (res. Leu489-Glu519). In the WT, Gly502 acts as an α-helix breaker due to its lack of a side chain, facilitating a bend in the middle of the α-helix. In the variant simulations, the carboxylate group of Asp502 forms hydrogen bonds with neighboring residues (e.g., Ser677, Lys504), disrupting the hinge. Additionally, Asp502 struggles to fit into the α-helix hinge and cannot generate a similar bend as Gly502, which would drastically affect the secondary structure during folding. Thus, the deleterious effect seen in the simulations is likely an underestimate of the impact of the residue swap on the protein structure during protein folding.
c.1160G>TG387V
(3D Viewer)
Likely BenignC2Uncertain 16-33438065-G-T221.37e-5-6.199Likely Benign0.153Likely BenignLikely Benign0.390Likely Benign5.13Destabilizing1.86.44Destabilizing5.79Destabilizing-0.33Likely Benign-0.54Neutral0.069Benign0.077Benign1.32Pathogenic0.01Affected4.323-1-34.642.08207.7-68.4-0.70.8-0.50.1UncertainGly387 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. This loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone.Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like valine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Val387 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.953C>TP318L
(3D Viewer)
Likely PathogenicC2Uncertain 36-33437858-C-T31.86e-6-10.090Likely Pathogenic0.958Likely PathogenicLikely Pathogenic0.624Likely Pathogenic1.33Ambiguous0.10.26Likely Benign0.80Ambiguous0.43Likely Benign-8.96Deleterious1.000Probably Damaging0.999Probably Damaging1.82Pathogenic0.03Affected3.3823-3-35.416.04228.6-68.9-0.70.7-0.40.1XPotentially BenignThe cyclic five-membered pyrrolidine ring of Pro318, located in a β hairpin loop linking two anti-parallel β sheet strands (res. Asp330-Ala322, res. Thr305-Asn315), packs against the hydrophobic side chain of Ile205 at the end of the anti-parallel β sheet in the PH domain. In the variant simulations, the iso-butyl side chain of Leu318 is unable to do the same, potentially weakening the PH and C2 domain association. Importantly, the residue swap could also affect loop formation during folding, as proline can make tighter turns than leucine. Because the residue swap could affect the C2 domain stability, it could also negatively impact the SynGAP-membrane association.
c.859G>TD287Y
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-12.877Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.663Likely Pathogenic0.21Likely Benign0.20.48Likely Benign0.35Likely Benign0.27Likely Benign-8.27Deleterious1.000Probably Damaging0.999Probably Damaging1.51Pathogenic0.00Affected3.3823-4-32.248.09257.8-44.4-0.61.60.20.3XXPotentially PathogenicThe carboxylate group of Asp287, located at the beginning of a β hairpin loop linking two anti-parallel β sheet strands (res. Arg279-Leu286, res. Met289-Pro298), maintains a salt bridge with the guanidinium group of Arg324 in the β sheet during the WT simulations. In the variant simulations, the phenol group of the Tyr287 side chain is unable to form a salt bridge with the guanidinium group of Arg324, which could weaken the tertiary structure assembly of the C2 domain. However, the phenol group of Tyr287 frequently stacks with the Arg324 guanidinium side chain, which could help maintain the tertiary structure, especially compared to the D287H variant. The destabilization of the C2 domain could adversely affect the stability of the SynGAP-membrane association.
c.670A>GT224A
(3D Viewer)
PHUncertain 36-33435521-A-G21.24e-6-7.379In-Between0.651Likely PathogenicLikely Benign0.464Likely Benign0.33Likely Benign0.11.05Ambiguous0.69Ambiguous0.91Ambiguous-2.96Deleterious0.243Benign0.079Benign5.57Benign0.57Tolerated3.4113102.5-30.03169.041.4-0.51.1-0.40.0XXUncertainThe introduced residue Ala224 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Unlike the hydroxyl group of the Thr224 side chain in the WT model, the methyl side chain of Ala224 cannot form hydrogen bonds with nearby residues Ser204, Ser226, and Gly227. Without these hydrogen-bonding interactions at the β sheet surface, the secondary structure element becomes unstable and unfolds during the variant simulations. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.1529T>GI510S
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-11.661Likely Pathogenic0.955Likely PathogenicAmbiguous0.926Likely Pathogenic4.00Destabilizing0.13.78Destabilizing3.89Destabilizing2.34Destabilizing-4.63Deleterious1.000Probably Damaging0.999Probably Damaging-1.44Pathogenic0.00Affected3.3735-1-2-5.3-26.08201.445.9-0.40.20.00.3XPotentially PathogenicIle510 is located in the middle of an α-helix (res. Gly502-Tyr518) within the inter-helix space of three helices (res. Gly502-Tyr518, Ala533-Val560, and res. Glu582-Met603). In the WT simulations, the sec-butyl side chain of Ile510 hydrophobically packs with other residues in the inter-helix space (e.g., Leu506, Leu610, Ile514, Ile602, Leu598). In the variant simulations, the hydroxyl group of Ser510 forms a hydrogen bond with the backbone atoms of Leu506 and Gly511 in the same α-helix, which could further weaken the α-helix integrity. This α-helix already shows weakness in the WT simulations due to Gly511. Although the simulations do not show large-scale effects, the residue swap could have a substantial impact due to the fundamental role of hydrophobic packing during protein folding.
c.968T>GL323R
(3D Viewer)
Likely PathogenicC2Likely Pathogenic 1-14.568Likely Pathogenic0.997Likely PathogenicLikely Pathogenic0.692Likely Pathogenic3.75Destabilizing0.44.47Destabilizing4.11Destabilizing2.15Destabilizing-4.70Deleterious0.999Probably Damaging0.969Probably Damaging0.59Pathogenic0.01Affected3.3922-3-2-8.343.03261.8-61.6-0.40.20.80.2XXXPotentially PathogenicThe iso-butyl side chain of Leu323, located at the beginning of an anti-parallel β sheet strand (res. Ala322-Asp330), packs against multiple hydrophobic leucine residues (e.g., Leu264, Leu266, Leu284, Leu286). In contrast, in the variant simulations, the positively charged guanidinium group of the Arg323 side chain is unsuitable for the hydrophobic niche. Consequently, the side chain either rotates away from the center of the C2 domain or, if it remains within the C2 domain core, it reorients nearby residues to form hydrogen bonds. Regardless, the residue swap extensively disrupts the C2 domain structure.
c.1042G>AV348M
(3D Viewer)
C2Uncertain 1-7.076In-Between0.546AmbiguousLikely Benign0.191Likely Benign-1.19Ambiguous0.10.72Ambiguous-0.24Likely Benign0.76Ambiguous-1.62Neutral0.966Probably Damaging0.564Possibly Damaging1.58Pathogenic0.03Affected3.372521-2.332.06253.8-47.4-0.30.10.20.1XPotentially BenignThe iso-propyl side chain of Val348, located in an anti-parallel β sheet strand (res. Gly341-Pro349), packs against multiple hydrophobic C2 domain residues (e.g., Leu353, Leu323, Leu402). In the variant simulations, the thioether side chain of Met348 can form similar interactions as valine due to its comparable hydrophobic profile. In fact, the thioether group of methionine can even stack favorably with the phenol ring of Tyr363 in the anti-parallel β sheet strand (res. Ala399-Ile411). Overall, the residue swap does not appear to cause negative effects on the protein structure based on the simulations.
c.1312G>AA438T
(3D Viewer)
Likely BenignGAPConflicting 36-33438217-G-A169.91e-6-5.339Likely Benign0.085Likely BenignLikely Benign0.021Likely Benign0.21Likely Benign0.0-0.07Likely Benign0.07Likely Benign0.36Likely Benign-0.81Neutral0.300Benign0.011Benign4.18Benign0.14Tolerated3.382610-2.530.03214.2-42.7-0.30.1-0.40.1XPotentially BenignThe methyl group of Ala438, located in a four-residue loop connecting two α helices (res. Asn440-Thr458 and Pro413-Glu436), packs against hydrophobic residues from a nearby α helix or loop residues (e.g., Leu703, Val699). In the variant simulations, the methyl group of Thr438 is able to establish similar hydrophobic packing. Moreover, the hydroxyl group also H-bonds with nearby residues, such as the carbonyl group of the neighboring loop residue Pro437. Accordingly, the residue swap does not generate an apparent negative effect on the protein structure based on the simulations.
c.1456G>AE486K
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.545Likely Pathogenic0.988Likely PathogenicLikely Pathogenic0.435Likely Benign0.06Likely Benign0.10.37Likely Benign0.22Likely Benign0.41Likely Benign-3.58Deleterious1.000Probably Damaging0.988Probably Damaging3.40Benign0.12Tolerated3.373501-0.4-0.94206.852.1-0.30.10.20.0XXUncertainGlu486 is located in an α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. It is adjacent to the arginine finger (Arg485) and is expected to closely interact with Ras. The residue swap could affect complex formation with the GTPase and its activation. In the WT simulations, the carboxylate group of Glu486 forms salt bridges with Arg485 and Arg475 on the preceding α-helix (res. Ala461-Phe476). In the variant simulations, Lys486 does not form any specific interactions. Although the amino group of the Lys486 side chain cannot form these salt bridges, no negative effects on the protein structure are observed. Nevertheless, the potential role of Glu486 in SynGAP-Ras complex formation or GTPase activation cannot be fully addressed using the SynGAP solvent-only simulations, and no definite conclusions can be drawn.
c.1813C>TP605S
(3D Viewer)
Likely PathogenicGAPUncertain 1-10.830Likely Pathogenic0.987Likely PathogenicLikely Pathogenic0.718Likely Pathogenic3.40Destabilizing0.13.34Destabilizing3.37Destabilizing1.00Destabilizing-7.96Deleterious1.000Probably Damaging1.000Probably Damaging0.70Pathogenic0.00Affected3.37351-10.8-10.04213.8-15.4-0.30.20.20.1XXPotentially PathogenicPro605 is located in a short turn between an α helix (res. Glu582-Met603) and a short α helical section (res. Ser606-Phe608). The pyrrolidine side chain of Pro605 packs hydrophobically with nearby hydrophobic residues (e.g., Ile514, Leu623, Leu610) in the inter-helix space. Additionally, proline lacks a free backbone amide group, which breaks the α helix and facilitates the turn in the WT structure.In the variant simulations, the hydroxyl side chain of Ser605 forms hydrogen bonds with the backbone carbonyl groups of Ala601 and Ile602. Importantly, the helix end is more stable than with Pro605 in the WT. Indeed, proline is a more effective secondary structure breaker compared to serine.Thus, the residue swap could have a more profound effect on the actual folding process, for example, by preventing the bending at the α helix end, than what the simulations suggest. Moreover, due to its location at the GAP-Ras interface, the residue swap could affect the GAP-Ras association.
c.1925A>CK642T
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-12.823Likely Pathogenic0.948Likely PathogenicAmbiguous0.484Likely Benign0.53Ambiguous0.10.30Likely Benign0.42Likely Benign0.28Likely Benign-5.88Deleterious0.872Possibly Damaging0.839Possibly Damaging2.86Benign0.00Affected3.37310-13.2-27.07213.5-8.7-0.30.40.30.2XUncertainThe amino side chain of Lys642, located on the surface of an α helix (res. Ser641-Glu666), is not involved in any interactions in the WT simulations. In the variant simulations, the shorter side chain of Thr642 forms hydrogen bonds with Glu643 and Thr640 on the same α helix.Regardless, Lys642 is positioned directly at the GAP-Ras interface, and in the SynGAP-Ras WT simulations, its amino side chain forms salt bridges with the carboxylate groups of Ras residues Asp33 and Asp38. The shorter Thr642 is more likely to prefer hydrogen bonding with Glu643 and Thr640 on the same α helix, even in the Ras complex. Thus, the effect of the residue swap on the complex formation with the GTPase cannot be explored using solvent-only simulations.
c.924G>CW308C
(3D Viewer)
Likely PathogenicC2Pathogenic/Likely path. 2-12.791Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.738Likely Pathogenic5.56Destabilizing0.34.38Destabilizing4.97Destabilizing1.26Destabilizing-11.95Deleterious1.000Probably Damaging0.999Probably Damaging0.48Pathogenic0.00Affected3.3819-8-23.4-83.07230.860.5-0.30.1-0.40.4XPotentially PathogenicThe indole ring of Trp308, located in an anti-parallel β sheet strand (res. Thr305-Asn315), packs against multiple hydrophobic residues (e.g., Ile268, Val306, Cys282). The indole group of Trp308 also hydrogen bonds with the backbone atoms of the C2 domain residues forming the anti-parallel β sheet (e.g., Tyr280, Thr294). The introduced Cys308 is smaller than the tryptophan it replaced. The thiol group of the Cys308 side chain is well-suited for the inner hydrophobic part of the C2 domain. Although the negative effects are essentially missing from the simulations, the side chain size difference between the residues is likely to disrupt the hydrophobic packing during folding. At a minimum, the residue swap could affect the C2 domain stability and membrane association.
c.1027G>AV343I
(3D Viewer)
Likely BenignC2Uncertain 26-33437932-G-A16.20e-7-6.020Likely Benign0.117Likely BenignLikely Benign0.020Likely Benign-0.27Likely Benign0.0-0.04Likely Benign-0.16Likely Benign-0.39Likely Benign-0.14Neutral0.159Benign0.084Benign1.98Pathogenic0.27Tolerated3.3725430.314.03240.2-26.9-0.20.2-0.20.2XPotentially BenignThe iso-propyl side chain of Val343, located in an anti-parallel β sheet strand (res. Gly341-Pro349), is packing against multiple hydrophobic residues of the C2 domain (e.g., Leu327, Leu274, Val365). In the variant simulations, the sec-butyl side chain of Ile343 is basically able to form the same interactions as valine due to its similar hydrophobic profile. The residue swap also does not seem to cause negative effects on the protein structure based on the simulations.
c.1055C>AT352N
(3D Viewer)
Likely BenignC2Likely Benign 16-33437960-C-A21.24e-6-4.817Likely Benign0.117Likely BenignLikely Benign0.027Likely Benign0.20Likely Benign0.0-0.04Likely Benign0.08Likely Benign0.45Likely Benign-0.92Neutral0.255Benign0.057Benign1.75Pathogenic0.19Tolerated3.372500-2.813.00208.4-14.5-0.20.1-0.10.0XPotentially BenignThr352 is located in a short α helical section within a loop connecting two β strands (res. Gly341-Pro349, res. Thr359-Pro364) originating from two different anti-parallel β sheets of the C2 domain. In the WT simulations, the side chain hydroxyl and backbone amide groups of Thr354 form hydrogen bonds with the backbone carbonyl group of Pro349 at the end of the preceding β strand. This arrangement likely stabilizes the α helical section and aids in folding, keeping the short secondary structure element intact in the variant simulations. However, the carboxamide group of the Asn352 side chain does not form hydrogen bonds with the backbone carbonyl group of Pro349. Instead, it packs against the cyclic ring and forms hydrogen bonds with the phenol group of the Tyr363 side chain in the other β strand.
c.1084T>CW362R
(3D Viewer)
Likely PathogenicC2Pathogenic 2-14.004Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.706Likely Pathogenic2.64Destabilizing0.33.90Destabilizing3.27Destabilizing1.10Destabilizing-12.87Deleterious0.999Probably Damaging0.996Probably Damaging1.28Pathogenic0.00Affected3.39242-3-3.6-30.03287.5-34.1-0.20.1-0.60.2XXXPotentially PathogenicThe indole ring of Trp362, located on the surface of an anti-parallel β sheet (res. Thr359-Pro364) in the C2 domain, stacks with nearby residues (e.g., Arg401, Arg272). In the variant simulations, the guanidinium group of the introduced residue Arg362 forms a salt bridge with the carboxylate group of Glu273 and, like Trp362, stacks with other arginine residues (e.g., Arg401, Arg272). This residue is at both the C2-membrane interface and the C2-RasGTPase interface, so the residue swap could potentially affect both interactions. However, these phenomena cannot be addressed using solvent-only simulations. Notably, Arg272, which stacks with both the non-mutated Trp362 and the mutated Arg362, forms a salt bridge directly with Asp105 of Ras in the WT simulations. Therefore, the residue swap could affect the C2 domain stability, the SynGAP-membrane association, and the SynGAP-Ras association.10.1016/j.ajhg.2020.11.011
c.1231A>GI411V
(3D Viewer)
Likely BenignGAPLikely Benign 1-6.290Likely Benign0.385AmbiguousLikely Benign0.212Likely Benign0.74Ambiguous0.00.82Ambiguous0.78Ambiguous0.99Ambiguous-0.86Neutral0.935Possibly Damaging0.858Possibly Damaging3.90Benign0.27Tolerated3.382843-0.3-14.03233.328.2-0.20.0-0.20.0XPotentially BenignThe sec-butyl side chain of Ile411, located in the hydrophobic space between an anti-parallel β sheet strand (res. Pro398-Ile411) and an α helix (res. Asp684-Gln702), packs against multiple residues (e.g., Met409, Arg259). In the variant simulations, the side chain of Val411 is able to favorably fill the same hydrophobic niche despite its slightly smaller size. In short, the residue swap has no apparent negative effect on the structure based on the simulations.
c.1406C>AA469D
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.643Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.738Likely Pathogenic5.09Destabilizing0.24.16Destabilizing4.63Destabilizing1.68Destabilizing-3.48Deleterious0.999Probably Damaging0.996Probably Damaging-1.34Pathogenic0.21Tolerated3.37340-2-5.344.01237.0-58.2-0.20.10.80.1XXPotentially PathogenicThe methyl group of Ala469, located in an α helix (res. Ala461–Phe476), interacts with hydrophobic residues (e.g., Trp572, Leu588, Met470) in an inter-helix space formed by two other α helices (res. Glu582–Ser604, res. Arg563–Gly580). In the variant simulations, Asp469 introduces a negatively charged and bulky side chain into the hydrophobic niche. Consequently, the side chain of Asp469 rotates outward, allowing the carboxylate group to form a salt bridge with the guanidinium group of Arg575 on the protein surface. This interaction affects the continuity of the parent α helix (Ala461–Phe476). Due to the importance of hydrophobic packing, the structural effects could be more pronounced during actual protein folding.
c.1742G>AR581Q
(3D Viewer)
Likely PathogenicGAPBenign 16-33440794-G-A84.96e-6-7.584In-Between0.673Likely PathogenicLikely Benign0.481Likely Benign1.31Ambiguous0.1-0.42Likely Benign0.45Likely Benign0.88Ambiguous-2.77Deleterious1.000Probably Damaging0.995Probably Damaging-1.21Pathogenic0.11Tolerated3.3734111.0-28.06239.653.5-0.20.2-0.40.1XPotentially PathogenicArg581 is located on a short α-α loop between two α helices (res. Arg563-Glu578 and res. Glu582-Ser604). In the WT simulations, the guanidinium group of Arg581 forms salt bridges with the carboxylate groups of Asp583 within the same helix, as well as with Glu478 and/or Glu480 on a slightly α-helical loop (res. Glu478-Thr488) preceding another α helix (res. Ala461-Phe476).In the variant simulations, the neutral carboxamide group of the Gln581 side chain cannot form any of these salt bridges. Instead, it packs hydrophobically against Met477 and Ile587 or forms hydrogen bonds sporadically with nearby residues (e.g., Asp583, Arg587). Thus, although no drastic changes are observed in the variant simulations, the residue swap could weaken the tertiary structure assembly.
c.1814C>GP605R
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.745Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.845Likely Pathogenic8.71Destabilizing2.56.46Destabilizing7.59Destabilizing0.92Ambiguous-8.95Deleterious1.000Probably Damaging1.000Probably Damaging0.69Pathogenic0.00Affected3.37350-2-2.959.07281.7-118.1-0.20.00.50.1XXXXPotentially PathogenicPro605 is located in a short turn between an α helix (res. Glu582-Met603) and a short α helical section (res. Ser606-Phe608). The pyrrolidine side chain of Pro605 packs hydrophobically with nearby hydrophobic residues (e.g., Ile514, Leu623, Leu610) in the inter-helix space. Additionally, proline lacks a free backbone amide group, which breaks the α helix and facilitates the turn in the WT structure.In the variant simulations, the guanidinium side chain of Arg605 is bulkier than proline, and its positively charged guanidinium group faces mostly hydrophobic residues (e.g., Ile514, Leu623, Leu610). As a result, it needs to rotate away from the hydrophobic niche. The residue swap could have a more profound effect on the actual folding process, for example, by preventing the bending at the α helix end.Moreover, due to its location at the GAP-Ras interface, the residue swap could affect the GAP-Ras association.
c.2075T>CL692P
(3D Viewer)
Likely PathogenicGAPUncertain 1-16.447Likely Pathogenic1.000Likely PathogenicLikely Pathogenic0.668Likely Pathogenic9.19Destabilizing0.113.20Destabilizing11.20Destabilizing1.69Destabilizing-6.98Deleterious1.000Probably Damaging0.999Probably Damaging3.06Benign0.00Affected3.4217-3-3-5.4-16.04186.262.8-0.20.1-0.70.3XPotentially PathogenicThe isobutyl side chain of Leu692, located in the middle of an α-helix (res. Leu685-Gln702), engages in hydrophobic packing with nearby residues (e.g., Leu441, Leu431, Leu696) in the inter-helix space. Prolines lack a free amide group necessary for hydrogen bonding with the carbonyl group of Glu688 in the same manner as Leu692 in the WT. Consequently, the residue swap with proline disrupts the continuity of the secondary structure element in the variant simulations. Additionally, the side chain of Pro692 is not as optimal as Leu692 for hydrophobic packing in the inter-helix space.
c.667A>TT223S
(3D Viewer)
PHConflicting 26-33435518-A-T31.86e-6-7.714In-Between0.410AmbiguousLikely Benign0.535Likely Pathogenic0.26Likely Benign0.10.50Ambiguous0.38Likely Benign0.62Ambiguous-2.86Deleterious0.421Benign0.058Benign5.80Benign0.02Affected3.411311-0.1-14.03200.717.3-0.20.20.00.0XUncertainThe introduced residue Ser223 is located on the outer surface of an anti-parallel β sheet strand (res. Cys219-Thr224). Its hydroxyl group forms hydrogen bonds with nearby residues Thr228 and Lys207 in the variant simulations, similar to the hydroxyl group of Thr223 in the WT simulations. These hydrogen-bonding interactions at the β sheet surface contribute to the stability of the secondary structure element and may prevent it from unfolding. However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.886T>GS296A
(3D Viewer)
Likely BenignC2Uncertain 1-6.847Likely Benign0.247Likely BenignLikely Benign0.209Likely Benign0.50Ambiguous0.3-0.26Likely Benign0.12Likely Benign0.35Likely Benign-1.79Neutral0.992Probably Damaging0.987Probably Damaging1.97Pathogenic0.65Tolerated3.4016112.6-16.00182.526.6-0.20.1-0.50.0XPotentially PathogenicThe hydroxyl group of the Ser296 side chain, located in an anti-parallel β sheet strand (res. Met289-Pro298), stably hydrogen bonds with the carboxylate group of Asp330 in a neighboring β strand (res. Ala322-Asp332). The backbone carbonyl group of Ser296 also hydrogen bonds with the guanidinium group of Arg279 in another nearby β strand (res. Arg279-Cys285). In the variant simulations, the methyl group of the Ala296 side chain cannot hydrogen bond with Asp330, causing the carboxylate group positioning to fluctuate more than in the WT simulations.Although the residue swap does not seem to affect the anti-parallel β sheet assembly during the simulations, it is possible that the Ser296-Asp330 hydrogen bond plays a crucial role in maintaining the C2 domain fold. Notably, because Ser296 is located near the membrane interface, the potential effect of the residue swap on the SynGAP-membrane association cannot be addressed by solvent-only simulations.
c.913A>GT305A
(3D Viewer)
Likely BenignC2Conflicting 26-33437818-A-G138.05e-6-4.307Likely Benign0.078Likely BenignLikely Benign0.144Likely Benign1.30Ambiguous0.61.55Ambiguous1.43Ambiguous0.77Ambiguous-2.10Neutral0.939Possibly Damaging0.645Possibly Damaging1.76Pathogenic0.12Tolerated3.4020102.5-30.03177.943.5-0.20.10.40.0UncertainThe hydroxyl group of Thr305, located at the beginning of an anti-parallel β strand (res. Thr305-Asn315), hydrogen bonds with the carboxylate groups of Glu270 and Asp304 in the anti-parallel β strand and the adjacent β hairpin loop, respectively. In the variant simulations, the methyl group of the Ala305 side chain cannot hydrogen bond with either of the acidic residues, which could weaken the integrity of the tertiary structure and the β hairpin loop. Indeed, the guanidinium group of Arg299 does not acquire its central hairpin loop position due to the residue swap.β hairpins are potential nucleation sites during the initial stages of protein folding, so even minor changes in them could be significant. Due to its location near the membrane surface, the residue swap could also affect the C2 loop dynamics and SynGAP-membrane association. However, this is beyond the scope of the solvent-only simulations to unravel.
c.917T>AV306D
(3D Viewer)
Likely PathogenicC2Uncertain 1-18.289Likely Pathogenic0.986Likely PathogenicLikely Pathogenic0.530Likely Pathogenic4.40Destabilizing0.34.29Destabilizing4.35Destabilizing2.44Destabilizing-5.44Deleterious1.000Probably Damaging0.999Probably Damaging1.74Pathogenic0.00Affected3.3819-2-3-7.715.96212.3-18.3-0.20.40.00.2XXXPotentially PathogenicThe isopropyl group of Val396, located at the beginning of an anti-parallel β sheet strand (res. Thr305-Asn315), packs against multiple hydrophobic residues (e.g., Leu274, Trp308, Ala271) in the WT simulations. However, in the variant simulations, the negatively charged carboxylate group of the Asp306 side chain is not suitable for this hydrophobic niche. Consequently, the side chain moves out to interact with Ser300 in the β strand (res. Met289-Arg299) and the guanidinium group of Arg299 in the β hairpin loop.In the third simulation, the residue swap disrupts the C2 domain secondary structure and tertiary assembly to a large degree when the amino group of the Lys297 side chain rotates to form a salt bridge with Asp306. This drastic effect could potentially reflect the challenge presented by the residue swap during the C2 domain folding. Because the residue swap affects the C2 domain structure, the SynGAP-membrane association could also be impacted. However, this is beyond the scope of the solvent-only simulations to unravel.
c.1045C>TP349S
(3D Viewer)
C2Uncertain 1-7.654In-Between0.217Likely BenignLikely Benign0.277Likely Benign1.92Ambiguous0.12.28Destabilizing2.10Destabilizing0.87Ambiguous-6.13Deleterious1.000Probably Damaging0.996Probably Damaging1.66Pathogenic0.06Tolerated3.37251-10.8-10.04194.9-18.1-0.10.00.20.1XXPotentially PathogenicThe cyclic pyrrolidine side chain of Pro349, located at the end of an anti-parallel β sheet strand (res. Gly341-Pro349), allows the strand to end and make a tight turn before a short α helical section within a loop connecting to another β strand (res. Thr359-Pro364). In the variant simulations, the hydroxyl group of Ser349 forms a hydrogen bond with the backbone amide group of Ala351 in the short helical section. Conversely, the backbone amide group of Ser349 (absent in proline) does not form any intra-protein hydrogen bonds. However, the β strand end connects to the α helical section in a more stable and consistent manner compared to the WT. Although the residue swap does not cause major adverse effects on the protein structure in the simulations, it is possible that the tight turn at the β strand end could not be created during folding without the presence of proline.
c.1066C>TR356C
(3D Viewer)
Likely PathogenicC2Likely Benign 16-33437971-C-T53.10e-6-11.827Likely Pathogenic0.774Likely PathogenicLikely Benign0.312Likely Benign0.76Ambiguous0.01.19Ambiguous0.98Ambiguous0.84Ambiguous-7.12Deleterious1.000Probably Damaging0.990Probably Damaging1.67Pathogenic0.00Affected3.3922-4-37.0-53.05212.391.0-0.10.3-0.30.1XPotentially PathogenicArg356 is located in a loop that includes a short helical section and connects two anti-parallel β sheet strands (res. Gly341-Pro349, res. Thr359-Pro364). In the WT simulations, the guanidinium group of Arg356 alternately forms salt bridges with the carboxylate groups of the GAP domain residues, Glu446 and Glu698. Arg356 also forms hydrogen bonds with the hydroxyl group of the GAP domain residue Thr691 and interacts with Met409 at the C2-GAP interface.In the variant simulations, the Cys356 mutation fails to maintain any of the Arg356 interactions and only occasionally forms weak hydrogen bonds with nearby C2 domain residues (e.g., Gln407). Although no negative structural effects are observed during the simulations, Arg356 is located at the C2 and GAP domain interface, making the residue swap potentially detrimental to the tertiary structure assembly.
c.1193C>TP398L
(3D Viewer)
C2Uncertain 16-33438098-C-T84.96e-6-7.518In-Between0.547AmbiguousLikely Benign0.599Likely Pathogenic1.48Ambiguous0.2-0.54Ambiguous0.47Likely Benign0.62Ambiguous-7.10Deleterious0.961Probably Damaging0.256Benign5.72Benign0.01Affected3.4016-3-35.416.04245.8-68.6-0.10.0-0.30.2XPotentially PathogenicPro398 is located in the Gly-rich Ω loop (res. Pro364-Pro398) between two anti-parallel β sheet strands (res. Thr359-Pro364 and res. Ala399-Ile411). The Ω loop is assumed to directly interact with the membrane, and it is observed to move arbitrarily throughout the WT solvent simulations. Although the residue swap does not influence the nearby secondary structure elements, proline is often found at the ends of β sheets due to its disfavored status during folding.Additionally, the Ω loop potentially plays a crucial role in the SynGAP-membrane complex association, stability, and dynamics. However, this aspect cannot be fully addressed through solvent simulations alone. Ω loops are known to play significant roles in protein functions that require flexibility, and thus hydrophobic residues like leucine are rarely tolerated. Although no negative structural effects are visualized in the variant’s simulations, Leu398 may exert drastic effects on the SynGAP-membrane complex dynamics and stability. Since the effects on the Gly-rich Ω loop dynamics can only be well studied through the SynGAP-membrane complex, no definite conclusions can be drawn.
c.1199T>AV400E
(3D Viewer)
Likely PathogenicC2Uncertain 1-13.686Likely Pathogenic0.998Likely PathogenicLikely Pathogenic0.810Likely Pathogenic3.70Destabilizing0.22.46Destabilizing3.08Destabilizing2.29Destabilizing-4.88Deleterious0.920Possibly Damaging0.335Benign5.31Benign0.00Affected3.3827-2-2-7.729.98249.1-38.8-0.10.11.00.0XXXPotentially PathogenicThe iso-propyl side chain of Val400, located in an anti-parallel β sheet strand (res. Ala399-Ile411), hydrophobically packs against hydrophobic residues within the anti-parallel β sheet of the C2 domain (e.g., Ile268, Ala404, Leu325, Leu402). In the variant simulations, the negatively charged carboxylate group of the Glu400 side chain is not suitable for occupying the hydrophobic niche. Consequently, the side chain escapes the center of the C2 domain and interacts with the backbone amide groups of Leu402 in the same β strand and/or Ile269 and Glu270 in a neighboring β strand (res. Arg259-Arg272). This residue swap disrupts the hydrophobic packing and generally has extensive negative effects on the C2 domain structure. At a minimum, the residue swap could affect the C2 domain stability and membrane association.
c.1213C>TR405C
(3D Viewer)
Likely PathogenicC2Conflicting 26-33438118-C-T63.72e-6-9.206Likely Pathogenic0.713Likely PathogenicLikely Benign0.427Likely Benign0.72Ambiguous0.11.51Ambiguous1.12Ambiguous1.21Destabilizing-7.27Deleterious1.000Probably Damaging1.000Probably Damaging3.61Benign0.02Affected3.3828-4-37.0-53.05221.382.6-0.10.0-0.20.3XXPotentially PathogenicThe guanidinium group of Arg405, located in an anti-parallel β sheet strand of the C2 domain (res. Ala399-Ile411), forms a salt bridge with the carboxylate group of the Glu446 side chain from an opposing α helix (res. Val441-Ser457) in the GAP domain. The positively charged Arg405 side chain also stacks with the aromatic ring of the Phe358 side chain from a loop preceding the β strand (res. Thr359-Thr366), which could assist in maintaining the anti-parallel strand arrangement.In the variant simulations, the thiol-containing side chain of Cys405 is neutral and smaller compared to the arginine side chain. The lack of Arg405-Phe358 stacking affects the loop structure, causing it to assume a β strand form—an effect that could be exacerbated during protein folding. Moreover, the inability of Cys405 to form a salt bridge with Glu446 could affect the tertiary structure assembly, although this is not apparent based on the variant simulations.
c.1214G>AR405H
(3D Viewer)
Likely PathogenicC2Conflicting 26-33438119-G-A42.48e-6-9.081Likely Pathogenic0.706Likely PathogenicLikely Benign0.371Likely Benign2.79Destabilizing0.61.85Ambiguous2.32Destabilizing1.26Destabilizing-4.54Deleterious1.000Probably Damaging0.991Probably Damaging3.65Benign0.01Affected3.3828201.3-19.05214.0102.2-0.10.0-0.70.1XPotentially PathogenicThe guanidinium group of Arg405, located in an anti-parallel β sheet strand of the C2 domain (res. Pro398-Ile411), forms a salt bridge with the carboxylate group of the Glu446 side chain from an opposing α helix (res. Val441-Ser457) in the GAP domain. The positively charged Arg405 side chain also stacks with the aromatic ring of the Phe358 side chain from a loop preceding the β strand (res. Thr359-Thr366), which could assist in maintaining the anti-parallel strand arrangement.In the variant simulations, the imidazole ring of His405 does not stack with the aromatic ring of Phe358 nor form any lasting H-bonds with the loop residues. The imidazole ring of His405 (neutral and epsilon protonated in the simulations) is unable to form a salt bridge with Glu446, which could affect the tertiary structure assembly, although this is not apparent based on the variant simulations.
c.1390T>GF464V
(3D Viewer)
Likely PathogenicGAPUncertain 1-12.254Likely Pathogenic0.994Likely PathogenicLikely Pathogenic0.592Likely Pathogenic3.61Destabilizing0.12.89Destabilizing3.25Destabilizing1.40Destabilizing-6.96Deleterious0.998Probably Damaging0.996Probably Damaging3.36Benign0.04Affected3.3734-1-11.4-48.04210.140.5-0.10.0-0.90.3XPotentially PathogenicThe phenyl ring of Phe464, located in the middle of an α helix (res. Ala461–Phe476), packs against hydrophobic residues (e.g., Met468, Leu451, Leu455, and Tyr428) in the inter-helix space formed with two other α helices (res. Asn440-Lys460 and res. Pro413-Glu436). The iso-propyl side chain of Val464 is similarly hydrophobic but considerably smaller than the original phenyl ring of Phe464. To compensate for the size difference, neighboring residues need to fill in the gap in the variant simulations.The phenolic side chain of Tyr428, located at the middle bend of an α helix (res. Glu436-Pro413), assumes a new position in the inter-helix space or rotates inward next to the third α helix (res. Asn440-Lys460) when the stable H-bond between Tyr428 and Asp467 seen in the WT simulations breaks. The residue swap also leads to the loss of the methionine-aromatic interaction between the Met468 and Phe464 side chains, which could weaken the integrity of the parent α helix (res. Ala461-Phe476). Although the simulations likely underestimate the full adverse effect of the introduced mutation during folding, the two opposing α helices (res. Ala461–Phe476 and res. Glu436-Pro413) move substantially closer to each other in the variant simulations.
c.1453C>TR485C
(3D Viewer)
Likely PathogenicGAPUncertain 26-33438485-C-T95.58e-6-14.294Likely Pathogenic0.976Likely PathogenicLikely Pathogenic0.597Likely Pathogenic1.00Ambiguous0.10.26Likely Benign0.63Ambiguous0.44Likely Benign-7.96Deleterious1.000Probably Damaging1.000Probably Damaging1.90Pathogenic0.00Affected3.3735-4-37.0-53.05225.599.6-0.10.0-0.30.2XUncertainThe guanidinium group of Arg485 is located in a short helical structure (res. Glu480-Leu482) within an α-α loop connecting the two α-helices (res. Ala461-Phe476 and Leu489-Glu519) at the GAP-Ras interface. The side chain of Arg485 acts as the “arginine finger” of SynGAP, playing a crucial role in Ras-GTPase activation. Consequently, the residue swap inhibits the conversion of GTP to GDP at the enzyme’s active site. Although no negative effects on the protein structure are observed during the simulations, no definite conclusions can be drawn due to the critical role of Arg485 in GTPase activation.
c.1490A>GY497C
(3D Viewer)
Likely PathogenicGAPUncertain 1-11.872Likely Pathogenic0.948Likely PathogenicAmbiguous0.806Likely Pathogenic3.88Destabilizing0.14.76Destabilizing4.32Destabilizing1.40Destabilizing-8.82Deleterious1.000Probably Damaging0.995Probably Damaging-1.65Pathogenic0.03Affected3.37350-23.8-60.04209.959.1-0.10.0-0.30.1XXPotentially PathogenicTyr497 is located in the α-helix (res. Leu489-Glu519) within the inter-helix space of four α-helices (res. Leu489-Ile501, res. Val441-Ser457, res. Arg563-Glu578, res. Ala461-Val473). In the WT simulations, the phenol ring of Tyr497 hydrophobically packs with other residues in the inter-helix space (e.g., Leu465, Leu565, Val568). The hydroxyl group of Tyr497 also alternately forms hydrogen bonds with the carboxylate side chain of Gln456 and the backbone carbonyl of Glu564. Thus, Tyr497 plays a role in the folding and maintenance of the tertiary structure assembly between these four helices.In the variant simulations, the comparatively smaller residue, Cys497, cannot maintain any of the interactions seen with Tyr497 in the WT. Although no severe deleterious consequences are observed in the simulations, the structural effects could be more pronounced during actual protein folding. Indeed, the tertiary structure is seen to slightly break apart in the variant simulations.
c.1556A>CE519A
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-8.557Likely Pathogenic0.904Likely PathogenicAmbiguous0.384Likely Benign-0.05Likely Benign0.00.55Ambiguous0.25Likely Benign0.00Likely Benign-5.23Deleterious0.999Probably Damaging0.998Probably Damaging3.33Benign0.10Tolerated3.37350-15.3-58.04162.483.5-0.10.1-0.20.0XPotentially BenignGlu519 is located at the beginning of an α-α loop between the two α-helices (res. Gly502-Tyr518 and Ala533-Val560). In the WT simulations, the carboxylate side chain of Glu519 does not make any specific interactions. Accordingly, the Ala residue swap does not show any negative structural effects in the variant simulations. However, it should be noted that Glu519 faces the missing part of the N-terminal in the model, and thus its potential role in maintaining the tertiary structure might be de-emphasized in the current model.
c.1604G>CS535T
(3D Viewer)
Likely BenignGAPBenign 16-33438847-G-C148.67e-6-3.886Likely Benign0.069Likely BenignLikely Benign0.177Likely Benign0.45Likely Benign0.1-0.27Likely Benign0.09Likely Benign0.17Likely Benign-0.81Neutral0.000Benign0.001Benign-1.25Pathogenic0.25Tolerated3.3735110.114.03201.3-17.3-0.10.7-0.20.1XPotentially BenignSer535 is located near the terminal end of an α-helix (res. Ala533-Val560) close to the membrane interface. In the WT simulations, the hydroxyl side chain of Ser535 forms hydrogen bonds with nearby residues (e.g., His539, Glu538) without any specific interactions. These hydrogen bonds disrupt the structure of the terminal end of the α-helix (Ala533-Ser535), causing it to weaken or unfold during the WT simulations. In the variant simulations, Thr535, a hydrophilic residue with a hydroxyl group of almost the same size as Ser, interacts more frequently with the preceding loop residues (e.g., Thr532, Cys531) due to its longer side chain. Regardless, the residue swap is tolerated in the simulations with no negative effects. However, due to its location near the SynGAP-membrane interface, the effect of the residue swap cannot be fully addressed using the SynGAP solvent-only simulations.10.1016/j.ajhg.2020.11.011
c.1685C>TP562L
(3D Viewer)
Likely PathogenicGAPPathogenic/Likely path. 106-33440737-C-T-13.438Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.829Likely Pathogenic3.54Destabilizing0.80.17Likely Benign1.86Ambiguous-0.14Likely Benign-9.95Deleterious1.000Probably Damaging1.000Probably Damaging0.58Pathogenic0.00Affected3.3735-3-35.416.04228.8-68.5-0.10.00.10.2XPotentially PathogenicPro562 is located on an α-α loop between two α-helices (res. Ala533-Val560 and res. Arg563-Glu578). The cyclic pyrrolidine side chain of Pro562 hydrophobically packs with other residues in the inter-helix space, such as Leu565, Ile501, and Phe561. In the variant simulations, Leu562 packs more favorably with the nearby hydrophobic residues, and the backbone amide group of Leu562 (absent in proline) does not form any intra-protein hydrogen bonds. However, prolines are well-suited for unstructured regions like loops, and thus, Pro562 in the WT is necessary at the end of the helix to induce a tight turn during folding. Although no negative structural effects are observed during the simulations, the residue swap could potentially cause extensive damage to the protein structure during folding.10.1016/j.ajhg.2020.11.011
c.1706T>CF569S
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 2-13.384Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.916Likely Pathogenic5.70Destabilizing0.15.38Destabilizing5.54Destabilizing2.45Destabilizing-7.97Deleterious1.000Probably Damaging1.000Probably Damaging-1.32Pathogenic0.00Affected3.3734-3-2-3.6-60.10213.767.9-0.10.0-1.00.1XPotentially PathogenicPhe569 is located on an α-helix (res. Arg563-Glu578). In the WT simulations, the phenyl side chain of Phe569 packs with hydrophobic residues such as Trp572, Leu565, Ile589, Ile667, and Phe561, originating from three different α-helices (res. Ala533-Val560, res. Arg563-Glu578, and res. Ser641-Glu666). In the variant simulations, the acceptor/donor hydroxyl group of Ser569 forms hydrogen bonds with the carbonyl groups of Glu567 and Lys566 on the same α-helix, which could affect the α-helix integrity, although this is not observed in the simulations. While the simulations do not show large-scale effects, the residue swap could have a substantial impact on the protein structure due to the fundamental role of hydrophobic packing during protein folding.
c.1752C>GI584M
(3D Viewer)
Likely PathogenicGAPUncertain 26-33440804-C-G16.20e-7-10.119Likely Pathogenic0.419AmbiguousLikely Benign0.478Likely Benign0.11Likely Benign0.10.46Likely Benign0.29Likely Benign1.16Destabilizing-2.62Deleterious0.983Probably Damaging0.925Probably Damaging-1.25Pathogenic0.12Tolerated3.373421-2.618.03247.5-20.3-0.10.3-0.10.1XPotentially BenignA hydrophobic residue, Ile584, located in an α helix (res. Glu582-Met603), is swapped for another hydrophobic residue, Met584. The sec-butyl hydrocarbon side chain of Ile584 packs hydrophobically with residues in an inter-helix hydrophobic space (e.g., Leu588, Met477, Val473, and Ile483).In the variant simulations, the thioether hydrophobic side chain of Met584 maintains similar interactions as Ile584 in the WT, as it is roughly the same size and fits well within the hydrophobic space. Thus, the residue swap does not appear to cause any negative effects on the protein structure.
c.1786C>TR596C
(3D Viewer)
Likely PathogenicGAPConflicting 26-33440838-C-T63.72e-6-10.805Likely Pathogenic0.972Likely PathogenicLikely Pathogenic0.633Likely Pathogenic2.94Destabilizing0.01.49Ambiguous2.22Destabilizing-0.03Likely Benign-7.96Deleterious1.000Probably Damaging1.000Probably Damaging2.41Pathogenic0.00Affected3.3735-4-37.0-53.05230.797.9-0.10.0-0.30.4XXPotentially PathogenicThe guanidinium group of Arg596, located in an α helix (res. Glu582-Met603), forms a salt bridge with the carboxylate group of Glu495 from another α helix (res. Leu489-Glu519). In the WT simulations, the side chain of Arg596 hydrogen bonds with the backbone carbonyl groups of Asn487, Glu486, Arg485, and Phe484. Additionally, Arg596 can hydrogen bond with the carboxamide group of the Asn487 side chain on an opposing loop that links two α helices (res. Ala461-Arg475, res. Leu489-Glu519).In the variant simulations, the thiol group of the Cys596 side chain is unable to form salt bridges or any of the hydrogen bonds that the Arg596 side chain can. Thus, the residue swap could affect the tertiary structure assembly more profoundly than observed in the simulations. Notably, Arg596 plays a key role in positioning the aforementioned loop, which is crucial for the placement of the “arginine finger” or the Arg485 side chain during RasGTPase activation.
c.1787G>AR596H
(3D Viewer)
Likely PathogenicGAPLikely Benign 16-33440839-G-A159.29e-6-11.128Likely Pathogenic0.950Likely PathogenicAmbiguous0.717Likely Pathogenic3.00Destabilizing0.90.43Likely Benign1.72Ambiguous1.35Destabilizing-4.97Deleterious1.000Probably Damaging0.999Probably Damaging2.43Pathogenic0.00Affected3.3735201.3-19.05223.580.5-0.10.0-0.10.3XXPotentially PathogenicThe guanidinium group of Arg596, located in an α helix (res. Glu582-Met603), forms a salt bridge with the carboxylate group of Glu495 from another α helix (res. Leu489-Glu519). In the WT simulations, the side chain of Arg596 hydrogen bonds with the backbone carbonyl groups of Asn487, Glu486, Arg485, and Phe484. Additionally, Arg596 can hydrogen bond with the carboxamide group of the Asn487 side chain on an opposing loop that links two α helices (res. Ala461-Arg475, res. Leu489-Glu519).In the variant simulations, the imidazole ring of His596 can form hydrogen bonds with the same residues as arginine; however, these interactions are not as coordinated or strong in comparison. Thus, the residue swap could affect the tertiary structure assembly more profoundly than observed in the simulations. Notably, Arg596 plays a key role in positioning the aforementioned loop, which is crucial for the placement of the “arginine finger” or the Arg485 side chain during RasGTPase activation.
c.1787G>TR596L
(3D Viewer)
Likely PathogenicGAPUncertain 1-13.197Likely Pathogenic0.992Likely PathogenicLikely Pathogenic0.756Likely Pathogenic1.51Ambiguous0.3-0.58Ambiguous0.47Likely Benign-0.02Likely Benign-6.97Deleterious1.000Probably Damaging1.000Probably Damaging2.45Pathogenic0.00Affected3.3735-3-28.3-43.03234.263.4-0.10.0-0.50.6XXPotentially PathogenicThe guanidinium group of Arg596, located in an α helix (res. Glu582-Met603), forms a salt bridge with the carboxylate group of Glu495 from another α helix (res. Leu489-Glu519). In the WT simulations, the side chain of Arg596 hydrogen bonds with the backbone carbonyl groups of Asn487, Glu486, Arg485, and Phe484. Additionally, Arg596 can hydrogen bond with the carboxamide group of the Asn487 side chain on an opposing loop that links two α helices (res. Ala461-Arg475, res. Leu489-Glu519).However, in the variant simulations, the branched hydrocarbon side chain of Leu596 cannot form any of the hydrogen bonds or salt bridges maintained by the considerably bulkier and positively charged Arg596 side chain. Instead, Leu596 packs hydrophobically with the phenyl ring of Phe484 in the linker loop or residues from the opposing helix (e.g., Ile494, Thr491).Thus, the residue swap could affect the tertiary structure assembly more profoundly than observed in the simulations. Notably, Arg596 plays a key role in positioning the aforementioned loop, which is crucial for the placement of the “arginine finger” or the Arg485 side chain during RasGTPase activation.10.1016/j.ajhg.2020.11.011
c.1888A>GI630V
(3D Viewer)
GAPBenign/Likely benign 46-33440940-A-G593.66e-5-7.264In-Between0.145Likely BenignLikely Benign0.143Likely Benign1.33Ambiguous0.00.94Ambiguous1.14Ambiguous0.64Ambiguous-0.38Neutral0.018Benign0.011Benign-1.37Pathogenic0.35Tolerated3.373443-0.3-14.03235.026.2-0.10.0-0.30.1XPotentially BenignThe sec-butyl side chain of Ile630, located in an α helix (res. Glu617-Asn635), packs with hydrophobic residues (e.g., Phe594, Leu633, Ile626, Ile602) in the hydrophobic inter-helix space between two α helices (res. Glu617-Asn635 and res. Glu582-Met603).In the variant simulations, the iso-propyl side chain of Val630, which shares a similar size and physicochemical properties with Ile630 in the WT, maintains similar interactions in the inter-helix space. Although no negative structural effects are observed during the simulations, the implications of the residue swap on the complex formation with the GTPase, due to its location, cannot be investigated using solvent-only simulations.
c.2003C>TS668F
(3D Viewer)
Likely PathogenicGAPLikely Pathogenic 1-15.047Likely Pathogenic0.999Likely PathogenicLikely Pathogenic0.643Likely Pathogenic16.72Destabilizing5.011.07Destabilizing13.90Destabilizing0.00Likely Benign-5.98Deleterious0.999Probably Damaging0.935Probably Damaging3.18Benign0.00Affected3.3828-3-23.660.10250.9-59.6-0.10.10.00.1XXXPotentially PathogenicIn the WT simulations, the hydroxyl side chain of Ser668, located on an α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), forms hydrogen bonds with the backbone carbonyl groups of Leu664, Tyr665, and Glu666, as well as the guanidinium group of Arg573 on a nearby α-helix (res. Arg563-Glu578). In the variant simulations, the side chain of Phe668 cannot maintain the same hydrogen-bond network. Due to its larger size, it moves away to avoid steric hindrance. In the WT simulations, a network of hydrogen bonds between several residues (e.g., Asn669, Lys566, and Glu666) keeps both α-helices and the proceeding loop (res. Asn669-Asp684) tightly connected, but this setup is not present in the variant simulations. Additionally, in the variant simulations, the side chain of Arg573 shifts to form a more stable salt bridge with the carboxylate group of Glu582 instead of hydrogen bonding with Ser668 as in the WT simulations.
c.2014A>GT672A
(3D Viewer)
Likely BenignGAPBenign 16-33441273-A-G31.86e-6-6.524Likely Benign0.109Likely BenignLikely Benign0.046Likely Benign0.51Ambiguous0.31.15Ambiguous0.83Ambiguous0.65Ambiguous-3.20Deleterious0.006Benign0.002Benign3.44Benign0.12Tolerated3.4025102.5-30.03188.542.5-0.10.30.20.0XPotentially PathogenicThe hydroxyl group of Thr672, located in an entangled α-α loop connecting the two α-helices (res. Ser641-Glu666 and res. Leu685-Val699), is involved in a highly coordinated hydrogen-bonding network between residues from two α-helices (res. Ser641-Glu666 and res. Arg563-Glu578) and from the α-α loop itself, such as Lys566, Glu666, and Asn669. In the variant simulations, Ala672 can only form a hydrogen bond with Lys566 via its backbone carbonyl group. Consequently, it cannot maintain the Lys566-Glu666 salt bridge through hydrogen bonding, leading to a significant disruption of the intricate and stable hydrogen-bond network between the loop and the helices.
c.2111G>AS704N
(3D Viewer)
Likely BenignGAPBenign/Likely benign 36-33441370-G-A271.67e-5-5.917Likely Benign0.421AmbiguousLikely Benign0.058Likely Benign0.48Likely Benign0.1-0.12Likely Benign0.18Likely Benign0.54Ambiguous-0.49Neutral0.771Possibly Damaging0.275Benign3.39Benign0.08Tolerated3.471011-2.727.03233.2-29.1-0.10.0-0.10.1XPotentially BenignSer704 is located at the end and outer surface of an α-helix (res. Thr704-Gly712), which is connected via a tight turn or loop to another α-helix (res. Asp684-Gln702). The hydroxyl side chain of Ser704 occasionally forms a hydrogen bond with the amide group of Ala707. However, in the variant simulations, the carboxamide side chain of Asn704 achieves more lasting and numerous hydrogen-bonding interactions with the residues at the helix end, such as Glu706, Ala707, and Leu708. Consequently, the residue swap could strengthen the α-helix secondary structure integrity at the helix end, which could have either positive or negative effects on its function.
c.2143C>TP715S
(3D Viewer)
GAPLikely Pathogenic 16-33441608-C-T16.20e-7-7.635In-Between0.787Likely PathogenicAmbiguous0.277Likely Benign3.54Destabilizing0.00.81Ambiguous2.18Destabilizing0.94Ambiguous-7.17Deleterious1.000Probably Damaging0.998Probably Damaging3.43Benign0.01Affected3.5091-10.8-10.04231.8-14.0-0.10.0-0.80.1XUncertainPro715, along with Gly712 and Pro713, are located in a hinge region of an α-helix making a ~90-degree turn (res. Lys705-Leu725). In the WT simulations, the pyrrolidine side chain of Pro715, lacking the backbone amide groups altogether, forces the tight helix turn to take place while also hydrophobically packing with nearby residues (e.g., Leu700, Leu708, Leu714, and Leu718). Leu715, with a normal amide backbone, could potentially affect protein folding and turn formation, although this was not observed in the variant simulations. Additionally, the hydroxyl group of the Ser715 side chain can form hydrogen bonds with the backbone carbonyl group of Gly712 and disrupt the hydrophobic packing arrangement of the leucine residues from the neighboring α-helices, impacting the GAP domain tertiary assembly.
c.2162T>GI721S
(3D Viewer)
Likely PathogenicGAPUncertain 1-14.032Likely Pathogenic0.996Likely PathogenicLikely Pathogenic0.466Likely Benign3.91Destabilizing0.13.96Destabilizing3.94Destabilizing2.28Destabilizing-5.26Deleterious1.000Probably Damaging1.000Probably Damaging2.21Pathogenic0.00Affected3.509-1-2-5.3-26.08203.349.3-0.10.0-1.10.0XUncertainThe sec-butyl side chain of Ile721, located on an α-helix (res. Leu714-Arg726), engages in hydrophobic packing with other residues in the hydrophobic inter-helix space, such as Phe420, Tyr417, His693, and Leu717. In the variant simulations, the hydroxyl side chain of Ser721 forms hydrogen bonds with nearby residues, such as Leu717 and His693. Although no major structural changes are observed during the variant simulations, the hydrophilic residue Ser721 could disrupt the hydrophobic packing during folding. However, because the model ends abruptly at the C-terminus, no definite conclusions can be drawn based on the simulations.
c.597C>AN199K
(3D Viewer)
PHUncertain 1-8.198Likely Pathogenic0.686Likely PathogenicLikely Benign0.024Likely Benign-0.19Likely Benign0.10.03Likely Benign-0.08Likely Benign0.33Likely Benign-1.48Neutral0.276Benign0.083Benign4.27Benign0.13Tolerated3.47910-0.414.07207.821.5-0.11.50.10.0XUncertainAsn199, located in the N-terminal loop before the first anti-parallel β sheet strand (res. Ile205-Pro208), is replaced by a positively charged lysine. On the protein surface, both the carboxamide group of Asn199 and the amino group of Lys199 side chains can form hydrogen bonds with the backbone carbonyl groups of residues (e.g., Ala249) at the end of an α helix (res. Ala236-Lys251). However, since the model ends abruptly at the N-terminus, no definite conclusions can be drawn from the simulations.
c.700C>TR234W
(3D Viewer)
Likely PathogenicPHUncertain 16-33435551-C-T31.86e-6-12.625Likely Pathogenic0.947Likely PathogenicAmbiguous0.805Likely Pathogenic0.96Ambiguous0.30.69Ambiguous0.83Ambiguous0.13Likely Benign-5.52Deleterious0.997Probably Damaging0.803Possibly Damaging5.76Benign0.01Affected3.40142-33.630.03262.839.6-0.10.0-0.20.2XPotentially PathogenicThe guanidinium group of Arg234, located in a β-α loop between an anti-parallel β sheet strand (residues Gly227-Phe231) and an α helix (res. Ala236-Val250), forms a salt bridge with the carboxylate group of Glu238 in the α helix. Occasionally, it also bonds with the GAP domain residues Ser678 and Glu680. Thus, the positively charged Arg234 could contribute to the tertiary structure assembly between the PH and GAP domains. In contrast, the indole side chain of Trp234 in the variant is located on the protein surface in the variant simulations and is unable to form any interactions.

Found 757 rows. Show 200 rows per page. Page 3/4 |